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Abstract: A paradigm shift is required to prevent the increasing automobile accident deaths that are
mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable
information regarding a driver’s point of attention. Accurate and inexpensive gaze classification
systems in cars can improve safe driving. However, monitoring real-time driving behaviors and
conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses
reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head
movements. The margin of error in gaze detection increases when drivers gaze at objects by moving
their eyes without moving their heads. To solve this problem, a pupil center corneal reflection
(PCCR)-based method has been considered. However, the error of accurately detecting the pupil
center and corneal reflection center is increased in a car environment due to various environment
light changes, reflections on glasses surface, and motion and optical blurring of captured eye image.
In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform
in a car environment. To address this issue, we propose a deep learning-based gaze detection method
using a near-infrared (NIR) camera sensor considering driver head and eye movement that does
not require any initial user calibration. The proposed system is evaluated on our self-constructed
database as well as on open Columbia gaze dataset (CAVE-DB). The proposed method demonstrated
greater accuracy than the previous gaze classification methods.
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1. Introduction

Traffic accidents are mainly caused by a diminished driver vigilance level and gaze distraction
from the road [1,2]. Driver distraction is the main source of attention divergence from the roadway
and can pose serious dangers to the lives of drivers, passengers, and pedestrians. According to the
United States Department of Transportation, 3179 people were killed and 431,000 injured in 2014 due
to distracted drivers [3]. Any activity that can divert driver attention from the primary task of driving
can lead to distracted driving. It can happen for many reasons, but the most common are using a
smart phone, controlling the radio, eating and drinking, and operating a global positing system (GPS).
According to the National Highway Traffic Safety Administration (NHTSA) the risk factor for auto
wrecks increases three times when drivers are using their smart phones during driving [4]. Using a
smart phone causes the longest period of drivers taking their eyes off the road (EOR). In short, it can
be a reason for driver distraction, and the technology of driver gaze detection can play a pivotal role
in helping to avoid auto accidents. The classification of driver gaze attention is an area of increasing
relevance in the pursuit of accident reduction.
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Current road safety measures are approaching a level of maturity with the passage of time.
One of the major contributions to this is the development of advanced driver assistance systems
(ADAS) that can monitor driver attention and send alerts to improve road safety and avoid unsafe
driving. Real-time estimation of driver gaze could be coupled with an alerting system to enhance the
effectiveness of the ADAS [5]. However, these real-time systems are faced with many challenges for
obtaining reliable EOR estimation and classification of the gaze zones. Some significant challenges
include: varying illumination conditions; considerable variation in pupil and corneal reflection (CR)
due to driver head position and eye movements; variations in physical features that may differ due
to gender, skin color, ethnicity, and age; providing consistent accuracy for people wearing glasses or
contact lenses; and designing a system for a calibration-free environment. Some of the previous studies
have proven to be good under specific conditions, but they have limitations in actual car environments.

To overcome the limitations of previous systems and address the above-mentioned challenges,
we propose a near-infrared (NIR) camera sensor-based gaze classification system for car environments
using a convolutional neural network (CNN). It is an important issue as this research area has many
applications. The proposed system can be used for reliable EOR estimation and ADAS. It uses
state-of-the-art deep-learning techniques to solve gaze tracking in an unconstrained environment.

The remainder of this paper is organized as follows. In Section 2, we discuss in detail the previous
studies on gaze detection. In Section 3, the contributions of our research are explained. Our proposed
method and its working methodology overview are explained in Section 4. The experimental setup
is explained in Section 5, and the results are presented. Section 6 shows both our conclusions and
discussions on some ideas for future work.

2. Related Works

Several studies have been conducted relating to the gaze classification systems [6–9]. Gaze
classification can be broadly categorized into indoor desktop environments and outdoor vehicle
environments. The former can be further divided into wearable device-based methods and
non-wearable device-based methods. Wearable device-based methods include a camera and
illuminator mounted on the subject’s head in the form of a helmet or a pair of glasses [10–15]. In [13,14],
a mouse and a wheel chair are controlled by a head-mounted wearable eye-tracking system. Galante
et al. proposed a gaze-based interaction system for patients with cerebral palsy to use communication
boards on a 2D display. They proposed a system using a head-mounted device with two cameras for
eye tracking and frontal viewing [15]. In wearable systems, the problem of absolute head position can
be easily avoided as wearable devices move along with head movements. However, the problem of
user inconvenience arises when wearing the devices for long periods of time. To address this issue, the
non-wearable device-based methods use non-wearable gaze-tracking devices such as cameras and
illuminators to acquire face or eye images for gaze tracking [16–20]. Su et al. proposed a gaze-tracking
system that was based on a visible light web camera. In this system that detected a face on the
basis of skin color, luminance, chrominance, and edges, eyes are tracked to control the mouse [16].
A gaze-tracking system for controlling such applications as spelling programs or games was proposed
by Magee et al. [17] A remote gaze detection method was proposed by Lee et al. that uses wide-
and narrow-view cameras as an interface for smart TVs [18]. In addition, a typical example of the
non-wearable eye-tracking method is the PCCR-based method [19,20]. One major advantage of
PCCR-based methods is they require no complicated geometrical knowledge about lighting, monitors,
cameras, or eyes. User convenience of non-wearable device-based methods is higher than that of
the wearable gaze-tracking methods, but initial user calibration or camera calibration is required to
map the camera, monitor, and user’s eye coordinates. In addition, these studies have focused only on
indoor desktop environments considering small-sized monitors. In this study, we try to analyze the
applicability of PCCR-based methods in a vehicle environment in which the head rotation of user is
larger than that in desktop monitor environments and initial user calibration is difficult to perform.
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The second category includes outdoor vehicle environments to classify the driver’s gaze position
and their behavior while driving. Rough gaze position based on driver head orientation is usually
acceptable in driver behavior analyzing systems. Gaze zone estimators are being used to generate the
probability of driver attention position. Outdoor vehicle environments for gaze classification can be
further divided into two categories: multiple camera-based methods and single camera-based methods.

In past research, multiple camera-based methods were mostly used for the outdoor vehicle
environment [21–24]. When dealing with the challenges of more peripheral gaze directions or
large gaze coverage, multiple cameras may be the most suitable solution. Ahlstrom et al. [21]
used multi-camera eye trackers in the car environment. They installed two hidden cameras, one
at the A-pillar and one behind the center console of the car for covering forward-facing eye gazes.
They tried to investigate the usefulness of a real-time distraction detection algorithm named AttenD.
The performance, reliability, and accuracy of AttenD is directly dependent on eye-tracking quality.
In addition, they defined the field relevant for driving (FRD) excluding the right-side mirror, but it is
often the case that drivers gaze at the right-side mirror while driving.

Liang et al. observed driver distraction by using eye motion data in a support vector machine
(SVM) model [22]. They compared it with a logistic regression model and found the SVM model
performed better in identifying distraction. However, wearing glasses or eye make-up can adversely
affect the accuracy of this system. An initial calibration of 5 to 15 min is also required and can
be time-consuming and annoying for drivers. The concept of a distributed camera framework for
gaze estimation was given by Tawari et al. [23]. They tracked facial landmarks and performed their
correspondence matching in 3D face images. A random forest classifier in combination with proposed
feature set was used for zone estimation. Since a visible light camera is used instead of a NIR light
camera, it is greatly influenced by the external light conditions. Although the accuracy of the driver’s
gaze was high, only eight frontal gaze regions were considered. Later they proposed [24] that head pose
for gaze classification can be estimated effectively by facial landmarks and their 3D correspondences.
This is done by using a pose from an orthography and scaling (POS) algorithm [25]. Later, they
used a constrained local model (CLM) to extract and analyze the head pose and its dynamic in the
multi-camera system [26]. Although multiple camera-based methods show high accuracies of gaze
estimation, the processing time is increased by the images of multiple cameras.

Considering this issue, single camera-based methods have been researched [27–31]. SVM was
used by Lee et al. to estimate driver gaze zones by using their pitch and yaw clues [27]. The camera
resolution of this system [27] is low with low illuminator power, and the driver’s pupil center cannot be
detected. Therefore, they estimated the driver’s gaze position only by measuring head rotation (not eye
rotation), and obtained the experimental data by instructing drivers to rotate their heads intentionally
and sufficiently. If a driver only moves the eyes to gaze at some position without head rotation (which
is often the case while driving), their method cannot detect driver gaze position. Vicente et al. [28]
proposed a supervised descent method (SDM) using a scale invariant feature transform (SIFT)
descriptor to express face shape by providing a clear representation against illumination. For eye pose
estimation, facial feature landmarks use eye alignment to locate the eye region. There is an advantage
that the camera position is not significantly affected by the change. However, the disadvantage is that
the driver’s wide head rotation and the use of thick glasses can decrease its performance. In addition,
accuracy of the gaze tracker system may be limited as pupil center position in the driver’s image
can be mixed with the iris center position in daylight when not using the NIR light illuminator [32].
In [29,30], they detected skin regions based on pre-trained skin color predicate by Kjeldsen et al.’s
method [33]. In the detected image, the eye region is classified as the non-skin region. If a non-skin
region is detected above the lip corners, it becomes the most probable eye region. A small window
is set and searched within the determined eye region to determine the pupil with the lowest pixel
value, and the eye is traced using the optical flow algorithm of [34]. Finally, assuming that the eyes
are aligned, they estimated the driver’s gaze by modeling head movements using the position of
both eyes, the back of the head just behind both eyes, and the center of the back of the head. In this
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study, it is not necessary to measure the distance from the driver’s head to the camera, but this is
because it detects only the direction of the eyes. When the driver’s head and eyes rotate in opposite
directions, or when the head does not rotate and only the eyes move, accuracy of tracking is decreased.
In addition, since the iris center position is detected instead of the pupil center position, there is
a limitation in improving the accuracy of eye tracking. Fridman et al. combined the histogram of
oriented gradients (HOG) with a linear SVM classifier to find face region and classify feature vectors to
gaze zones by random forest classifier [31]. Previous studies use Purkinje images [35] or detect facial
feature points [36] to estimate gaze. Purkinje images (PI) are the light reflections generated on the
cornea and crystalline lens of the human eye [37]. By analyzing the movements of these reflections
(especially, the 1st and 4th PI), it is possible to identify the direction of eye rotation and determine gaze.
However, this study did not evaluate the gaze detection accuracy in a vehicular environment [35].
Fridman, et al. [36] used facial feature points to find the iris and binarized it to estimate the area being
gazed at. However, their accuracy was not high, because the iris could be detected in only 61.6% of
the test images. There were limits to enhancing the accuracy of gaze detection because the center of
the iris, and not the pupil, was detected. Choi et al. [38] detected driver faces with a Haar feature
face detector and used CNN to categorize gaze zones, but they considered only eight gaze regions.
Vora et al. proposed the method of driver’s gaze estimation by CNN, but small numbers of gaze
regions (six gaze regions) were considered in this research [39]. Therefore, the detailed gaze position
of the driver cannot be detected. Fu et al. proposed automatic calibration method for the driver’s head
orientation by a single camera [40]. However, their calibration method requires the driver to gaze at
several positions such as the side mirrors, the rear-view mirror, the instrument board, and different
zones in the windshield as calibration points, which causes inconvenience to the driver in the actual
car environment. In addition, only 12 gaze zones were considered in their research.

Other categories of gaze detection methods, such as regression-based methods, have been studied
including appearance-based gaze estimation via uncalibrated gaze pattern recovery and adaptive
linear regression for appearance-based gaze estimation [41,42].

Ghosh et al. [43] proposed using eye detection and tracking to monitor driver vigilance. However,
their method classified open or closed eyes instead of detecting the driver’s gaze position. In addition,
the camera angle is small, and there is the limitation of movement of the driver’s head, which causes
inconvenience to the driver. García et al. [44] proposed a non-intrusive approach for drowsiness
detection. Cyganek et al. proposed the hybrid visual system for monitoring the driver’s states of
fatigue, sleepiness and inattention based on the driver’s eye recognition using the custom setup of
visible light and NIR cameras and cascade of two classifiers [45]. Chen et al. proposed the method of
detection of alertness and drowsiness by fusing electroencephalogram (EEG) and eyelid movement
by electrooculography (EOG) [46]. However, as with the research in [43], their method [44–46] just
recognized the alertness/drowsiness status of the driver by classifying open or closed eyes (or by
physiological signals), not by detecting the driver’s gaze position. Kaddouhi et al. proposed the
method of eye detection based on the Viola and Jones method, corner points, Shi-Tomasi detector,
K-means, and eye template matching [47]. This is just for the research of eye detection, and driver’s
gaze position was not detected in this research.

In previous research [48–51], they investigated the drivers’ visual strategies, the distribution of
fixation points, driving performance, and gaze behavior by on-road experiment or driving simulator.
Their research was focused on the analyses of the driver’s visual characteristics while driving instead
of proposing new gaze detection methods.

Considering the limitations of existing studies, we investigated a method for driver gaze
classification in the car environment using deep CNN. In Table 1, we have summarized the comparison
of the proposed method and existing methods on gaze classification in vehicle environment.
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Table 1. Comparison between the proposed and previous research on gaze classification in
vehicle environment.

Category Methods Advantage Disadvantage

Multiple camera-based [21–24]
Multiple cameras are used to
classify driver’s gaze region

- Possibility of invisible eye
region is reduced

- The processing time is
increased by the images of
multiple cameras

- Reliability is higher when
information from multiple
cameras is combined

- Difficulties in applying to
actual vehicular environment
due to complicated,
time-consuming
calibration [21,22]

Single camera-based

Using SVM [27], SDM with SIFT
[28], skin color [29,30], HOG, SVM,
random forest classifier [31],
Purkinje image [35], facial feature
points [36], and particle filtering [40]

Computational complexity is
lower than multiple
camera-based system

Higher possibility of invisible
eye regions or disappearance
of pupil and CR, which can
negatively affect the reliability
of system

Regression-based method [41,42]
Continuous gaze position
can be obtained instead of
discrete one

Using one CNN based on driver’s
face image [38,39]

- Accurate detection of pupil
and CR is not required

- Small numbers of gaze
regions are covered

- Driver’s calibration is not
required for
gaze classification

- Large quantity of data and
time is required to train CNN

Using deep three CNNs based on
driver’s eyes and face images
(Proposed method)

- Accurate detection of pupil
and CR is not required

Large quantity of data and
time is required to train CNN

- Driver’s calibration is not
required for
gaze classification

- Large numbers of gaze
regions are covered

3. The Contributions of Our Research

Our research has contributed in the following four ways compared to previous works.

• Although there exists only one previous piece of research that used a shallow CNN of AlexNet
for gaze estimation in the car environment [38], they used only one CNN using whole face image
as input for estimating the small number of gaze regions (8 regions). Because the accurate gaze
position of the driver cannot be detected based on only these 8 regions, we increased the number
of gaze regions into 17 as shown in Figure 3a. The consequent classification complexity of gaze
estimator is increased, and one shallow CNN using one input face image cannot show good
accuracy of gaze estimation as shown in Tables 10 and 13. Therefore, we use three deep CNNs
that use the images of left eye, right eye and face, respectively, and combine the outputs by these
three CNNs based on score level fusion, which shows higher accuracy of gaze estimation without
initial driver calibration.

• In order to check the effect of PCCR vectors on the accuracy of gaze estimation, the performance
by our method based on three CNNs, which use the images of left eye, right eye and face is
compared to the three CNNs with PCCR vectors.

• Through the fine tuning of a pre-trained visual geometry group (VGG) CNN model, accurate
gaze detection can be done without intensive training (scratch training) of the whole CNN model,
which can reduce the number of training data.

• We make our collected database and trained CNN model open to other researchers through [52]
to enable them to have comparisons with our database and model.
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4. Gaze Classification in Outdoor Vehicle Environment Using CNN

4.1. Overview of Proposed Method

An overview of the system is shown in Figure 1. After the NIR camera of our system of Figure 2
captures the image frames of the driver’s frontal view, 68 face landmarks are detected by the Dlib facial
feature tracker [53] (steps (1) and (2) of Figure 1, and details are explained in Section 4.2). Then, the
region-of-interest (ROI) images of face, left and right eye are obtained based on the corresponding
face landmarks position (step (3) of Figure 1). Brightness normalization is done in each ROI image
based on the mean of all the pixel values in each ROI image to increase the performance of the system
and reduce the effect of light. In step (4) of Figure 1, three sets of feature values are extracted using
three CNNs of face, left, and right eye ROI images, respectively (details are explained in Section 4.4).
Then, each set of feature values is normalized, and three distances are calculated by three sets of feature
values (step (5) of Figure 1). Here, distance is calculated between the input set of feature values and
that in each gaze zone. Finally, our system classifies the driver’s gaze zone based on score fusion of
three distances (details are explained in Section 4.4.4).
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Figure 1. Flowchart of proposed system.

Figures 2 and 3 show our experimental environment with proposed device of gaze detection and
17 gaze zones in our experiment, respectively. As shown in Figure 2, our device consists of a NIR
camera and the illuminator of 6 NIR light emitting diodes (LEDs). Because the size of the device is small
(8.8 cm × 4.3 cm × 4.0 cm), it could be installed in the vicinity of the dashboard, as shown in Figure 2,
and can continuously track the driver’s gaze without obscuring the dashboard. The NIR illuminator in
the gaze detection system was placed to the left of the camera, and helped capture the driver’s facial
image without being influenced by changing ambient light. Using the NIR LEDs at a wavelength of
850 nm, which is a little visible to the driver’s eye, prevented uncomfortable situations, such as the
driver being blinded or fatigued by the light while driving, and it distinguished the boundary of the
pupil. A zoom lens (focal length of 9 mm) was attached to the camera to capture enlarged facial images
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of the driver. An 850-nm band pass filter (BPF) was also mounted on the camera’s lens to minimize
interference due to sunlight [54]. Power to this device was supplied by a laptop computer using two
universal serial bus (USB) lines, one connecting the camera and the other the illuminator. The captured
image by web camera of our gaze-tracking device is successively transmitted to the laptop computer
via a USB interface line. The characteristics of the camera and the illuminator of our gaze detection
system are shown in Table 2.

Table 2. Specification of illuminator and camera in our system.

NIR LED Illuminator

Wavelength 850 nm
Number of NIR LEDs 6

USB Camera

Product name ELP-USB500W02M-L36 [55]
Spatial resolution of image 1600 × 1200 pixels

Data were obtained and processed on a laptop computer with 2.80 GHz CPU (Intel® Core ™,
Santa Clara, CA, USA, i5-4200H) and 8 GB of RAM.
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4.2. Detecting Facial Landmarks by Dlib Facial Feature Tracker

In our research, 68 facial landmarks are detected by the Dlib facial feature tracker [53]. Facial
landmarks are used to localize and represent salient regions of the face, such as eyes, eyebrows, nose,
mouth and jawline. It can be successfully applied to various applications of face alignment, face
swapping, and blink detection etc. In our case we have utilized it to extract face, left eye, and right eye
areas. The procedure of obtaining facial landmarks is composed of localizing the face in the image
and detecting the main facial structures on the face ROI. Localizing the face in the image can be done
various ways such as using Haar cascades detector, HOG and Linear SVM-based detector, and deep
learning-based algorithms. In any case, the major purpose is to find the face-bounding box. Once the
face is localized through face-bounding box, our next target is to detect key facial structures in the face
area. The Dlib facial feature tracker is used to estimate 68 (x,y)-coordinates that are mapped on the
facial structure of the face. The indices of the 68 coordinates of facial landmarks are shown in Figure 4.
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4.3. Calculating PCCR Vector for Left and Right Eye

For showing the effectiveness of our proposed method, we have made comparison of a method
considering PCCR vector (scheme 2) with our proposed method without considering PCCR (scheme 1).
For this purpose, we calculated PCCR vector from left and right eyes. There have been various
previous studies on eye, pupil, and CR detection [56,57]. In our research, within the captured eye
ROI, defined based on the facial landmarks of 36~41 (for left eye) and those of 42~47 (for right eye)
of Figure 4, the pupil center and CR center are detected as follows [7]. As the first step, histogram
stretching is performed within the eye ROI. Then, the image subjected to histogram stretching goes
through image binarization. This is intended to distinguish the pupil from the non-pupil regions as
well as the CR from the non-CR regions. Morphological processing and component labeling are used
on the binarized image to find the largest region. Then, based on the boundary identified using the
canny edge detector, the outer boundary of the pupil is detected in the image by using the convex hull
algorithm. By subtracting the overlapping area (of this boundary and the binarized CR region) from
the outer boundary, it is possible to find the pupil boundary that is not distorted by the CR. Finally, the
pupil center is accurately detected by performing ellipse fitting based on this boundary.

A search region is defined to detect the CR centered on the detected center of the pupil. Image
binarization is performed on this search region to distinguish the CR and non-CR regions, after which
component labeling is performed on the non-CR region because areas with the same pixel brightness
as the CR can still exist in the region. The region closest to the detected pupil center is then designated
as the CR region, and the geometric center of the designated CR is determined to be the CR center.
An example of the detected pupil and CR regions are shown in Figure 5.
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Based on the detected two centers of the pupil and CR, the PCCR vector is calculated. The PCCR
vector is most commonly used to calculate gaze position [7,56]. Figure 6 shows a typical pupil–corneal
reflection setup. Visual axis angle is calculated by tracking the relative position of the pupil center and
CR technically known as “glint”. Assuming that the positions of camera and light source are fixed, the
eye is a sphere that only rotates around its center, and the position of CR does not move with the eye
rotation, CR (glint) can be suitable as a reference point. Therefore, 2D PCCR vectors are calculated as
→
vL and

→
vL, respectively, as shown in Equation (1) and Figure 6.

→
vL = xLp − xLg, yLp − yLg

→
vR = xRp − xRg, yRp − yRg

(1)

where (xLp, yLp) and (xRp, yRp) are the two pupil centers of left and right eye image, respectively,
whereas (xLg, yLp) and (xRg, yRg) are the two CR (glint) centers of left and right eye image, respectively.

Sensors 2018, 17, x 10 of 34 

 

Based on the detected two centers of the pupil and CR, the PCCR vector is calculated. The PCCR 
vector is most commonly used to calculate gaze position [7,56]. Figure 6 shows a typical pupil–corneal 
reflection setup. Visual axis angle is calculated by tracking the relative position of the pupil center 
and CR technically known as “glint”. Assuming that the positions of camera and light source are 
fixed, the eye is a sphere that only rotates around its center, and the position of CR does not move 
with the eye rotation, CR (glint) can be suitable as a reference point. Therefore, 2D PCCR vectors are 
calculated as  and , respectively, as shown in Equation (1) and Figure 6. = − , −  = − , −  

(1) 

where ( , ) and ( , ) are the two pupil centers of left and right eye image, respectively, 
whereas ( , ) and ( , ) are the two CR (glint) centers of left and right eye image, 
respectively. 

 
(a) (b)

Figure 6. The PCCR vectors generated from (a) left eye and (b) right eye images. 

4.4. Driver’s Gaze Classification Based on CNN 

4.4.1. Gaze Feature Extraction 

For extracting gaze feature, we use three inputs extracted from the driver’s image, the face, left 
eye, and right eye. For obtaining these inputs, we used the detected 68 landmarks on the face of 
Figure 4. We added a margin of 50 pixels around the outer landmarks of face, left eye, and right eye 
to crop face, left eye, and right eye ROI images around them. Once the input images are cropped they 
are resized to the images of 224 × 224 pixels using bi-linear interpolation, and they are used as inputs 
to three CNNs as shown in Figure 7 (scheme 1). 

In this research, we used the original VGG-face network (including 16 layers) that was trained 
for face recognition [58]. The VGG-face 16 model was trained using approximately 2.6 million face 
images obtained from 2622 people. The structure of the VGG-face 16 model is similar to the VGG-
Net 16 architecture [59], and their accuracies were evaluated on the databases of Labeled Faces in the 
Wild (LFW) [60] and YouTube Faces (YTF) [61]. With this model of VGG-face 16, we performed the 
fine-tuning with our training data. Detailed explanations on the training and testing data are shown 
in Section 5.1. With the fine-tuned VGG-face model, we extracted features from the response of the 
fully connected layer (FCL), which is the second to last level (Fc7 of Table 3) of 4096-dimensional 
descriptor. After extracting three sets of features of 4096 from face, left eye, and right eye images, the 
final gaze zone among 17 zones of Figure 3a is determined based on the minimum distance, and 
detailed explanations are included in Section 4.4.4. 

Figure 6. The PCCR vectors generated from (a) left eye and (b) right eye images.

4.4. Driver’s Gaze Classification Based on CNN

4.4.1. Gaze Feature Extraction

For extracting gaze feature, we use three inputs extracted from the driver’s image, the face, left
eye, and right eye. For obtaining these inputs, we used the detected 68 landmarks on the face of
Figure 4. We added a margin of 50 pixels around the outer landmarks of face, left eye, and right eye to
crop face, left eye, and right eye ROI images around them. Once the input images are cropped they are
resized to the images of 224 × 224 pixels using bi-linear interpolation, and they are used as inputs to
three CNNs as shown in Figure 7 (scheme 1).

In this research, we used the original VGG-face network (including 16 layers) that was trained
for face recognition [58]. The VGG-face 16 model was trained using approximately 2.6 million face
images obtained from 2622 people. The structure of the VGG-face 16 model is similar to the VGG-Net
16 architecture [59], and their accuracies were evaluated on the databases of Labeled Faces in the
Wild (LFW) [60] and YouTube Faces (YTF) [61]. With this model of VGG-face 16, we performed the
fine-tuning with our training data. Detailed explanations on the training and testing data are shown
in Section 5.1. With the fine-tuned VGG-face model, we extracted features from the response of the
fully connected layer (FCL), which is the second to last level (Fc7 of Table 3) of 4096-dimensional
descriptor. After extracting three sets of features of 4096 from face, left eye, and right eye images,
the final gaze zone among 17 zones of Figure 3a is determined based on the minimum distance, and
detailed explanations are included in Section 4.4.4.
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Table 3. Configuration of CNN model used in our research (CL means convolutional layer).

Layer Types Number
of Filters Size of Feature Map Size of

Kernel
Stride

Number
Padding
Number

Image input layer - 224 (height) × 224
(width) × 3 (channel) - - -

Group 1

Conv-1_1 (1st CL) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
ReLU-1_1 - 224 × 224 × 64 - - -

Conv-1_2 (2nd CL) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
ReLU-1_2 - 224 × 224 × 64 - - -

Pool-1 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0

Group 2

Conv-2_1 (3rd CL) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
ReLU-2_1 - 112 × 112 × 128 - - -

Conv-2_2 (4th CL) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
ReLU-2_2 - 112 × 112 × 128 - - -

Pool-2 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0

Group 3

Conv-3_1 (5th CL) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU-3_1 - 56 × 56 × 256 - - -

Conv-3_2 (6th CL) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU-3_2 - 56 × 56 × 256 - - -

Conv-3_3 (7th CL) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU-3_3 - 56 × 56 × 256 - - -

Pool-3 1 28 × 28 × 246 2 × 2 2 × 2 0 × 0

Group 4

Conv-4_1 (8th CL) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU-4_1 - 28 × 28 × 512 - - -

Conv-4_2 (9th CL) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU-4_2 - 28 × 28 × 512 - - -

Conv-4_3 (10th CL) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU-4_3 - 28 × 28 × 512 - - -

Pool-4 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0

Group 5

Conv-5_1 (11th CL) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU-5_1 - 14 × 14 × 512 - - -

Conv-5_2 (12th CL) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU-5_2 - 14 × 14 × 512 - - -

Conv-5_3 (13th CL) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU-5_3 - 14 × 14 × 512 - - -

Pool-5 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0

Fc6 (1st FCL) - 4096 × 1 - - -
ReLU-6 - 4096 × 1 - - -

Dropout-6 - 4096 × 1 - - -

Fc7 (2nd FCL) - 4096 × 1 - - -
ReLU-7 - 4096 × 1 - - -

Dropout-7 - 4096 × 1 - - -

Fc8 (3rd FCL) - 17 × 1 - - -
Softmax layer - 17 × 1 - - -
Output layer - 17 × 1 - - -

As the next scheme (scheme 2 of Figure 8), we also considered the PCCR vector for gaze zone
classification because the PCCR vector has been widely used for previous studies on gaze detection.
Then, we compared the performance of scheme 1 of Figure 7 with the scheme 2 of Figure 8 for
calculating the driver’s gaze classification system. Like scheme 2, after extracting three sets of features
of 4096 from face, left eye, and right eye images with two additional PCCR vectors from left and right
eye, respectively, final gaze zone among 17 zones of Figure 3a was determined based on the minimum
distance, and detail explanations are also included in Section 4.4.4.
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4.4.2. CNN (VGG-Face 16) Structure

We are going to discuss our CNN structure that is represented in Figure 9 and explained in Table 3.
It is comprised of 13 convolutional layers, 5 pooling layers, and 3 fully connected layers (FCLs). In the
first convolutional layer, 64 filters of the size of 3 × 3 are used for the input of 224 × 224 × 3. Here,
224 × 224 × 3 represents width, height, and number of channel, respectively. From that, the feature
map of 224 × 224 × 64 is obtained. This can be calculated based on the following criteria: (output
width (or height) = (input width (or height) − filter width (or height) + 2 × the padding number)/the
stride number + 1) [62]. For example, in Table 3, the input width, filter width, the padding number,
and the stride number are 224, 3, 1, and 1 respectively. Therefore, the output width of the feature map
by convolution is calculated as 224 (= (224 − 3 + 2 × 1)/1 + 1). In general, the output feature map for
standard convolution based on stride one and padding is obtained by [63]:

Ok,l,n = Σi,j,m Ki,j,m,n · Ik+i−1,l+j−1,m (2)

When Ik+i−1,l+j−1,m is the input feature map of the size of SF × SF × P. SF is the width and height
of square input feature map, and P is the number of input channels (input depth). Ok,l,n is the output
feature map of the size of TF × TF × Q. TF is the spatial width and height of a square output feature
map, and Q is the number of output channels (output depth). Ki,j,m,n is the convolution kernel of
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size SK × SK × P × Q, and SK is the spatial dimension of convolution kernel. From that, standard
convolutions have the following computational cost of:

C = SK · SK · P · Q · SF · SF (3)

Based on Equation (2), we can find that the computational cost depends multiplicatively on the
kernel size SK × SK, the number of input channels P, the number of output channels Q, and the input
feature map size SF × SF [63].
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Rectified linear unit (ReLU) layer is based on the following function as shown in Equation (4) [64,65].

y = max(0, x) (4)

In Equation (4), x and y are the input and output values, respectively. This function reduces the
problem of vanishing gradient [66] that may occur when a hyperbolic or sigmoid tangent function is
used in back-propagation for training. In addition, it has a faster processing speed than a non-linear
activation function. After passing through the ReLU layer (ReLU-1_1 of Table 3), the feature map
obtained through the second convolutional layer is once again passed through the ReLU layer
(ReLU-1_2 of Table 3) before passing through the max pooling layer (Pool-1 of Table 3) as shown in
Table 3. Here, the 2nd convolutional layer maintains the feature map size of 224 × 224 × 64 with filter
of size 3 × 3, padding 1 × 1, and stride 1 × 1 as in the first convolutional layer.

The maximum value among the values defined in the filter range is selected in the max pooling
layer, which performs a kind of subsampling. Note that after ReLU-1_2 of Table 3, the feature map size
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is 224 × 224 × 64. By using max pooling layer (Pool-1) of kernel size of 2 × 2, and stride of 2 × 2, the
feature map size is reduced to 1/4 (112 × 112 × 64) because there is no overlapping area for the filter.

As shown in Table 3, the size of kernel of 3 × 3, the padding number of 1 × 1, and the stride
number of 1 × 1 are used in all 13 convolutional layers. Only the number of filters is changed to 64,
128, 256, and 512. Each ReLU layer is followed by a convolutional layer. Similarly, each max pooling
layer is used after ReLU-1_2, ReLU-2_2, ReLU-3_3, ReLU-4_3, and ReLU-5_3 in Table 3, and the filter
in each max pooling layer is composed of size of 2 × 2, the stride of 2 × 2, and the padding of 0 × 0.
As explained, the feature map size is reduced at each max pooling layer, ReLU-1_2 (224 × 224 × 64) is
reduced to Pool-1 (112 × 112 × 64), ReLU-2_2 (112 × 112 × 128) to Pool-2 (56 × 56 × 128), ReLU-3_3
(56 × 56 × 256) to Pool-3 (28 × 28 × 246), ReLU-4_3 (28 × 28 × 512) to Pool-4 (14 × 14 × 512), and
ReLU-5_3 (14 × 14 × 512) to Pool-5 (7 × 7 × 512).

4.4.3. FCLs of CNN

Once the input image is passed through the 13 convolutional layers, 13 ReLU layers, and 5 pooling
layers, we can get the feature map size of 7 × 7 × 512 pixels. The obtained feature map passes through
the additional three FCLs. After each FCL, the feature maps of 4096 × 1, 4096 × 1, and 17 × 1 are
obtained, respectively, as shown in Table 3. In this study, we have designed the classification system
for driver’s gaze region by CNN. Because the number of gazing zones is 17 as shown in Figure 3a,
the output layer of Table 3 is 17 × 1.

In the third FCL, the softmax function is used as shown in Equation (5) [67].

σ(r) =
eri

∑K
n=1 ern

(5)

Here, r is an array of output neurons; we can obtain the probability of neurons belonging to the
ith class by dividing the value of the ith element by the summation of all the elements.

It has been frequently observed that there is the problem of low recognition accuracy with testing
data in CNN-based cognitive systems due to over-fitting in the data. To solve this issue, we used data
augmentation and dropout methods [68,69]. A detailed description of the experimental data generated
by the data augmentation is given in Section 5.1. For the dropout method, we adopt the dropout
probability of 50% to randomly disconnect the links between the previous layer and the current layer
in the 1st and 2nd FCLs.

4.4.4. Classifying Gaze Zones by Score Fusion of Three Distances

As explained in Section 4.4.1, after extracting three separate feature sets (three sets of 4096 features)
from face, left eye, and right eye images (scheme 1), we normalized them to each other by min-max
scaling. With the training data, we already saved the three (normalized) feature sets per each gaze
zone of Figure 3a. Then, we can calculate three Euclidean distances between the three feature sets of
inputs and the three saved on each gaze zone. After that, these three distances were combined based
on score level fusion. Finally, one final score (distance) is obtained, and the gaze zone whose final
score (distance) is smallest among 17 zones of Figure 3a is determined as the driver gazing region.
As explained in Section 4.4.1, in scheme 2, five feature sets from face, left eye, and right eye images
with two additional PCCR vectors from left and right eye are used instead of three feature sets from
face, left eye, and right eye images.

For the score level fusion, the performances of weighted SUM and weighted PRODUCT rules of
Equations (6) and (7) were compared, and optimal weights were selected with training data. Detailed
explanations are shown in Section 5.3.1.

WS =
m

∑
i=1

widi (6)
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WP =
m

∏
i=1

dwi
i (7)

where m is 3 in case of scheme 1; whereas m is 5 in case of scheme 2 as shown in Figures 7 and 8.
In scheme 1, i of 1, 2 and 3 shows the left eye, right eye, and face, respectively, as shown in Figure 7.
In scheme 2, i of 1~5 represents the left eye, right eye, face, PCCR vector of left eye, and PCCR vector
of right eye, respectively, as shown in Figure 7. WS and WP are respectively the scores by weighted
SUM and weighted PRODUCT rules, di is the Euclidean distance obtained from the input, and wi is
the weight.

The 17 outputs of the output layer in Figure 9 represent the 17 gaze regions of Figure 3a. If we
use one CNN for gaze estimation, these 17 outputs can be used for the detection of final gaze position.
However, in our research, we combine the gaze estimation results by three CNNs (scheme 1 of Figure 7)
or three CNNs with two PCCR vectors (scheme 2 of Figure 8). In these cases, the 17 outputs from one
CNN cannot be combined with other outputs or PCCR vectors. Therefore, we use 4096 features from
Fc7 of Table 3 for obtaining the combined Euclidean distance by score level fusion, by which the final
gaze position can be detected as shown in Figures 7 and 8.

5. Experimental Results

5.1. Experimental Data and Environment

In this research, we have collected our own database (DDGC-DB1) for the driver’s gaze
classification system in the car environment as shown in Figure 10. It was obtained through the
experimental setup that can be viewed in Figure 2. Most previous driving databases are not open
access for academic research as they are prepared by auto manufacturers. The Chinese Academy of
Sciences pose, expression, accessories, and lighting (CAS-PEAL) database is very popular and widely
used for baseline evaluation of gaze estimation or face recognition with various factors of pose and
light [70]. However, this database was collected in a laboratory instead of an actual car environment,
and various factors in cars are not reflected in this database. Another database is RobeSafe driver
monitoring video (RS-DMV) dataset [71]. However, this database does not fit to our purpose because
the information of ground-truth gaze position is not provided. Without this information, we cannot
evaluate the accuracies of our gaze detection method. Therefore, we collected our own database
(DDGC-DB1).
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Figure 10. Example images of face (left), left eye (middle), and right eye (right) while looking at
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(e) region 7; and (f) region 8.

As shown in Figure 3, 17 spots (gaze zones) were designated to gaze at for the experiment, and
each driver stared at each spot five times. Data were collected from 20 drivers including 3 wearing
glasses. The image size is 1600 × 1200 pixels with 3 channels. When the participants were staring
at each spot, they were told to act normally, as if they were actually driving and were not restrained
to one position or given any special instructions to act in an unnatural manner. There were risks of
car accidents to motivate the participants to accurately stare at the 17 designated spots while actually
driving for the experiment. Instead, this study obtained images from various locations (from roads
in daylight to a parking garage) in a real vehicle (model name of SM5 New Impression by Renault
Samsung [72]) with its power on, but in park to create an environment most similar to when it is
being driven (including factors such as car vibration and external light). Moreover, to understand
the influence of various kinds of external light on driver gaze detection, test data were acquired at
different times of the day: in the morning, the afternoon, and at night. From our database, we obtained
the images (of 224 × 224 pixels) of face, left, and right eyes for CNN training and testing as shown in
Figure 10.

The research by Lee et al. [27] used 18 gaze zones by using an additional zone (the upper position
of region 6 of Figure 3) compared to 17 zones in our research. However, the case of gazing at this
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additional zone does not frequently occur while driving [48–51]. Therefore, in previous studies, they
did not use this additional zone for experiments, either [24,36,38–40]. Based on that, we did not use
this additional zone, and performed the experiments with the data where drivers gazed at the 17
positions of Figure 3.

In our experiment, we performed two-fold cross validation for training and testing. For that, we
have randomly divided our databases into two subsets of face, left eye, and right eye images as shown
in Table 4. Then, as explained in Section 4.4.3, data augmentation with training data is performed to
avoid the overfitting problem as follows. Five images are obtained from each rectangular ROI defined
for the face, left eye, and right eye in the image by shifting 1 pixel in the left, right, up and down
directions based on the coordinates of the original image. Hence five images are obtained from each
face, left eye, and right eye in the single original image as shown in Figure 11. Original data was used
for testing whereas the augmented data was used only for training as shown in Table 4.

Table 4. Description of training and testing images from DDGC-DB1.

Two-Fold Cross Validation Training Testing

1st fold cross validation
16,310 (3262 × 5) images for each
sub-database (face, left, and right

eyes) from 10 people

3256 images for each sub-database (face,
left, and right eyes) from 10 people

2nd fold cross validation
16,280 (3256 × 5) images for each
sub-database (face, left, and right

eyes) from 10 people

3262 images for each sub-database (face,
left, and right eyes) from 10 people
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For the CNN training and testing, we used a desktop computer with an Intel® Core™ (Santa Clara,
CA, USA) i7-3770K CPU @ 3.50 GHz, 16 GB memory, and a NVIDIA GeForce GTX 1070 (1920 CUDA
cores and 8 GB memory) graphics card [73]. Our algorithm was implemented by Microsoft Visual Studio
2013 C++, and OpenCV (version 2.4.5) [74] library and Boost (version 1.55.0) library. The training and
testing algorithm of the CNN model was implemented by Windows Caffe (version 1) [75].
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5.2. Training of CNN Model

Stochastic gradient descent (SGD) method was used for CNN training [76]. The SGD method
is a derivative-based method of finding the optimal weight that minimizes the difference between
the desired output and the calculated output. Unlike the gradient descent (GD) method, in the SGD
method, the number of training sets divided by mini-batch size is defined as iteration, and one epoch
is set when training is performed for all the number of iterations as shown in Equations (8) and (9) [69].

vi+1 : = m ·vi − d·η·wi − η·
〈

∂Qi(w)

∂w

∣∣∣∣wi

〉
Di (8)

wi+1 : = wi + vi+1 (9)

where wi is the weight to be learnt at the ith iteration. m is momentum, vi is the momentum variable,
d is the weight decay, and η is the learning rate.

〈
∂Qi(w)

∂w

∣∣∣wi

〉
Di is the average over the ith batch Di of

the derivative of the object with respective to w, evaluated at wi. In our experiment, the training was
performed for the predefined epoch count of 16 based on the maximum number of training i.e., about
13,048. m, d, and η of Equations 8 and 9 were set as 0.9, 0.0005, and 0.00001, respectively, with batch
size of 20.

Figure 12 shows the visualization of the relationship between loss and training accuracy during
training of sub-databases of face, left eye, and right eye. The x-axis represents the number of epoch.
The left side of the y-axis represents the loss and the right side of the y-axis represents the training
accuracy. The loss depends on the learning rate and batch size. When the learning rate is lowered,
it slowly goes down, showing linearity. If the learning rate is high, the loss decreases sharply, but the
loss value changes suddenly, which may lead to the problem of maintaining the loss value without
reaching the optimal CNN model. In this experiment, we used optimal models with loss curves close
to 0 (0%) and training accuracies close to 1 (100%) as shown in Figure 12.
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5.3. Testing of Proposed Method

5.3.1. Comparison of Weighted SUM and Weighted PRODUCT Method

In our research, the accuracy of gaze estimation was measured based on strictly correct estimation
rate (SCER) and loosely correct estimation rate (LCER). SCER refers to the ratio of the number of
strictly correct frames divided by the number of total frames. The strictly correct frame indicates the
frame where the estimated gaze zone is equivalent to the ground truth gaze zone. LCER refers to
the ratio of the number of loosely correct frames divided by the number of total frames. The loosely
correct frame indicates the frame where the estimated gaze zone is placed within ground truth gaze
zone or its surrounding zones. For example, when a driver looked at zone 10 of Figure 3a in a test data
image, the SCER considered it correct estimation only when the minimum distance fell to position 10.
On the other hand, the LCER considered it a correct estimation when the minimum distance fell to
either position 10 or one of the positions in its vicinity—6 through 14.

As explained in Section 4.4.4, Euclidean distances (scores) of inputs are combined by weight SUM
or weight PRODUCT rules. The optimal weights for these rules were experimentally determined
with training data. It is observed that optimal weights obtained for face, left eye, and right eye using
weighted SUM rule in case of scheme 1 are 0.1, 0.5 and 0.4, respectively, with average SCER and LCER
value of 92.8% and 99.6% respectively. The optimal weights obtained for face, left eye, right eye, PCCR
vector of left eye, and PCCR vector of right eye using weighted SUM rule in case of scheme 2 are
0.085, 0.495, 0.4, 0.011, and 0.009 respectively, with average SCER and LCER value of 64.8% and 91.1%
respectively. It is found that optimal weights obtained for face, left eye, and right eye using weighted
PRODUCT method in case of scheme 1 are 0.1, 0.5 and 0.4, respectively with average SCER and LCER
value of 90.8% and 99.1% respectively. In case of scheme 2, the average SCER and LCER value of 65.7%
and 90.4% with optimal weights of 0.09, 0.49, 0.4, 0.01, and 0.01 for face, left eye, right eye, PCCR
vector of left eye, and PCCR vector of right eye respectively using weighted PRODUCT rule. Because
other parts of the face such as lips can be changed according to the change of facial expression even in
case of gazing at the same zone, lower weight was determined for face compared to those for left and
right eyes. As shown in Figure 3b, the head rotation in the right direction is more severe than that in
the left direction. Therefore, the left eye can be better observed by our gaze-tracking camera (installed
in the vicinity of the dashboard, as shown in Figure 2) than right eye, and more gaze information can
be obtained from left eye for the driver gaze classification system. Consequently, larger weight was
determined for left eye than right eye. In addition, because the weighted SUM rule outperformed the
weighted PRODUCT rule, we use the weighted SUM rule in our research.
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5.3.2. Comparison of Scheme 1 and Scheme 2

As the next experiment, we have made the comparison of accuracies of gaze estimation by
schemes 1 and 2 of Figures 7 and 8. We have analyzed the testing results through different metrics such
as the confusion matrix and estimation rate of SCER and LCER. First, we discuss the results obtained
through the confusion matrix. It is a popular metric for classification problems on a set of test data
for which true values are known. We analyzed the results without using PCCR vectors i.e., scheme 1
explained in Figure 7. As we have collected the results from two-fold cross validation, Table 5 shows
the average classification accuracy results from two-fold cross validations (scheme 1). “Actual” and
“Predicted” mean the ground-truth and estimated gaze zone, respectively. Observe from the results
through the confusion matrix of scheme 1 that almost all the gaze regions have shown a high level of
accuracy. Although the distances between gaze regions were small and the number of gaze regions is
large, our proposed method has demonstrated high accuracy of gaze estimation. Later, we obtained
the results by using scheme 2 for the driver’s gaze classification. We have obtained the results with
PCCR vectors from left and right eye combined with face, left, and right eye images. For comparison
purposes, we have extracted the results and represented them in the form of the confusion matrix
shown below. As we have collected the results from two-fold cross validation, Table 6 shows the
average classification accuracy from two-fold cross validation with PCCR vector (scheme 2).

Observe from the results through the confusion matrix of scheme 2 that the accuracy for driver’s
gaze classification in the car environment was degraded with considering PCCR vector (scheme 2)
in the results compared to scheme 1. It shows that error in detection of the pupil center and corneal
reflection causes the error in PCCR vector, which decreases the accuracy of gaze estimation.

To further verify our results for scheme 1 and scheme 2, we used other metrics for classification
i.e., estimation rate categorized into SCER and LCER. Estimation rate is measured using the proposed
method without PCCR vectors (scheme 1) and with PCCR (scheme 2) are shown in Tables 7 and 8
respectively. Table 7 shows the SCER and the LCER results for each gaze region without using PCCR
vector (scheme 1).
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Table 5. Average confusion matrix of scheme 1 from two-fold cross validation.

Predicted

Actual

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17
R1 98.8 0.4 - - - - - - - - - 0.3 - - 0.3 - 0.2
R2 1 97.1 0.6 - - - - - - - - 0.6 0.2 - 0.2 - 0.3
R3 - 0.8 97.4 0.8 - - - - - - - 0.2 0.3 0.1 - - 0.4
R4 - - 1.2 96.9 0.9 - - - - - - - 0.4 0.2 - 0.4 -
R5 - - - 2.9 91.4 - - - - - - - - 2.9 - 2.8 -
R6 - - - - - 95 1.4 0.1 2 0.8 - 0.1 - - 0.6 - -
R7 - - 0.2 - - 2.1 89.1 2.9 1.4 1.8 1.3 0.6 0.2 - 0.4 - -
R8 - 0.1 - 0.5 - - 2.3 87.5 1.6 2 2.3 1.2 - 0.6 - 1.9 -
R9 - - - - - 1.9 1.6 - 90.4 1.8 - 1.9 1.2 0.1 1.1 - -

R10 - - - - - 0.9 1.1 0.5 0.4 94.9 0.9 0.5 0.4 0.4 - - -
R11 - - - - - - 1 1.8 - 0.8 92.2 0.2 1.3 1.5 - 1.2 -
R12 0.9 1.3 1 - - - - - 1.7 2.3 - 89.7 1.3 - 1.8 - -
R13 - 0.3 0.6 0.5 - - - - 0.9 0.7 0.7 0.9 94.7 0.7 - - -
R14 - - 0.8 1.4 2.3 0.1 - 0.1 - 0.9 1.8 - 1.1 89.7 - 1.8 -
R15 4.4 - - - - 4.4 - - 4.4 - - 5.5 - - 81.3 - -
R16 - - - - 1.5 - - 1.4 - - 1.9 - - 1.2 - 94 -
R17 0.8 1.2 1.1 - - - - - - - - - - - - - 96.9

Table 6. Average confusion matrix of scheme 2 from two-fold cross validation.

Predicted

Actual

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17
R1 58.6 6.1 4.2 - - 3.9 - - 1.1 - - 8.7 - - 8.1 - 9.3
R2 3.9 66.8 3.2 - 3.8 - 1.8 2 2.3 0.3 - 6 4.5 - 2.7 - 2.7
R3 1.2 3 66 3.1 - 1.1 1.6 1.6 1.8 - 2.6 5.7 3.6 3 - - 5.7
R4 0.9 - 6.9 60.7 6.3 - 1.2 - 0.5 - 0.6 0.5 6.8 7.4 0.7 7.5 -
R5 - 0.8 0.6 11.8 61.4 0.1 - 1.5 - 3.3 - 0.9 0.2 10.2 - 9.2 -
R6 1 - 2.3 - 0.8 73.7 1.6 0.6 5.3 5.5 0.2 0.9 2.3 - 5.8 - -
R7 1.6 - 2.6 0.1 - 4.6 68.2 4.5 2.5 3.8 3.1 1.2 4.1 - 1.4 2.3 -
R8 - 2 - 1.6 - 0.5 3.2 73 0.2 3.8 3.4 - - 5.2 - 6.2 0.9
R9 - 1 3 2.3 0.7 1 4 0.6 67.7 3.9 2 5.4 5.1 0.4 2.2 0.7 -

R10 1.5 - 2.9 1.6 3.9 4.8 2.7 1.5 3.6 61.3 3.6 3.9 4.4 3.6 0.2 - 0.5
R11 1.6 2 1.1 0.1 0.6 - 6.7 5.1 0.7 2.4 61.8 - 6.2 4.3 0.8 5.3 1.3
R12 1.4 2.7 3.1 - 2.4 - 2.8 1.7 5.6 4.5 0.2 67.4 3.2 0.6 3.4 - 1
R13 - 3.3 3.5 2.7 0.7 1.2 0.2 1.4 2.2 2.1 2.7 3.3 68 4.1 1.3 1.4 1.9
R14 - - 3.2 5.3 4.8 - 1.3 2 0.3 3.8 5.5 - 6 59.4 - 6.9 1.5
R15 8.4 1.5 0.2 - - 6.8 - 1.6 8.1 - - 6.9 - - 66 - 0.5
R16 0.4 1.8 0.6 0.2 6.9 - 2.5 7.9 0.8 - 7.1 1.5 0.1 9 - 61.2 -
R17 9 9 6.9 0.8 2.5 6.3 - - 0.8 - 0.9 0.8 0.5 2.5 - - 60
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Table 7. SCER and LCER of scheme 1 without PCCR vectors.

Gaze Regions Neighbors SCER (%) LCER (%)

1 2,12,15,17 98.8 100
2 1,3,12,13,15,17 97.1 100
3 2,4,12,13,14,17 97.4 100
4 3,5,13,14,16 96.9 100
5 4,14,16 91.4 100
6 7,9,10,15 95 99.8
7 6,8,9,10,11 89.1 98.6
8 7,10,11,16 87.5 96
9 6,7,10,12,13,15 90.4 99.9
10 6,7,8,9,11,12,13,14 94.9 100
11 7,8,10,13,14,16 92.2 99.8
12 1,2,3,9,10,13,15 89.7 100
13 2,3,4,9,10,11,12,14 94.7 100
14 3,4,5,10,11,13,16 89.7 99.8
15 1,6,9,12 81.3 100
16 5,8,11,14 94 100
17 1,2,3 96.9 100

Average 92.8 99.6

Table 8. SCER and LCER of scheme 2 with PCCR vectors.

Target Zone Neighbors SCER (%) LCER (%)

1 2,12,15,17 58.6 90.8
2 1,3,12,13,15,17 66.8 89.8
3 2,4,12,13,14,17 66 90.1
4 3,5,13,14,16 60.7 95.6
5 4,14,16 61.4 92.6
6 7,9,10,15 73.7 91.9
7 6,8,9,10,11 68.2 86.7
8 7,10,11,16 73 89.6
9 6,7,10,12,13,15 67.7 89.3
10 6,7,8,9,11,12,13,14 61.3 89.4
11 7,8,10,13,14,16 61.8 91.8
12 1,2,3,9,10,13,15 67.4 91.3
13 2,3,4,9,10,11,12,14 68 91.9
14 3,4,5,10,11,13, 16 59.4 94.9
15 1,6,9,12 66 96.2
16 5,8,11,14 61.2 92.1
17 1,2,3 60 84.9

Average 64.8 91.1

Note that the average detection rate using SCER is 92.8% and LCER is 99.6%. Even in the case that
one of the driver’s eyes is occluded by severe head rotation (gaze regions of 1, 5, and 16 of Figure 3a),
our system shows high accuracy of gaze estimation because our system uses the information of the
whole face, as shown in Figure 7. Table 8 shows the SCER and the LCER results using PCCR vector
(scheme 2).

Note that the average detection rate with PCCR vector (scheme 2) using SCER is 64.8% and LCER
is 91.1%. These accuracies are lower than those without PCCR vector (scheme 1). Therefore, we found
that it is difficult to use PCCR vector in the outdoor environment using one camera and without driver
calibration. It also shows that error in detection of the pupil center and corneal reflection causes the
error in PCCR vector, which reduces the accuracy of gaze estimation.

In Figure 13, we have shown some examples of the correctly classified gaze zones in terms of
SCER by our proposed method (scheme 1). As shown in this figure, although the images are collected
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from different people with different head and eyes directions, our proposed method can classify gaze
zone with a high level of accuracy.
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In Figure 14, we have shown some examples of the incorrectly classified gaze zones in terms of
SCER by our proposed method (scheme 1). These errors are caused by the variation of head and eye
rotations even with gazing at the same zone (for example, by comparing the left figure of Figures 13a
and 14a for zone 1, or the right figure of Figures 13c and 14c for zone 16), image blurring, and the
eye blinking.
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5.3.3. Comparison with Previous Method

In the next experiment, we compared the performance of our proposed method with a previous
method [38], where AlexNet CNN model [69] was used to detect eight gaze zones. AlexNet is
comprised of five convolutional layers and three fully connected layers. In the first convolutional
layer AlexNet uses 96 filters of size 11 × 11 × 3, and uses a local response normalization (LRN) layer
after a ReLU layer. Based on Gaussian distribution, the weights in each layer were initialized to
random values with standard deviations of 0.01 with a mean of zero [69]. We ave detected 17 gaze
zones using the previous method. In the previous method [38], they have only considered the face
as an input. However, in our method (scheme 1), we used three inputs i.e., face, left eye, and right
eye images. We have used the same training and testing data from two-fold cross validation for fair
comparison. As we did for comparison between scheme 1 and scheme 2, we have adopted the same
metrics, confusion matrix and estimation rate of SCER and LCER. Table 9 shows the average confusion
matrix with testing data by the previous method [38] from two-fold cross validation.

Observe from the obtained results that the accuracies by previous method [38] are lower than
those by our method when it is tested on DDGC-DB1, covering all 17 gaze regions. As shown in
Table 9, the highest accuracy achieved by the previous method based on AlexNet is 72.6% at gaze
region 14. That is lower than the accuracy by our method, which achieved an accuracy above 90% in
most gaze regions as shown in Table 7. In Table 10, we compared the accuracies by our method and
previous method [38] in terms of SCER and LCER.

Note that with previous method [38], the average SCER and LCER is 64.3% and 87.2% respectively.
These are lower than the average SCER and LCER obtained from the proposed method: 92.8% and
99.6% respectively. Hence, we can find that the proposed driver gaze classification of scheme 1 of
Figure 7 had higher performance and accuracy compared to the previous method based on AlexNet.
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Table 9. Average confusion matrix of previous method [38] from two-fold cross validation.

Predicted

Actual

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17
R1 68.4 2 - - - 4 1.9 0.2 - - - 8.2 - - 11.8 - 3.5
R2 1 65.3 5 - - - - 0.3 - - - 16.3 - - 1.5 1.7 8.9
R3 - 2.6 57.6 7.4 6.8 - - 0.9 - - - 11.5 4.5 0.5 - 7.5 0.7
R4 - - 9.8 68.3 11.3 1.8 0.5 - - 0.8 - - 0.5 - - 7 -
R5 - - - 1.3 68.1 6.7 - 4 - - 1.4 0.3 - 6.2 - 12 -
R6 - - 0.5 0.5 1.5 55.2 11.6 - 15.5 9.2 - 4 1.7 - - 0.3 -
R7 - - - 9.6 0.1 0.8 62.3 5.6 - 11 - - 9.8 0.8 - - -
R8 - - 0.8 8.5 5.3 7.2 62.3 2.5 - 0.6 - 0.8 4 - 8 -
R9 - 6.5 - - 1 5 1.9 0.3 64.4 5.9 - 6.8 2.6 - 0.3 - 5.3
R10 - - 0.1 - 0.7 8.8 4.9 - 0.5 51.2 - 0.3 12.1 12.1 - 8.2 1.1
R11 - - - 5.7 - - - 10.9 - 10.2 68.3 - 4.3 0.3 - 0.3 -
R12 - 6.8 0.3 0.3 1 6.5 2 - 4.9 - - 60.5 1.4 - 3.8 4.9 7.6
R13 - - 1.4 3.5 - 10 7.1 - 1.1 2.1 - 0.3 68.2 4.4 0.3 1.1 0.5
R14 - - 4.3 9.6 3.3 4.5 0.5 - - 1.5 1.5 - 2.2 72.6 - - -
R15 6 3.9 7.6 4.5 - 0.5 - - 0.3 4.1 - 0.5 0.3 - 67.4 1.6 3.3
R16 - 0.9 0.5 2.5 16.9 0.9 - 3.9 0.6 0.3 1.1 - 0.7 - 0.7 70.7 0.3
R17 11.4 6.9 0.3 - 0.3 1.5 5.1 - 0.3 1.4 - - 0.5 - 5.7 4.9 61.7
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Table 10. SCER and LCER of previous method [38] and proposed method on DDGC-DB1.

Gaze Regions Neighbors
Previous Method [38] Proposed Method

SCER (%) LCER (%) SCER (%) LCER (%)

1 2,12,15,17 68.4 93.9 98.8 100
2 1,3,12,13,15,17 65.3 98 97.1 100
3 2,4,12,13,14,17 57.6 84.8 97.4 100
4 3,5,13,14,16 68.3 96.9 96.9 100
5 4,14,16 68.1 87.6 91.4 100
6 7,9,10,15 55.2 91.5 95 99.8
7 6,8,9,10,11 62.3 79.7 89.1 98.6
8 7,10,11,16 62.3 78.1 87.5 96
9 6,7,10,12,13,15 64.4 86.9 90.4 99.9
10 6,7,8,9,11,12,13,14 51.2 89.9 94.9 100
11 7,8,10,13,14,16 68.3 94.3 92.2 99.8
12 1,2,3,9,10,13,15 60.5 77.7 89.7 100
13 2,3,4,9,10,11,12,14 68.2 81 94.7 100
14 3,4,5,10,11,13,16 72.6 95 89.7 99.8
15 1,6,9,12 67.4 74.7 81.3 100
16 5,8,11,14 70.7 92.6 94 100
17 1,2,3 61.7 80.3 96.9 100

Average 64.3 87.2 92.8 99.6

5.3.4. Comparison with Open Database

In the next experiment, we compared the accuracies by our method with those by previous
method [38] on open Columbia gaze dataset CAVE-DB [77]. It is a large gaze database of 56 people
with 5880 images over varying head poses and gaze directions. There are 105 gaze directions as 5 head
poses with 21 gaze directions per head pose. By excluding the images of severe gaze direction, for all
people, we have chosen 13 gaze direction images considering the driver’s gaze in the car environment
of Figure 3. The examples of images with gaze zones are shown in Figure 15.
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We have obtained augmented data from the selected data for making a fair comparison. Then we
performed two-fold cross validation similar to the experiments with DDGC-DB1. Augmented data
was used only for training and original data was used for testing similar to the experiments with
DDGC-DB1. Results are also summarized in the form of a confusion matrix and estimation rates of
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SCER and LCER. First, we show results obtained by previous method [38]. Table 11 shows the average
confusion matrix obtained from the first- and second-fold cross validation by the previous method
using open database where Table 12 shows the same for the proposed method.

Table 11. Average confusion matrix of previous method [38] on CAVE-DB from two-fold cross validation.

Predicted

Actual

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
R1 53.5 - 1.8 - 1.8 - - - 1.8 - - 41.1 -
R2 - 53.3 - 5.4 20.4 - - 2.9 - 1.8 7.2 - 9
R3 - - 51.8 1.8 - 21.4 1.8 - 23.2 - - - -
R4 - - - 51.7 7.1 - 23.3 1.8 1.8 12.5 1.8 - -
R5 - 4 - 5.4 53 - - 16 1.8 - 10.8 - 9
R6 - - 21.8 - - 52.1 1.8 - 20.7 1.8 - - 1.8
R7 - - - 18.2 2.9 - 47.7 1.8 3.6 24 1.8 - -
R8 - 4 1.8 5.4 16.9 - - 45.5 - 1.8 21 - 3.6
R9 - - 14.3 - - 19.7 - - 55.5 8.7 - - 1.8
R10 1.8 - - 10.7 1.8 1.8 21.4 3.6 3.6 53.5 1.8 - -
R11 - 7.1 - 1.8 14.3 - - 13.4 - 5.4 52.6 - 5.4
R12 21.5 - - - 4.8 - - 1.8 1.8 - - 70.1 -
R13 - 16.1 - 3.6 9 - - 12.5 - - 8.9 - 49.9

Table 12. Average confusion matrix of proposed method on CAVE-DB from two-fold cross validation.

Predicted

Actual

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
R1 86.2 - 1.8 - - 2.8 0.2 - 3.8 0.7 - 4.5 -
R2 - 81.9 1.2 0.6 4.2 0.1 0.4 4.9 0.1 0.5 5.1 - 1
R3 1.6 0.5 80.8 5.5 0.9 4.8 2.8 0.1 1.1 0.4 - 0.9 0.6
R4 - 2.7 4.8 72.8 3 2.4 8 4.2 0.4 0.4 0.4 - 0.9
R5 - 3.4 0.5 2 79.1 0.4 1.2 4.3 - 0.2 2.9 - 6
R6 0.7 0.4 3.7 1.7 0.2 73.1 6.4 0.3 7.9 3.2 0.7 0.9 0.8
R7 0.2 1.4 1.7 2.7 1.5 6 67.2 4.1 4.9 6 3.3 0.1 0.9
R8 - 6.9 0.9 2.9 5.1 0.3 2.6 67.2 0.1 3.5 6.3 - 4.2
R9 1.1 - 1.4 0.4 - 3.3 1.3 - 87 4.9 0.6 - -
R10 - 0.7 0.5 0.9 0.4 3.4 2.8 0.6 7.4 79 4.1 - 0.2
R11 - 8.1 - 1.8 0.3 0.6 6.2 6.8 0.6 5.9 69.4 - 0.3
R12 6.1 - 2.4 - - 0.9 0.3 0.6 0.5 - 0.2 88.9 0.1
R13 - 7.3 0.6 1.9 4.6 0.3 1.3 3.5 0.3 0.4 2.3 - 77.5

It can be analyzed from the obtained results that our proposed method has shown better accuracy
on CAVE-DB as compared to the previous method [38]. As can be seen in Table 12, the highest accuracy
achieved by our method is 88.9% at gaze region 12. That is much higher than that of previous method
i.e., 70.1% at gaze region 12 as shown in Table 11. We further compared the accuracies by previous
method [38] and the proposed method through average estimation rate SCER and LCER from two-fold
cross validation as shown in Table 13.
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Table 13. SCER and LCER of previous [38] and proposed methods on CAVE-DB.

Gaze Regions Neighbors
Previous Method [38] Proposed Method

SCER (%) LCER (%) SCER (%) LCER (%)

1 6,9,12 53.5 96.4 86.2 97.3
2 8,11,13 53.3 72.4 81.9 92.9
3 4,6,7,12 51.8 76.8 80.8 94.8
4 3,5,6,7,8 51.7 83.9 72.8 95.2
5 4,7,8,13 53 83.4 79.1 92.6
6 1,3,4,7,9,10,12 52.1 98.2 73.1 97.6
7 3,4,5,6,8,9,10,11 47.7 100 67.2 97.4
8 2,4,5,7,10,11,13 45.5 98.2 67.2 98.7
9 1,6,7,10,12 55.5 83.9 87 97.6
10 6,7,8,9,11 53.5 85.7 79 97.3
11 2,7,8,10,13 52.6 83.9 69.4 96.7
12 1,3,6,9 70.1 93.4 88.9 98.8
13 2,5,8,11 49.9 96.4 77.5 95.2

Average 53.1 88.7 77.7 96.3

Note that with CAVE-DB, average SCER and LCER by the proposed method are 77.7% and 96.3%
respectively. This is higher than those of the previous method i.e., 53.1% and 88.7%, respectively. Hence,
we find that the proposed driver gaze classification of scheme 1 of Figure 7 had higher performance
and accuracy compared to previous method [38] based on AlexNet on CAVE-DB.

In Figure 16, we have shown some examples of the correctly classified gaze zones in terms of
SCER by our proposed method (scheme 1). As shown in this figure, although the images are collected
from different people with different head and eyes directions, our proposed method can classify gaze
zone with a high level of accuracy.
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Figure 16. Correctly detected gaze zones with our system on CAVE-DB. Left, middle, and right figures
respectively show the cases that the user looks at gaze zones of (a) 1, 4, and 7; (b) 2, 5, and 8; (c) 3, 6,
and 9, respectively, of Figure 15.
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In Figure 17, we have shown some examples of the incorrectly classified gaze zones in terms of
SCER by our proposed method (scheme 1). Observe that these errors are caused by the variation of
head and eye rotations even with gazing at the same zone (for example, by comparing the left figure of
Figures 16b and 17b for zone 2). Another reason of error cases is incorrect detection of facial landmarks
due to face fixture used in CAVE-DB as shown in the center figure of Figure 17c.
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Figure 17. Incorrectly detected gaze zones with our system on CAVE-DB. Left, middle, and right
figures respectively show the cases that user looks at gaze zones of (a) 1, 4, and 7; (b) 2, 5, and 8; (c) 3, 6,
and 9, respectively, of Figure 15.

As the last experiment, we measured the processing speed by our method on DDGC-DB1 and
CAVE-DB. Experimental results showed that the average processing time on DDGC-DB1 was 12.72
msec. per image and that on CAVE-DB was 11.21 msec. per image. From that, we can find that our
system can be operated at a speed of 78.6 (1000/12.72)~89.2 (1000/11.21) frames per second.

5.3.5. Effect of the Errors in Facial Landmark Detection on the Accuracies of Gaze Detection

We checked how resistant our method is to the potential errors in facial landmark detection. In our
method, the regions of two eyes and face for CNN input of Figure 7 are determined by the positions
of facial landmarks as shown in Figure 1 (step (3)). Therefore, the errors in facial landmark detection
cause the errors of regions of two eyes and face for CNN input of Figure 7. We measured the accuracies
by our gaze detection method according to the errors in facial landmark positions on DDGC-DB1
database. As shown in Table 14, in case the errors are less than ±8 pixels in X- and Y-axes, the accuracy
degradation by our method is very small (degradation of 0.9% in SCER and that of 0.5% in LCER
compared to the accuracies in case of no detection error in facial landmarks). However, in case of the
errors same to (or larger than) ±8 pixels, the accuracy degradation is increased (degradation larger
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than about 3% in SCER and that larger than about 2.1% in LCER from ±8 to ±10 pixels). From that,
we can find that our method is resistant to the errors (same to (or less than) ±7 pixels in X- and Y-axes)
in facial landmark detection.

Table 14. SCER and LCER of our method according to the errors in facial landmark detection by Dlib
facial feature tracker (X-axis of 0 and Y-axis of 0 mean no detection error in facial landmarks).

Detection Error in Facial Landmarks
SCER (%) LCER (%)

X-Axis (pixels) Y-Axis (pixels)

0 0 92.8 99.6
±1 ±1 92.8 99.6
±2 ±2 92.7 99.5
±3 ±3 92.7 99.4
±4 ±4 92.5 99.3
±5 ±5 92.3 99.3
±6 ±6 92.1 99.1
±7 ±7 91.9 99.1
±8 ±8 88.4 96.7
±9 ±9 85.4 94.6
±10 ±10 82.2 92.4

5.3.6. Eye Safety

We measured the level of danger by our NIR illuminator. For that, we measured the eye safety of
the NIR illuminator based on the American Council of Government and Industrial Hygienists (ACGIH)
and threshold limit values (TLV) [78,79]. The ACGIH exposure limit for infrared radiation is defined
by the following equation. For exposures greater than 1000 s, irradiance must be limited to less than
10 mW/cm2 [78,79]:

3000 nm

∑
700 nm

Eλ·∆λ 6 1.8t−
3
4 W/cm2 (10)

where λ represents the wavelength of incident light, summation is over the λ range where the light
level is significant, Eλ represents the irradiance into the eye in W/cm2, and t represents the exposure
time in second. In the proposed system, the exposure time t by NIR illuminator was a maximum of
900 s (time-out), and the NIR illuminator is automatically turned off for 0.1 s. Then, it is turned on
for 900 s again, and this procedure of turning on and off is iterated. Thus, we obtained the maximum
ACGIH exposure limits for infrared radiation as about 10.95 (=1.8 × 900−3/4) mW/cm2 based on
Equation (10). The experimental results showed that the infrared radiation power (0.53 mW/cm2) of
our NIR illuminator was much less than the limit, so the proposed system met the safety requirements.

6. Conclusions

In this study, we proposed a method of driver gaze classification in the vehicular environment
based on CNN. For driver gaze classification, face, left eye, and right eye images are obtained
from input image based on the ROI defined by facial landmarks from the Dlib facial feature tracker.
We performed fine tuning with a pre-trained CNN model separately for the extracted cropped images
of face, left eye, and right eye using VGG-face network to obtain the required gaze features from the
fully connected layer of the network. Three distances based on all the obtained features are combined
to find the final result of classification. The impact of PCCR vector on gaze classification is also studied.
We compared the performance of the proposed gaze classification method using CNN with PCCR
vector and without PCCR vector. We verified from the results that the driver gaze classification without
PCCR vector is suitable in terms of accuracy. We also compared the accuracies of our method with
those of a previous method. Evaluations were also performed on open CAVE-DB, and we can confirm
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that our method outperformed the previous method. Based on the processing time, we can find that
our system can be operated at a speed of 78.6~89.2 frames per second.

As shown in Figure 4, the Dlib facial feature tracker cannot detect the position of the pupil and
iris. Therefore, in case the driver gazes at a position just by eye movement (not by head movement)
when gazing at the position close to our gaze-tracking camera, the method using only facial landmarks
by the Dlib facial feature tracker cannot detect accurate gaze position. To solve this problem, the pupil
center and corneal reflection position are detected by the method outlined in Section 4.3, and PCCR
vector was used for scheme 2 of Figure 8. However, the accuracy of scheme 2 is lower than that of
scheme 1 not using PCCR vector as shown in Tables 7 and 8.

The reason why we used a NIR camera and illuminator is to use the movement of the pupil
within eye region (iris region) for gaze estimation for better accuracy. However, our method can also be
applied to the images by visible light camera without an additional illuminator, which was proved by
the experiments with open Columbia gaze dataset CAVE-DB [77] as explained in Section 5.3.4. In case
of severe head and eye rotation, which causes disappearance of one of two eyes in the captured image,
the error of gaze estimation can be increased, and this is the limitation of our research. This can be
solved by using multiple cameras, but it can also increase the processing time. We would research a
solution to this problem by using multiple cameras at fast processing speeds in future work. In addition,
we would check the effect of image resolution, blurring level, or severe occlusion on the face image on
the accuracy of the gaze estimator.
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