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Abstract: Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors
to collect fine-grained temperature information for monitoring the real-time thermal behavior
of multi-core processors. However, embedded thermal sensors are very susceptible to a variety
of sources of noise, including environmental uncertainty and process variation. This causes the
discrepancies between actual temperatures and those observed by on-chip thermal sensors, which
seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction
technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the
multi-sensor estimation scenario, the spatial correlations among different sensor locations are
exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is
proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared
imaging-based temperature measurement technique is also proposed to capture the thermal traces of
an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature
data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic
calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ◦C and increase the
signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with
assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of
the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate
that if our approach is used to perform temperature estimation, the response mechanisms of DTM
can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

Keywords: dynamic thermal management (DTM); thermal sensor; noise; Kalman prediction;
synergistic calibration; temperature estimation

1. Introduction

The field of integrated circuit technology is entering the nanometer era. However, excessively
increased power density leads to high chip temperature, which can result in thermal runaway.
Elevated die temperature adversely affects the performance of multi-core processor systems, causing
shortened lifetimes, increased cooling costs, and reduced reliability and device speed [1]. Therefore,
reliable and effective thermal monitoring mechanisms are crucial to overcome this challenge. Dynamic
thermal management (DTM) is often employed to continuously track the thermal behavior of
processors during runtime [2]. Typically, on-die thermal sensors are widely deployed in modern
multi-core processors to assist DTM [3]. According to the fine-grained temperature information
collected by embedded thermal sensors, DTM techniques maintain the processor’s temperature within
a preset range by reasonably assigning workload scheduling, and adjusting the voltages, frequencies,
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and cooling fan speeds appropriately [4,5]. In addition, in order to mitigate thermal emergencies on
multi-core chips, only a fraction of cores can be simultaneously powered in the full performance mode,
while other cores (i.e., dark cores) need to be power gated. In this so-called dark silicon problem [6–9]
is important to ensure thermal-safe operation for modern chips, i.e., where the peak temperature does
not exceed the safe-operating temperature, otherwise the response mechanisms of DTM are triggered.

The number of on-die thermal sensors keeps growing in very large scale integration (VLSI) systems
to enable the DTM of chip functionalities [10–21], as shown in Figure 1. The accuracy of on-chip sensor
readings has a great influence on the effectiveness and reliability of DTM. However, embedded thermal
sensors are inevitably accompanied by noise, including process variation, supply voltage fluctuations,
and cross-coupling etc, which cause the observed temperature readings to deviate from the actual
values. In the worst case, the temperature reading error of un-calibrated thermal sensors used in
IBM25PPC750L processors (International Business Machines Corporation (IBM), Armonk, New York,
United States of America) can be up to 34 ◦C (at an actual temperature of 95 ◦C) [22]. Therefore, blindly
trusting the thermal sensors to be ideal can lead DTM strategies to make inaccurate decisions that
result in false alarms or unnecessary responses.
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Figure 1. Trends in the number of embedded thermal sensors in VLSI systems.

Thermal monitoring and management in VLSI systems have been widely researched in recent
years [23–25]. Nowroz et al. [26] utilized frequency-domain signal representations to devise both static
and runtime thermal monitoring approaches. Unfortunately, this work does not consider the effect of
inaccurate and noisy sensors. Reda et al. [27] proposed a new direction to simultaneously identify
the thermal models and the fine-grain power consumption of a chip from just the measurements of
the thermal sensors and the total power consumption. Although they verified the accuracy of this
method and demonstrated its resilience to sensor noise, the problem of noise reduction for sensor
measurements was not addressed. Effective temperature calibration can compensate for inaccuracies
in temperature measurement, and help to improve thermal sensing accuracy. As a result, how to
solve the problem of estimating temperatures for on-chip thermal sensors corrupted by noise is a
major challenge.

A number of studies have taken into account the noise issue associated with sensor readings,
such as the statistical methodology [28] and the multi-sensor collaborative calibration algorithm
(MSCCA) [29]. However, these techniques lack the ability for real-time prediction which is required
for proactive DTM techniques [30]. In [31,32], the authors proposed a scheme to make online
temperature measurements significantly more accurate. They constructed an offline thermal equivalent
resistor–capacitor (RC) model and reduced its complexity by a projection-based model order reduction
method. This model can be used to convert the power dissipation to temperature in the prediction step
of the Kalman filter. However, the derivation of such an RC model is not trivial due to the complexity
of silicon materials. Unlike the above approach, we apply the polynomial fitting technique to convert
the oscillation frequency of noisy sensors to temperature data and use the smoothing filter to obtain
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the prediction information. These two sources of temperature information are then combined in the
Kalman filter to generate reliable temperature estimations. This direct method reduces the calibration
cost because it eliminates the requirement for estimating the power consumption per functional unit.
Specifically, the contributions of this work are as follows:

• The noise characteristics of on-chip thermal sensors based on the ring oscillator structure are
systematically analyzed. On this basis, the polynomial fitting technique is used to establish the
non-linear relationship between sensor temperature and oscillation frequency, which can improve
the measurement accuracy.

• To tackle the challenge in temperature estimation of noisy thermal sensors, a smoothing
filter-based Kalman prediction technique is proposed to correct the temperatures of on-die sensors
in real-time.

• For the multi-sensor estimation scenario, the spatial correlations among different sensor locations
are exploited. On this basis, a multi-sensor synergistic calibration algorithm (called MSSCA) is
proposed to improve the simultaneous prediction accuracy of multiple sensors.

• Relative to the previous works relied on computer-based thermal simulation scheme, an infrared
imaging-based temperature measurement technique is proposed to provide the accurate
thermal characterizations of an AMD quad-core processor operating on different benchmarks.
The captured real temperature data are used to evaluate our prediction approach.

The remainder of this paper is organized as follows: Section 2 provides the necessary motivation
of this work, and presents the analysis of noisy sensor behavior. Section 3 presents the on-line
temperature estimation technique using a smoothing filter-based Kalman predictor, and details the
proposed multi-sensor synergistic calibration algorithm (MSSCA) that can improve the simultaneous
prediction accuracy of multiple sensors. Section 4 describes the infrared temperature measurement
setup required for capturing the thermal traces of real processors. The performance of our synergistic
calibration scheme is validated in Section 5. Finally, we summarize the main conclusions of this work
in Section 6.

2. Analysis of Noisy Sensor Behavior

Due to the unpredictable behavior of the chip’s thermal profile, constantly monitoring the
processor’s temperature using embedded thermal sensors is critical to ensuring long-term reliability of
integrated circuit systems. A classical implementation of on-die thermal sensors is the ring oscillator,
which has been known for nearly 30 years [33]. The structure of a typical ring oscillator mainly contains
N (an odd number) stages of inverters and a counter, as depicted in Figure 2. Note that the output
frequency of ring oscillator in Figure 2 represents the oscillation frequency.

Output 
Counter1 2 N

Frequency

Figure 2. Structure of a typical ring oscillator.

The output frequency depends on the total time-delay of inverters, which is given by the
following equation:

f =
1

N(tHL + tLH)
(1)
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where tHL(tLH) denotes the time-delay with a single inverter switching from the high (low) voltage to
the low (high) voltage. The expression for tHL can be described as:

tHL =
2C

µnCox(W/L)n(VDD −Vt)
×
[

Vt

VDD −Vt
+

1
2

ln
(

3VDD − 4Vt

VDD

)]
(2)

where C and Cox are the effective load capacitance and the oxide capacitance per unit gate area,
VDD and Vt are the supply voltage and the threshold voltage, and (W/L)n and µn are the width/length
ratio and the electron mobility of n-metal-oxide-semiconductor (NMOS), respectively. Note that the
expression for tLH is identical to Equation (2) except that (W/L)n and µn need to be replaced with the
corresponding parameters of p-metal-oxide-semiconductor (PMOS), i.e., (W/L)p and µp , respectively.
According to Equations (1) and (2), the output frequency is easily affected by temperature since both
Vt and µn(µp) are sensitive to temperature. To describe the temperature effects more accurately, the
following empirical equations can be used [34]:

Vt(T) = Vt(T0)− 0.002(T − T0) (3)

µn/p(T) = µn/p(T0)(T/T0)
−1.5 (4)

where T0 is the reference temperature. As we can see from Equations (3) and (4), Vt drops by 2 mV
when temperature increases by 1 ◦C, and µn(µp) also decreases with a more complex relationship when
temperature rises. Because µn(µp) dominates in the influence of time-delay, the overall effect appears
a decrease of output frequency with temperature rise. Therefore, the output frequency observations
can be used to measure the chip temperature.

However, due to environmental uncertainty and process variation, the accuracy of output
frequency is highly susceptible to several factors, such as variations in process parameters and
fluctuations in supply voltage and ambient temperature. Generally, these noise sources can be
divided into two main categories, i.e., dynamic noise and static noise. Dynamic noise represents
the variation in the accuracy of specific sensors over time, which is caused by fluctuations in supply
voltage and ambient temperature. Static noise means variations in the circuit parameters, including
load capacitance, oxide capacitance, length/width ratio, etc. To describe the statistical characteristics
of output frequency observations under the influence of noise, the following Monte Carlo (MC)
simulation is performed using Equations (1)–(4) with 100,000 samples for each different temperature,
ranging from 30 ◦C to 70 ◦C with an increment of 10 ◦C. All the random variables are assumed to be
the normal distribution with mean values and standard deviations specified in Table 1.

Table 1. Characteristics of the random variables.

Parameters Wn/Wp Ln/Lp Tox VDD Vt µn/µp
(nm) (nm) (nm) (V) (V) (m2/V·s)

Mean 270 180 4.1 3 0.45 0.034
Standard deviation 5% 6% 3% 5% 4% 2%

The results of the MC simulation are given in Figure 3. Specifically, the probability density
distribution of output frequencies under different temperatures is depicted in Figure 3a. Each curve in
Figure 3a shows the potential distribution of output frequencies for a fixed sensor temperature.
The integral of the probability density under each curve over the entire space is equal to one.
From Figure 3a, it can be observed that these probability density distribution curves heavily overlap
with each other, i.e., the same output frequency could be caused by multiple potential temperatures.
Therefore, blindly trusting the thermal sensors to be ideal could lead to significant error. This clearly
indicates that effective temperature estimation methods are very important for predicting the accurate
temperatures from noisy sensor readings. Besides, the statistical histogram of output frequency
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distribution at the temperature of 70 ◦C is shown in Figure 3b. The statistical histogram divides
the entire range of values into a series of intervals, and then counts how many values fall into each
interval. In Figure 3b, we divide the entire range of frequencies for the pink curve into 60 intervals on
average. The height of each rectangle in Figure 3b indicates the sum of probabilities which fall into the
corresponding interval.
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Figure 3. Results of the Monte Carlo (MC) simulation. (a) Probability density distribution of output
frequencies under different temperatures; (b) Statistical histogram of output frequency distribution at
the temperature of 70 ◦C.

3. Temperature Estimation for Noisy Thermal Sensors

Based on the above analysis of noisy sensor behavior, an accurate on-line temperature estimation
technique is proposed in this section, which can be divided into the following five steps. The flowchart
of our proposed scheme is given in Figure 4.

Polynomial Fitting Smoothing Filter

Kalman Filter

MSSCA

Spatial Correlation Model

Output Frequencies of 

the Noisy Sensors
Initial Temperature Estimation s

Observation Values Prediction Values

Correlation Coefficients

Kalman Filter

Optimal Multi -Sensor Temperature Estimation s

Corrected Observation Values Prediction Values

Single Sensor Temperature Estimation s

Figure 4. Flowchart of the proposed scheme for temperature estimation. MSSCA: multi-sensor
synergistic calibration algorithm.
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• Step 1: Establish the non-linear relationship between sensor temperature and output frequency
using the polynomial fitting technique, and then calculate the temperature observation values of
noisy sensors.

Based on Equations (1)–(4), we use the mean values of random variables specified in
Table 1 to generate the observed data of output frequencies by varying the sensor temperature.
The reference temperature is set to 25 ◦C. The actual temperature data is acquired by our
infrared temperature measurement setup (described later in Section 4). Using the observed data,
the non-linear relationship between sensor temperature and output frequency can be established
by the polynomial fitting. The fitting result is shown in Figure 5.
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Figure 5. Result of the polynomial fitting.

• Step 2: Establish the temperature prediction model using the smoothing filter, and calculate the
temperature prediction values of noisy sensors.

• Step 3: Correct the temperatures of noisy sensors using the Kalman filter.
• Step 4: Establish the spatial correlation model, and update the temperature observation values

using the multi-sensor synergistic calibration algorithm (MSSCA).
• Step 5: Reuse the Kalman filter to calculate the optimal multi-sensor temperature estimations.

3.1. Smoothing Filter-Based Kalman Prediction Technique

The Kalman filter [35], also known as linear quadratic estimation, is an efficient recursive filter
that estimates the internal state of a linear dynamic system from a series of noisy measurements and
is popular for its simple implementation and computational complexity. It has been widely used in
numerous engineering applications. Recently, the methods based on the Kalman filter have shown
the ability to track the temperature profile of a chip in real time. In order to apply the Kalman filter
algorithm to predict the temperatures from noisy sensor observations, it is essential to introduce the
state space model which is governed by the linear difference Equation (5). Considering the effect of
noise and inaccuracy, the observation model is described as Equation (6).

T(k + 1) = BT(k) + w(k) (5)

S(k) = HT(k) + v(k) (6)

Here, at time instant k, T(k) is the state vector representing the predictions, S(k) is the
measurement vector representing the sensor readings, and w(k) and v(k) are the process noise vector
and the measurement noise vector, respectively. The coefficient matrices B and H denote the state
matrix and the output matrix, respectively.
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According to Equations (5) and (6), the Kalman filter algorithm can be employed to estimate
the process in a recursive manner, which consists of two distinct phases, namely predict and update.
Using the state estimate from the previous time step, the predict phase can generate a priori temperature
estimate and error covariance at the current time step. Recently, smoothing filters [36] have attracted
significant attention since they work well for many denoising problems. One of the most common
smoothing algorithms is the moving average (MA), which is often used to attempt to capture important
trends in the observed data. Based on the characteristic that the chip temperature does not suddenly
change within short temporal sampling interval, smoothing filters can be used to minimize the impacts
of temperature fluctuations. Therefore, a simple moving average (SMA) shown in Equation (7) is
designed to achieve a more accurate temperature prediction model. Consequently, the equations of
predict phase can be updated as:

T̂(k|k− 1) = B

[(
t=k−1

∑
t=k−Ls

T̂(t|t)
)

/Ls

]
(7)

P(k|k− 1) = BP(k− 1|k− 1)BT + Q (8)

where Ls represents the length of the smoothing window, Q is the covariance matrix of the process
noise, T̂(k|k− 1) is the priori state estimate vector, and P(k|k− 1), and P(k− 1|k− 1) denote the priori
and posteriori error covariance matrix, respectively. The first prediction value is obtained by taking
the average of initial temperature estimations in the smoothing window, and then the prediction value
is dynamically modified by shifting the window forward. In our case, initial temperature estimations
are set to noisy sensor readings. The effects of initial temperature estimations on the smoothing filter
are less obvious. However, the length of the smoothing window will directly affect the prediction
performance. We have experimentally determined that SMA works best when the length of the
smoothing window is equal to 5.

In the update phase, the current priori prediction is combined with the current observation
information to obtain an improved posteriori state estimate. The equations of update phase can be
expressed as:

K(k) = P(k|k− 1)HT [HP(k|k− 1)HT + R]−1 (9)

T̂(k|k) = T̂(k|k− 1) + K(k)[S(k)−HT̂(k|k− 1)] (10)

P(k|k) = [I−K(k)H]P(k|k− 1) (11)

where K(k) represents the Kalman gain matrix, and R denotes the covariance matrix of measurement
noise. The framework of the Kalman filter algorithm is illustrated in Figure 6.

Initial state estimate and error covariance

Compute Kalman gain 

according to (9) !kK

Update posteriori state estimate

according to (10) !ˆ |k kT

Update posteriori error covariance

according to (11) !|k kP

Project one step ahead : 

priori state estimate

and error covariance             

according to (7) and (8)

 !ˆ | 1k k  T

 !| 1k k  P

Update phase

Predict phase

Figure 6. Framework of the Kalman filter algorithm.
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3.2. Multi-Sensor Synergistic Calibration Algorithm (MSSCA)

Current VLSI chips deploy multiple sensors to continuously monitor the thermal state of different
overheating positions. One important observation is that temperature variations at different sensor
locations on the chip are correlated. Typically, sensors close to each other physically are likely to have
stronger spatial correlation than sensors far apart [30,37]. Such correlations are caused by similar
power behaviors. This phenomenon can be observed by our infrared temperature measurement
setup (described later in Section 4). To illustrate the spatial correlation of temperature variations,
the temperatures of three different sensor locations are captured, as shown in Figure 7. In particular,
the distribution of sensor locations is given in Figure 7a, and the corresponding temperature variations
are shown in Figure 7b. The thermal traces confirm that nearby sensors have similar characteristics
compared with sensors far apart. Moreover, the variability in process parameters (such as channel
width, length, and oxide thickness) can also be correlated, which results in the correlated noisy behavior
of sensors. Such correlation models can be established by the statistical static timing analysis (SSTA).
In our methodology, the correlation information of fabrication randomness at different sensor locations
is considered as well. As compared with treating each sensor independently, the spatial correlation
can be used to correct the sensor observations so as to further improve the accuracy of temperature
estimation. Therefore, exploiting the spatial correlation is necessary.
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Figure 7. Distribution of sensor locations and the corresponding temperature variations. (a) Distribution
of sensor locations; (b) Thermal traces of different sensor locations.

There are some studies aimed at the modeling of the spatial correlation [38–40]. In [40], the authors
applied mathematical theories from random fields and convex analysis to develop robust techniques
to extract a valid spatial correlation function from measurement data, and they have experimentally
confirmed that the resulting correlation function is the closest ones to the underlying model even if the
data are affected by unavoidable random noise. Therefore, the spatial correlation function proposed
in [40] is adopted in our methodology. The spatial correlation coefficient (ρ) between any two different
sensor positions can be described as:

ρi,j = 2
( bvi,j

2

)s−1

κs−1(bvi,j)Γ(s− 1)−1 (12)

where κs−1(·) represents the modified Bessel function of the second kind of order (s− 1), Γ(·) is the
gamma function, and vi,j denotes the Euclidean distance between two sensor locations on the chip
which is expressed as follows:

vi,j =
√
(xi − xj)2 + (yi − yj)2 (13)
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where (xi, yi) and (xj, yj) denote the coordinates of any two sensors. The shape of the spatial correlation
function is regulated by the two real parameters b and s. To facilitate for our spatial correlation
modeling, a rich set of correlation functions can be obtained by varying b and s, as shown in Figure 8.
In our case, b and s are set to 1 and 8, respectively.
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Figure 8. Spatial correlation functions generated from Equation (12).

Based on the aforementioned spatial correlation model, the multi-sensor synergistic calibration
algorithm (MSSCA) is devised to correct the sensor measurements using the correlations. The goal of
the MSSCA is to further improve the simultaneous prediction accuracy of multiple sensors. For one
arbitrary sensor (denoted as m) of all the M sensors in the monitored region, the MSSCA can be
presented in four steps as follows:

1. Compute the correlation coefficients ρm,i (0 ≤ ρm,i ≤ 1, for 1 ≤ i ≤ M and i 6= M ) of sensor
m with all the other sensors, and pick out the largest one (ρm,n), i.e., sensor m has the strongest
correlation with sensor n.

2. Set the correlation threshold λ. If ρm,n ≤ λ , the temperature measurement of sensor m will
not be updated, i.e., Ŝm(k) = Sm(k); otherwise, the temperature observation of sensor m can be
corrected as:

Ŝm(k) =


Sm(k) +

ρm,n|Sn(k)− T̂n(k|k)|
2

, Sm(k) < T̂m(k|k) and Sn(k) < T̂n(k|k)

Sm(k)−
ρm,n|Sn(k)− T̂n(k|k)|

2
, Sm(k) > T̂m(k|k) and Sn(k) > T̂n(k|k)

(14)

3. Perform steps 1–2 in the residual sensors until the temperature observation of each sensor has
been completed in the calibration, and then update the corresponding measurement vector to
Ŝ(k) = {Ŝ1(k), Ŝ2(k), . . . , Ŝm(k)}.

4. Calculate the optimal temperature predictions using the following equation:

T̂(k|k) = T̂(k|k− 1) + K(k)[Ŝ(k)−HT̂(k|k− 1)] (15)

The pseudo code of the MSSCA is shown in Algorithm 1. Note that the correlation coefficients
among all the available sensors comprise the coefficient matrix (ρ) of dimension [M × M], and ρ is a
symmetric matrix in which the elements on the diagonal are all equal to one, as shown in Equation (16).
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Algorithm 1 Multi-Sensor Synergistic Calibration Algorithm (MSSCA)
1. Initialize: T̂(k|k) = S(k), k = 1, 2, . . . , Ls
2. Compute the coefficient matrix ρ according to Equation (12)
3. Remove the autocorrelation by ρ = ρ− I, and store ρ in memory
4. maxc(1 : M) = 0, and maxl(1 : M) = 0
5. for i = 1 to M do
6. for j = 1 to M do
7. if maxc(i) < ρ(i, j) then
8. maxc(i) = ρ(i, j), and maxc(i) = j
9. end if
10. end for
11. end for
12. for k = (Ls + 1) to K do
13. smoothsum = 0
14. for t = (k− Ls) to (k− 1) do
15. smoothsum = smoothsum + T̂(t|t)
16. end for
17. T̂(k|k− 1) = B(smoothsum/Ls)
18. P(k|k− 1) = BP(k− 1|k− 1)BT + Q
19. K(k) = P(k|k− 1)HT [HP(k|k− 1)HT + R]−1

20. T̂(k|k) = T̂(k|k− 1) + K(k)[S(k)−HT̂(k|k− 1)]
21. P(k|k) = [I−K(k)H]P(k|k− 1)
22. for i = 1 to M do
23. if maxc(i) < λ then Ŝi(k) = Si(k)
24. else if Si(k) < T̂i(k|k) && Smaxl(i)(k) < T̂maxl(i)(k|k) then

25. Ŝi(k) = Si(k) +
ρ(i,maxl(i))|Smaxl(i)(k)−T̂maxl(i)(k|k)|

2
26. else if Si(k) > T̂i(k|k) && Smaxl(i)(k) > T̂maxl(i)(k|k) then

27. Ŝi(k) = Si(k)−
ρ(i,maxl(i))|Smaxl(i)(k)−T̂maxl(i)(k|k)|

2
28. else Ŝi(k) = Si(k)
29. end if
30. end for
31. T̂(k|k) = T̂(k|k− 1) + K(k)[Ŝ(k)−HT̂(k|k− 1)]
32. end for

ρ =


1 ρ1,2 · · · ρ1,M

ρ2,1 1 · · · ρ2,M
...

...
. . .

...
ρM,1 ρM,2 · · · 1

 (16)

To remove the autocorrelation, the coefficient matrix can be built as ρ = ρ− I, where I denotes
the identity matrix. Considering the correlation coefficient only depends on the distance that is not
changed because the placement of sensors was fixed at design time, the correlation coefficients only
need to be calculated when the MSSCA is first implemented, and then the upper triangular matrix of ρ

is stored in memory.

4. Infrared Imaging-Based Temperature Measurement Technique

The inputs to our temperature estimation technique are the thermal traces at a set of discrete
sensor positions. These inputs could be generated from either a computer-based thermal simulator
or an infrared imaging-based thermal measurement infrastructure. The previous related studies on
thermal tracking mainly rely on computer-based simulations. To obtain the thermal traces, these
simulations utilize the workload power traces from an architectural-level simulator (e.g., Wattch [41])
together with the floor-plan of processor as inputs to a temperature simulator (e.g., Hotspot [42]).
In this section, an infrared imaging-based temperature measurement setup is developed to obtain the
accurate thermal characterizations of an AMD quad-core processor operating on different benchmark
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workloads. Recent studies on thermal measuring have confirmed the value of the complementary
information that infrared thermography provided [43–45].

Fixed Bolt Fixed BoltInfrared Camera

Oil Flow

Inlet Outlet
Sapphire Window Die Package

(a)

Sapphire Window Die

Inlet Outlet

Fixed Bolt

Mineral oil Mineral oil

(b)

Figure 9. Proposed infrared temperature measuring equipment. (a) Oil-based cooling system;
(b) Infrared transparent heat sink.

Motherboard Chip being measured

Power

Temperature

Setting

Oil Cooling

Pump System

Infrared Camera

Figure 10. Image of our experimental setup.

To track the thermal behavior of processor in real-time, an oil-based cooling system is designed to
replace the infrared opaque metal heat sink. Once the original metal heat sink is removed, we need an
infrared transparent heat sink to dissipate the generated heat adequately. To keep the chip working
within a safe temperature range, a distinctive heat sink is devised that contains two layered sapphire
windows (with an around 4-mm thickness for each). The proposed infrared temperature measuring
equipment is depicted in Figure 9. As compensation for the conventional thermal interface material
(TIM), the sapphire window on the top of the die is used to improve lateral heat spreading and
increase the thermal capacitance. Due to the relatively high thermal conductivity, large specific
heat capacity, and good transparency in the infrared range, mineral oil is a suitable choice for a
coolant [44,45]. The mineral oil (Sigma M3156 (Sigma-Aldrich Corporation, St. Louis, Missouri,
United States of America)) is persistently pushed through the inlet by an external direct current
(DC) pump that circulates between the two layers of sapphire window to transfer the heat. In order
to keep the flow laminar, the clearance of two sapphire windows is restricted to 1 mm. The oil



Sensors 2018, 18, 433 12 of 20

temperature is monitored using a thermostat. The detailed thermal traces of the SPEC CPU 2006
(Standard Performance Evaluation Corporation (SPEC), Gainesville, Virginia, United States of America)
benchmark workloads [46] are captured using a mid-wave infrared camera (InfraTec ImageIR R© 8300
(InfraTec GmbH Infrarotsensorik und Messtechnik, Dresden, Germany)). Because the lightly doped
and undoped silicon are partially transparent at the mid-wave infrared range, the chip temperature
can be measured through our tailored infrared transparent heat sink. The chip being tested is a 45-nm
AMD Athlon II X4 610e (Advanced Micro Devices, Inc. (AMD), Santa Clara, California, United States
of America) quad-core processor [47] operating at 2.4 GHz. The image of our experimental setup is
exhibited in Figure 10. To demonstrate the effectiveness of our infrared thermography technique, a few
examples of thermal traces are shown in Figure 11.

(a) (b) (c)

(d) (e) (f)

Figure 11. Examples of thermal traces of different benchmarks on a quad-core AMD Athlon II X4 610e
processor. (a) sjeng; (b) h264ref; (c) lbm; (d) leslie3d; (e) sphinx3; (f) dealII.

5. Experimental Results

In this section, the performance of our temperature estimation approach is verified using the
real thermal traces obtained by the above infrared temperature measurement setup. In what follows,
we consider the case that three thermal sensors (denoted as P1, P2, and P3) are placed on the chip
(see Figure 7a), and we try to calibrate their temperatures from the noisy sensor observations. It should
be noted that the approach is the same for more than three sensors. The correlation coefficients among
all three sensors are calculated according to Equation (12) as shown in Table 2, and the correlation
threshold (λ) is set to 0.8. The random parameters of thermal sensors are assumed to be of normal
distribution, and we set the mean values of these parameters to be the standard values used in
the 180-nm fabrication process (see Table 1). The dynamic noise source is assumed to have a supply
voltage (VDD) fluctuation. Then, the MC simulation is performed based on Equations (1)–(4) to generate
the noisy sensor readings that are used to test our temperature estimation. All the simulations are
implemented by MATLAB code running on an Intel Core (Intel Corporation, Santa Clara, California,
United States of America) 3.2 GHz computer with 16 GB synchronous dynamic random access
memory (SDRAM).
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Table 2. Correlation coefficients among different sensors.

Correlation P1 P2 P3

P1 1 0.8991 0.7134
P2 0.8991 1 0.8808
P3 0.7134 0.8808 1
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Figure 12. Comparison of temperature tracking (over 51 s) for three sensors in Figure 7a running the
gamess benchmark. Noise standard deviation is 5%. (a) P1 sensor; (b) P2 sensor; (c) P3 sensor. MSSCA:
multi-sensor synergistic calibration algorithm.

Figure 12 highlights the temperature tracking results of three sensors running the gamess
benchmark. The standard deviation of the VDD is set to be 5% of its mean value. The results of other
benchmarks are similar. There are four different color curves plotted in the figure for each sensor: actual
temperatures, noisy sensor readings, Kalman filter-corrected temperatures, and MSSCA-corrected
temperatures. The simulation lasts for 51 s, and contains 3000 sample points, i.e., the sampling interval
is 17 ms. From the results, it can be observed that the predicted temperatures using the MSSCA are
much closer to the actual temperatures than those using the Kalman filter. In addition, the comparison
results of the root-mean-square error (RMSE) and the signal-to-noise ratio (SNR) generated from the
Kalman filter and MSSCA are shown in Figure 13. Experiments are performed with 100 time instances.
From the results, it can be seen that the prediction performance of the MSSCA is clearly superior to
that of the Kalman filter, with a lower RMSE and a higher SNR under all three sensors. Furthermore,
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an intuitive comparison of the prediction accuracy for different benchmarks is given in Figure 14.
In Figure 14b (see the dealII benchmark), the RMSE of MSSCA can be reduced by 0.6 ◦C (from 0.8 ◦C
to 0.2 ◦C) relative to the noisy sensor readings. In Figure 14a (see the gobmk benchmark) , the SNR of
MSSCA is increased by 14.1 dB (from −3.8 dB to 10.3 dB) compared with the original sensor readings.
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Figure 13. Root-mean-square error (RMSE) and signal-to-noise ratio (SNR) generated from the Kalman
filter and the MSSCA with 100 time instances for three sensors in Figure 7a running the gamess
benchmark. Noise standard deviation is 5%. (a) P1 sensor; (b) P2 sensor; (c) P3 sensor.

The results of average prediction accuracy under different noise standard deviations are reported
in Table 3. Comparing the results, it can be observed that the MSSCA still exhibits superior prediction
performance even if the noise standard deviation increases. In the case of 10% noise standard deviation,
MSSCA can obtain a 1.2 ◦C reduction in RMSE and a 15.8 dB increment in SNR compared with
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assuming the sensor readings to be ideal. Compared with Kalman filter, the average prediction
accuracy increments of the MSSCA are reported in Table 4. As seen in Table 4, our MSSCA can achieve
a 17.9% reduction in RMSE and a 45.8% increment in SNR. Note that the results of improvement
for three sensors are slightly different. This is because the trends in temperature variation and the
characteristics of observation data for different sensors lead to different degrees of improvement for
prediction performance.
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Figure 14. Comparison of prediction accuracy for different benchmarks. Noise standard deviation is
5%. (a) P1 sensor; (b) P2 sensor; (c) P3 sensor.

Table 3. Average prediction accuracy for different benchmarks.

Standard Deviation Sensor ID
RMSE (◦C) SNR (dB)

Sensor Kalman MSSCA Sensor Kalman MSSCAReadings Filter Readings Filter

5%
P1 0.6757 0.2006 0.1690 −3.6697 6.8931 8.3156
P2 0.6687 0.1913 0.1612 −4.1133 6.7305 8.2271
P3 0.6734 0.1952 0.1651 −3.6588 7.0747 8.4353

10%
P1 1.3571 0.2776 0.2309 −9.7271 4.0771 5.6569
P2 1.3767 0.2672 0.2193 −10.2051 3.8401 5.5996
P3 1.3527 0.2751 0.2301 −9.7174 4.1676 5.6734

Another potential impact on DTM is the false alarm rate (FAR) [48], which is derived from two
emergencies, i.e., missed and fake. The former indicates that the actual temperatures have exceeded
the threshold temperature, but the estimated temperatures are still below it, and vice versa for the
latter. The FAR comparison for different benchmarks is depicted in Figure 15, and the average results
under different noise standard deviations are summarized in Table 5. In our case, the temperature
threshold is set to 95% of the maximum temperature for each benchmark, where DTM will be triggered
to cut down the frequencies. As seen in Table 5, MSSCA can achieve a 28.6% reduction in FAR as
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compared to the noisy sensor observations. The results clearly demonstrate that if our MSSCA is used
to perform the temperature estimation, the performance of DTM can be significantly improved. This is
because DTM mechanisms (e.g., dynamic voltage and frequency scaling (DVFS)) can be triggered to
adjust the voltages, frequencies, and fan speeds at more appropriate times.

Table 4. Average prediction accuracy increment of the MSSCA compared with the Kalman filter.

Standard Deviation Sensor ID
RMSE (◦C) SNR (dB)

MSSCA vs. Kalman Filter MSSCA vs. Kalman Filter

5%
P1 −15.75% +20.64%
P2 −15.73% +22.24%
P3 −15.42% +19.23%

10%
P1 −16.82% +38.75%
P2 −17.93% +45.82%
P3 −16.36% +36.13%
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Figure 15. Comparison of the false alarm rate (FAR) for different benchmarks. Noise standard deviation
is 5%. (a) P1 sensor; (b) P2 sensor; (c) P3 sensor.

Table 5. Average FAR for different benchmarks.

Standard Deviation Sensor ID
FAR (%)

Sensor Readings Kalman Filter MSSCA

5%
P1 28.7542 9.9867 7.1483
P2 27.3608 10.4633 7.68583
P3 28.0150 9.8583 7.08583

10%
P1 37.8958 13.6108 9.2775
P2 36.9525 14.2808 10.1975
P3 37.2767 12.6075 8.8508

For each sensor calibration, the execution time comparison between the Kalman filter and the
MSSCA is shown in Figure 16. Although the Kalman filter is clearly faster than the MSSCA, it can
still achieve on-line temperature estimation. This is because the average execution time of the MSSCA
(about 0.0066 ms) is obviously shorter than the sampling interval (17 ms). The requirement for our
temperature estimation technique to be exploited by a processor is that additional memory is needed
to store the correlation coefficients among all the available sensors.



Sensors 2018, 18, 433 17 of 20

0 20 40 60 80 100
4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

-3

Simulation Times

T
im

e 
(m

s)

 

 

Kalman Filter MSSCA

Figure 16. Execution time comparison between the Kalman filter and the MSSCA.

6. Conclusions

In this paper, the problem of accurately estimating the temperatures for noisy thermal sensors
is solved. We first analyze the noise characteristics of on-chip thermal sensors based on the ring
oscillator structure and utilize the polynomial fitting technique to establish the non-linear relationship
between the sensor temperature and output frequency of ring oscillator. On this basis, a smoothing
filter-based Kalman prediction technique is proposed to correct the temperatures of on-die sensors in
real time. Besides, a multi-sensor synergistic calibration algorithm (MSSCA) is proposed to improve the
simultaneous prediction accuracy of multiple sensors. To evaluate the performance of our predictions,
an infrared imaging-based temperature measurement technique is also proposed to capture the thermal
traces of an AMD quad-core processor. Simulation results show that the proposed calibration scheme
can achieve an around 1.2 ◦C reduction in RMSE, a 15.8 dB increment in SNR, and a 28.6% reduction
in FAR, as compared to the original sensor readings. Our approach will assist DTM mechanisms to
achieve accurate temperature estimations in response to inaccuracies caused by fabrication randomness
and environmental variation.
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