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Abstract: Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite
system (GNSS)-based positioning. With the modernization and development of GNSS systems,
more satellites are available to transmit triple-frequency signals, which allows the introduction
of additional linear combinations and provides new opportunities for cycle slip detection and
repair. In this paper, we present a new real-time cycle slip detection and repair method under high
ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite
System (BDS) triple-frequency observations collected with a single receiver. First, three optimal
linearly independent geometry-free pseudorange minus phase combinations are selected to correctly
and uniquely determine the cycle slips on the original triple-frequency carrier phase observations.
Then, a second-order time-difference algorithm is employed for the pseudorange minus phase
combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection,
which is especially beneficial under high ionospheric activity. The performance of the approach is
verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling
interval under active ionospheric conditions, and observations are manually inserted with simulated
cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution
as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are
also processed to verify the performance of the method. The experimental results also demonstrate
that the method is effective in processing kinematic data.

Keywords: GPS; BDS; triple-frequency; undifferenced observations; cycle slip; high ionospheric activity

1. Introduction

The availability of high-quality carrier phase observations is a prerequisite for high-precision
global navigation satellite system (GNSS)-based positioning. However, under conditions that cause
signal interruption, a low signal-to-noise ratio or high receiver dynamics, GNSS receivers may lose
track of navigation signals, and cycle slips occur, which result in discontinuities in the original carrier
phase observations. Without careful consideration of such cycle slips, the precision and reliability of
position and velocity estimates are seriously affected.

Over the past three decades, a number of cycle slip detection and repair methods have been
developed and can be generally divided into three types according to the number of available signals.
Polynomial fitting [1] and high-order between-epoch phase differentiation [2] can be implemented
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based on only single-frequency observations. However, they cannot detect small cycle slips due to
the presence of clock error. Based on multi-constellation signals, Qian et al. [3] further proposed a
cycle slip detection and repair method for a single-frequency Global Positioning System (GPS)/BeiDou
Navigation Satellite System (BDS) receiver. But it is not applicable for single-system receiver because
both GPS and BDS signals are required. Outlier detection methods, such as statistical hypothesis
test (e.g., χ2 test) [4,5], robust estimation [6], the Bayesian method [7,8], and generalized likelihood
ratio (CLR) test [9], can be utilized to detect and correct cycle slips as well. There are also many cycle
slip detection and repair methods based on dual-frequency observations. Methods to detect and
repair cycle slips using dual-frequency double-differenced or triple-differenced observations have
been presented by Gao and Li [10], Bisnath and Langley [11], and Kim and Langley [12,13]. However,
these methods require at least two receivers to realize the double-differenced or triple-differenced
operation. To meet the requirement of high-precision positioning, such as Precise Point Positioning
(PPP), it is more convenient and effective to implement cycle slip detection and repair based on
undifferenced observations. The TurboEdit algorithm developed by Blewitt [14] is recognized as the
first approach for undifferenced cycle slip detection and repair that uses dual-frequency observations.
Both Melbourne–Wübbena (MW) linear combination [15–17] and ionospheric residual combination
are used in TurboEdit. Although the TurboEdit algorithm is widely used, it has two disadvantages:
First, the ionospheric residual combination is sensitive to variations in ionospheric delay residuals,
which degrade the efficiency of the method. Furthermore, the wavelength of wide-lane (WL)
combination is still relatively small, which also degrades the performance of the method when there is
substantial pseudorange noise. de Lacy et al. [18] introduced the Bayesian criterion and polynomial
fitting to detect cycle slips for dual-frequency observations with high sampling interval (e.g., 1 s or
5 s). At low sampling rate or under high ionospheric activity, their method is not suitable due to the
large residuals produced by the ionospheric delay terms. Based on the TurboEdit algorithm, Liu [19]
and Cai et al. [20] specially study cycle slip detection and repair under high ionospheric activity.
However, their methods may not work well in situations with significant measurement noise. Based on
a time-differenced model, the dual-frequency cycle slip detection and repair method has also been
investigated by Zhang and Li [21], and Banville and Langley [22]. The external information such
as precise orbit and clock corrections are required in these methods. There are also some cycle slip
detection and repair methods that integrate the GNSS and other sensors. Aided by inertial navigation
system (INS), cycle slip detection can be implemented with a single-frequency receiver [23,24] and
dual-frequency receiver [25]. However, these methods are not flexible in application scenario due to
the cost and complexity of GPS/INS.

With the modernization and development of GNSS systems, triple-frequency signals are now
available, which allows the introduction of additional linear combinations with longer wavelengths,
weaker ionospheric delays, and smaller noise [26,27]. The availability of triple-frequency observations
provides new opportunities for cycle slip detection and repair. Dai et al. [28] proposed an instantaneous
triple-frequency cycle slip detection and repair method that applies two geometry-free phase
combinations with the least-squares ambiguity decorrelation adjustment (LAMBDA) [29] algorithm
to search for cycle slip candidates. Since only two geometry-free phase combinations are used in the
method, some undetectable cycle slips remain. Based on triple-frequency observations combination,
Huang et al. [30], Li et al. [31], and de Lacy et al. [32] developed real-time cycle slip detection and repair
methods. These methods assume that ionospheric delay varies smoothly over time. The performance
of these methods might be reduced under high ionospheric activity. Zhao et al. [33], Yao et al. [34],
and Li et al. [35] further proposed to compensate for the ionospheric bias by using ionospheric
prediction. However, several epochs of continuous phase data that lack cycle slips are required to satisfy
the criteria for the phase connection, e.g., 5 or 10 historic epochs are required in method presented
by Li et al. [35]. Huang et al. [36] used three geometry-free and ionosphere-free (GIF) pseudorange
minus phase combinations to eliminate the impact of ionospheric delay. Although GIF combinations
are not affected by ionospheric delay, the cycle slip detection success rate of GIF combinations is
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decreased when there is significant pseudorange noise. On the other hand, Zhang [37] extended the
geometry-based approach by integrating time-differenced pseudorange and carrier phase observations
to estimate the integer number of triple-frequency cycle slips.

In this paper, we present a new real-time cycle slip detection and repair method under high
ionospheric activity for undifferenced GPS/BDS triple-frequency observations collected with a single
receiver. In this new approach, we jointly use three linearly independent geometry-free pseudorange
minus phase combinations to efficiently detect and correctly repair the cycle slips on original
triple-frequency carrier phase observations. Furthermore, a second-order time-difference algorithm
is employed to mitigate the impact of between-epoch ionospheric variations, which improves the
rounding success rate of estimated float cycle slips under high ionospheric activity. As observations of
only three consecutive epochs (i.e., the current epoch and two previous epochs) are needed, cycle slips
occurred at the current epoch can be efficiently detected and repaired in real time. Finally, we verify
the performance of the approach by conducting static experiments during a magnetic storm and
kinematic (car-driven and airborne) experiments. It is demonstrated that the presented method can
detect and correctly repair cycle slips that are as small as 1 cycle in real time under high ionospheric
activity. Compared with the existing double-frequency cycle slip detection and repair methods
under high ionospheric activity [19,20], the impact of pseudorange noise will be reduced as the
wavelength of triple-frequency combinations used in our proposed method is longer than that of
dual-frequency WL combination. Compared with the triple-frequency cycle slip detection and repair
methods utilizing ionospheric prediction [33–35], less consecutive epochs are required in our proposed
method. Additionally, no external information is required in the proposed method with respect
to the geometry-based time-differential positioning method, which requires precise orbit and clock
correction [21,22].

The paper is organized as follows. In Section 2, we present the cycle slip detection and
repair method based on geometry-free triple-frequency pseduorange minus phase combinations
and second-order time-difference algorithm. In Section 3, we select optimal cycle slip detection and
repair combinations for GPS and BDS, respectively. In Section 4, the proposed method is verified with
real receiver data and simulated cycle slip, and the conclusions follow in Section 5.

2. Method of Triple-Frequency Cycle Slip Detection and Repair

The undifferenced pseudorange and carrier phase observation equations can be expressed as [38]:

Pi = ρ + qi Ii + εPi (1)

λi ϕi = ρ− qi I1 + λi Ni + λiεϕi (2)

where Pi and ϕi are pseudorange observations (in meters) and carrier phase observations (in cycles),
respectively, on frequency fi. ρ is the geometric distance from satellite to receiver, and includes the
satellite and receiver clock errors, the tropospheric error, and the receiver and satellite hardware delays
(in meters). I1 is the first-order ionospheric delay at frequency f1 (in meters) and it is multiplied by
qi = f 2

1 / f 2
i to obtain the corresponding delay at frequency fi. λi is the wavelength (in meters), Ni is

the integer ambiguity, and εPi and εϕi are pseudorange noise (in meters) and carrier phase observation
noise (in cycles), respectively.

The geometry-based, linearly combined triple-frequency carrier phase observation equation is
defined as [39]:

λijk ϕijk = i f1λ1 ϕ1+j f2λ2 ϕ2+k f3λ3 ϕ3
i f1+j f2+k f3

= ρ− βijk I1 + λijk Nijk + λijkεϕijk

(3)
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where the combination coefficients i, j, k are integers. The linearly combined wavelength, integer ambiguity,
and the ionospheric scale factor (ISF) are [39]:

λijk =
c

i f1 + j f2 + k f3

Nijk = iN1 + jN2 + kN3

βijk =
f 2
1 (i/ f1 + j/ f2 + k/ f3)

i f1 + j f2 + k f3

Similarly, the geometry-based, linearly combined triple-frequency pseudorange observation
equation is defined as:

Plmn = lP1 + mP2 + nP3

= ρ + βlmn I1 + εPlmn

(4)

where the combination coefficients l, m, n are real numbers with a sum of 1 (i.e., l + m + n = 1).
βlmn = l + m f 2

1 / f 2
2 + n f 2

1 / f 2
3 is the ISF of Plmn.

According to Equations (3) and (4), the geometry-free pseduorange minus phase combination can
be expressed as:

ϕijk −
Plmn
λijk

= −Kijk,lmn I1 + Nijk + εϕijk − εPlmn /λijk (5)

where Kijk,lmn =
(

βijk + βlmn

)
/λijk. The geometry-free pseduorange minus phase combination can

cancel out the geometric distance between satellite and receiver, the tropospheric delay, and satellite
and receiver clock errors and hardware delays. Consequently, it is extremely suitable for cycle slip
detection and repair for undifferenced observations under kinematic conditions.

The single-differenced observation equation for geometry-free pseudorange minus phase
combinations between two consecutive epochs is defined as:

.
ϕijk −

.
Plmn
λijk

= −Kijk,lmn
.
I1 +

.
Nijk +

.
εϕijk −

.
εPlmn /λijk (6)

where the single dot denotes the first-order time-difference algorithm. The inter-frequency biases for
both pseduorange and phase of both receiver and satellite are very stable such that they can be deemed
as constant over a short time span. Moreover, the inter-observation-type bias (between pseudorange
and phase) is stable as well. Consequently, the inter-frequency biases and inter-observation-type
bias can be omitted through first-order time difference algorithm [35]. According to Equation (6),
the first-order ionospheric delay variation (

.
I1) remains in the single-differenced observation of the

geometry-free pseudorange minus phase combination. It can be too large to ignore under conditions
of high ionospheric activity. The impact of the ionospheric variation is further discussed in Section 3.
To further reduce the impact of the residual ionospheric error, the second-order time-difference
algorithm can be employed.

The second-order, time-differenced, geometry-free, pseduorange minus phase combination
observation equation is defined as:

..
ϕijk −

..
Plmn
λijk

= −Kijk,lmn
..
I1 +

..
Nijk +

..
εϕijk −

..
εPlmn /λijk (7)

where the double dot denotes the second-order time-difference algorithm. According to Equation (7),
for three consecutive epochs t0, t1, and t2, ignoring small residual ionospheric error and noise term,
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the estimated combined cycle slip on the triple-frequency phase combination ϕijk at epoch t2, can be
defined as:

.̂
Nijk =

..
ϕijk −

..
Plmn
λijk

=
[

ϕijk(t2) − ϕijk(t1) −
(

ϕijk(t1) − ϕijk(t0)

)]
−
[

Plmn(t2) − Plmn(t1) −
(

Plmn(t1) − Plmn(t0)

)]
/λijk

(8)

Assuming that the noise terms of the carrier phase observations on each frequency are independent
in time and are identical in variance (i.e., σϕ1 = σϕ2 = σϕ3 = σϕ), and the same is true for the
pseudorange noise terms (i.e., σP1 = σP2 = σP3 = σP), the standard deviations (STDs) of the estimated

combined cycle slip
.̂

Nijk is calculated as:

σ .̂
Nijk

= 2
√
(l2 + m2 + n2)σ2

P/λ2
ijk + (i2 + j2 + k2)σ2

ϕ (9)

Assuming that
.̂

Nijk is normally distributed, the cycle slip can be detected when the following
condition is satisfied: ∣∣∣∣∣∣ .̂

ϕijk −
.̂
Plmn
λijk

∣∣∣∣∣∣ > sσ .̂
Nijk

(10)

where sσ .̂
Nijk

is the critical value for the cycle slip detection criterion, and the scalar s denotes the

multiple of the standard deviation. s = 3 and s = 4 denote a 99.7% confidence level and a 99.9%
confidence level, respectively.

To detect and repair cycle slips on the three original carrier phase observations, i.e.,
.

N1,
.

N2,
.

N3,
three sets of linearly independent triple-frequency phase combinations are required.

Assuming the coefficients for three linear combinations are (i1, j1, k1), (i2, j2, k2), and (i3, j3, k3), the
corresponding combined cycle slips are

.
Ni1 j1k1 ,

.
Ni2 j2k2 , and

.
Ni3 j3k3 , respectively. In such a case, the

relationship between the combined cycle slip and the original cycle slips can be defined as:

L =

∣∣∣∣∣∣∣
.

Ni1 j1k1.
Ni2 j2k2.
Ni3 j3k3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

i1 j1 k1

i2 j2 k2

i3 j3 k3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

.
N1.
N2.
N3

∣∣∣∣∣∣∣ = Ax (11)

According to Equation (11), in order to ensure that the cycle slips on the three original carrier
phase observations can be recovered, the A-matrix must be reversible. In such a case, the cycle slips on
the three original carrier phase observations can be obtained using x = A−1L. As the combined cycle

slip
.

Nijk is obtained by rounding the estimated combined cycle slip
.̂

Nijk, the elements of the L-matrix
are all integers. To ensure that the cycle slips on the three original carrier phase observations that were
computed with equation x = A−1L are also integers, the elements of the inverse of the A-matrix must
be integers as well. This means that the A-matrix must satisfy the condition that the matrix elements
are all integers and the determinant is equal to plus or minus 1 (i.e., det(A) = ±1).

Generally, cycle slip validation is the step that follows the cycle slip determination. Similar to
Equation (10), the cycle slip validation formula is:∣∣∣∣∣ ..

ϕijk
repair −

..
Plmn
λijk

∣∣∣∣∣ < sσ .̂
Nijk

(12)

where superscript “repair” indicates that the original carrier phase observations are already corrected
by subtracting the integer cycle slips. If Equation (12) is not satisfied, the determined cycle slip is
considered to be false.
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3. Selection of Optimal Geometry-Free Pseudorange Minus Phase Combinations

According to Equation (8), the integral combined cycle slip
.

Nijk can be determined by rounding

the estimated float combined cycle slip
.̂

Nijk. Consequently, a rounding success rate is introduced to
evaluate the performance of the cycle slip detection.

Assuming that
.̂

Nijk is normally distributed,

.̂
Nijk ∼

(
.

Nijk, σ2
.̂

Nijk

)
(13)

where
.

Nijk is the true value of the combined cycle slip. Assuming that
.̂

Nijk is the nearest integer close

to
.̂

Nijk (i.e.,
.̂

Nijk = int
(

.̂
Nijk

)
), the probability of

.̂
Nijk taking an integer i is [40]:

P

(
.̂

Nijk = i

)
=

(i−
.

Nijk)+0.5∫
(i−

.
Nijk)−0.5

1√
2πσ .̂

Nijk

· exp
(
−1

2
z2/σ2

.̂
Nijk

)
dz (14)

Based on this, the probability of obtaining the correct combined cycle slip
.

Nijk by rounding the

estimated float combined cycle slip
.̂

Nijk can be computed using [40]:

P

(
.̂

Nijk =
.

Nijk

)
= P

(∣∣∣∣ .̂
Nijk −

.
Nijk

∣∣∣∣ ≤ 0.5
)
=

2Φ

(
0.5σ−1

.̂
Nijk

)
− 1

(15)

where Φ(x) =
x∫
−∞

1√
2π

exp
(
− 1

2 z2
)

dz. It is shown in Equation (15) that the probability of rounding

to the correct combined cycle slip
.

Nijk increases as σ .̂
Nijk

(STD of
.̂

Nijk) decreases. The relationship

between the rounding success rate and σ .̂
Nijk

is shown in Figure 1, and the rounding success rates when

σ .̂
Nijk

= 0.15, 0.2, 0.25 (cycles) are listed in Table 1.
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Table 1. Rounding success rates for σ .̂
Nijk

= 0.15, 0.2, 0.25.

œ .̂
Nijk

(Cycles) Rounding Success Rate

0.15 99.9%
0.2 98.8%

0.25 95.5%

According to Equation (6), the residual ionospheric variation still remains in first-order
time-difference pseudorange minus phase combination. Taking ionospheric variation into account,
the bias-affected cycle slip rounding success rate can be computed by [41]:

Pbias = Φ

1 + 2biasion
2σ .̂

Nijk

+ Φ

1− 2biasion
2σ .̂

Nijk

− 1 (16)

where biasion = −Kijk,lmn
.
I1 and denotes ionospheric bias in cycles. When the between-epoch ionospheric

variation
.
I1 is larger than 0.02 m, the bias-affected cycle slip rounding success rate will be reduced to

about 97% whereas it can be larger than 99% when ionospheric bias is so small that it can be ignored.
The ionospheric total electron content (TEC) change rate can be over 0.03 TECU/s during ionosphere
disturbances in the low latitude region [42,43]. In such cases, the impact of residual ionospheric
variation in the first-order time-difference pseudorange and phase combination cannot be ignored.
However, the second-order time-difference algorithm can further reduce the impact of ionospheric
variation, resulting in improved cycle slip rounding success rate.

According to Equations (7) and (10), the cycle slip detection criterion for the proposed
second-order, time-difference, pseudorange minus phase combination method can be expressed as:∣∣∣ ..

ϕijk −
..
Plmn/λijk + f (o)

∣∣∣ > sσ .̂
Nijk

(17)

where f (o) = −..
εijk +

..
εlmn/λijk − Kijk,lmn

..
I1.

To reduce the impact of f (o) and improve the rounding success rate, we propose the following
three criteria for choosing the optimal pseudorange minus phase combinations:

1© It should have a relatively larger wavelength (λijk) to reduce the impact of pseudorange noise.

2© It should have a relatively smaller coefficient Kijk,lmn of
..
I1 to reduce the impact of the

second-order, between-epoch, ionospheric delay variations.
3© It should have relatively smaller σ .̂

Nijk
to ensure a higher rounding success rate for combined

cycle slip.
For criterion 2©, Kijk,lmn can be expressed as:

Kijk,lmn =
(

βijk + βlmn

)
/λijk

= ( f1/c + f1βlmn/c)
[

i + j f 2
1+ f 2

2 βlmn
f1 f2+ f1 f2βlmn

+ k f 2
1+ f 2

3 βlmn
f1 f3+ f1 f3βlmn

] (18)

The Kijk,lmn of the geometry-free pseudorange minus phase combinations for BDS and GPS are
12.475(i + 0.990j + 0.987k) and 13.033(i + 0.982j + 0.986k), respectively. Generally, Kijk,lmn is small in
cases where |i + j + k| ≤ 2.

For criterion 3©, according to Equation (9), pseudorange noise is the largest source of error
in estimated combined cycle slips. To minimize the noise associated with estimated combined
cycle slips (i.e., σ .̂

Nijk
= min), the combination coefficients l, m, n should be l = m = n = 1/3,
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where l2 + m2 + n2 = min can be interpreted as the minimum distance from the origin point (0, 0, 0)
to plane l + m + n = 1.

The noise of pseudorange and carrier phase is about 1% of the code width and carrier phase
wavelength respectively. This means, e.g., the noise for the GPS C/A code and P code are approximately
3 m and 0.3 m, respectively, and the noise for the carrier phase is about 0.003 m. When smoothing
the code with the carrier phase, the C/A code noise might be reduced to approximately 0.6 m. In
addition, the pseudorange noise also depends on the signal strength, which varies with the elevation
angle. Finally, the pseudorange noise is generally larger in kinematic conditions as well. Take
this into account, assuming that the carrier phase noise is σϕ = 0.003 m, the pseudorange noise is
σP = (0.3, 0.6, 3) m, the combined wavelength is larger than 4 m, and |i + j + k| ≤ 2, the optimal
geometry-free pseudorange minus phase linear combinations can be searched by setting i, j, and k
within the range of [−10, 10]. Tables 2 and 3 list the first seven optimal pseudorange minus phase
combinations for BDS and GPS, respectively. Columns 1 through 3 are coefficients of pseudorange
minus phase combinations. Columns 4 and 5 are combined wavelength and ionospheric scale factors,
respectively. Columns 6 through 8 are STDs of estimated combined cycle slip where σP = 0.3, 0.6, and 3
m, respectively.

Table 2. BeiDou Navigation Satellite System (BDS) geometry-free pseudorange minus phase
linear combinations.

i j k λ(m) K
STD (Cycles)

σP = 0.3 m σP = 0.6 m σP = 3 m

−4 1 4 8.14 11.71 0.123 0.143 0.441
−3 6 −2 13.321 12.071 0.142 0.149 0.295
−1 −5 6 20.932 −0.362 0.158 0.161 0.228
0 −1 1 4.884 −0.04 0.076 0.145 0.71
4 −2 −3 12.211 −11.75 0.111 0.122 0.303
5 3 −9 29.305 −11.388 0.215 0.216 0.245
7 −8 −1 146.526 −23.821 0.214 0.214 0.215

STD, standard deviation.

Table 3. Global Positioning System (GPS) geometry-free pseudorange minus phase linear combinations.

i j k λ(m) K
STD (Cycles)

σP = 0.3 m σP = 0.6 m σP = 3 m

−6 1 7 29.305 24.525 0.186 0.187 0.22
−3 1 3 9.768 12.242 0.094 0.112 0.365
−1 8 −7 29.305 −0.513 0.214 0.215 0.244
0 1 −1 5.861 −0.041 0.066 0.122 0.592
3 0 −4 14.653 −12.283 0.103 0.111 0.257
4 −8 3 29.305 −11.77 0.189 0.19 0.223
7 −8 −1 9.768 −24.052 0.216 0.225 0.414

Tables 2 and 3 show that the listed pseudorange minus phase linear combinations are not affected
as much by the pseudorange noise due to their larger wavelength. The STDs of estimated combined
cycle slip are generally smaller than 0.2 cycles in the case of 0.3 m and 0.6 m pseudorange noise,
which results in at least a 98.8% rounding success rate for cycle slip detection. The STDs can be less
than 0.15 cycles in certain cases, which can result in at least a 99.9% rounding success rate. However,
the STDs for all the pseudorange minus phase linear combinations are larger than 0.2 cycles in the
case of 3 m pseudorange noise. For combinations with wavelengths that are less than 10 m, the impact
of pseudorange noise can be significant, and the STDs can be larger than 0.3 cycles. In such cases,
the rounding success rate can be relatively small.
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It should be noted that the impact of ionospheric delay can be effectively reduced by using
a second-order time difference of pseudorange minus phase combinations, but at the same time,
the observation noise is significantly amplified. The impact of observation noise can be reduced
by choosing pseudorange minus phase combinations with larger wavelengths. In the case of low
pseudorange noise, combinations with small STDs can be derived. Contrary to this, the combined
noise can be relatively large in the case of large pseudorange noise, which makes it unsuitable for cycle
slip detection.

Tables 4 and 5 list the optimal pseudorange minus phase combinations for BDS and GPS cycle
slip detection and repair, respectively. Columns 1 through 3 list the coefficients of the first combination,
columns 4 through 6 list the coefficients of the second combination, and columns 7 through 9 list
the coefficients of the third combination. The final three columns are the minimum probability for
cycle slip detection when σP = 0.3, 0.6, and 3 m, respectively. Tables 4 and 5 show that the cycle
slip detection success rates can reach up to 99.9% and 99.2% for BDS and GPS if the pseudorange
noise is 0.3 m and 0.6 m, respectively. However, the highest cycle slip detection success rate is only
approximately 95% if the pseudorange noise is 3 m.

Table 4. Pseudorange minus phase combinations for BDS cycle slip detection and repair.

i1 j1 k1 i2 j2 k2 i3 j3 k3 PσP=0.3 m PσP=0.6 m PσP=3 m

−4 1 4 −3 6 −2 0 −1 1 99.96% 99.92% 51.88%
−4 1 4 −3 6 −2 4 −2 −3 99.96% 99.92% 74.33%
−3 6 −2 0 −1 1 4 −2 −3 99.96% 99.92% 51.88%
−1 −5 6 5 3 −9 7 −8 −1 98.01% 97.95% 95.88%

Table 5. Pseudorange minus phase combinations for GPS cycle slip detection and repair.

i1 j1 k1 i2 j2 k2 i3 j3 k3 PσP=0.3 m PσP=0.6 m PσP=3 m

−6 1 7 3 0 −4 4 −8 3 99.18% 99.14% 94.86%
−3 1 3 3 0 −4 4 −8 3 99.18% 99.14% 82.91%
−6 1 7 −3 1 3 4 −8 3 99.18% 99.14% 82.91%
−6 1 7 −1 8 −7 4 −8 3 98.06% 98.00% 95.95%

4. Data Tests and Analysis

4.1. Static Test

According to [44], a moderate geomagnetic storm occurred in the middle of March 2013.
Figure 2 shows the geomagnetic Kp index from 17 March 2013. The average Kp index is 5.25,
which also indicates that the level of ionospheric activity was high. The Earth’s magnetic field
was disturbed dramatically in the near-equatorial, mid-latitude, and auroral regions. Triple-frequency
BDS/GPS observations collected from the multi-GNSS experiment (MGEX) station JFNG (30.52◦ N,
114.49◦ E)—which is in the area where the Total Election Content (TEC) changed significantly on
17 March 2013—were used to verify the performance of the proposed method. The observations were
collected with a 30 s sampling interval using a Trimble NetR9 receiver, which was connected to a
TRM59800 antenna. BDS C03, C09, C12 and GPS G01, G24, G25 were tested, and simulated cycle slips
were previously added to their corresponding observations.

We first analyzed ionospheric delay variations. The first-order, between-epoch ionospheric
delay variations can be estimated using

.
I = f 2

3
(
λ1

.
ϕ1 − λ3

.
ϕ3
)
/
(

f 2
1 − f 2

3
)
, and the second-order,

between-epoch time-difference ionospheric delay variations can be calculated using
..
Ii =

.
Ii −

.
Ii−1.

Figure 3 displays the between-epoch, first-order and second-order ionospheric delay variations of
BDS C03, C09, C12 and GPS G01, G24, G25. The first-order ionospheric delay variations for all the
involved satellites, except for C03, were fairly significant and cannot be ignored due to the impact
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of the magnetic storm. This is reasonable considering that the signal propagation path of C03 in
the ionosphere varies much more slowly than the other satellites due to its slower movement in the
Geostationary Earth Orbit (GEO). However, when

.
I is further differenced in time, the trend is removed

and the second-order ionospheric delay variations (i.e.,
..
I) for all the involved satellites generally vary

within ±2 cm. This indicates that the impact of ionospheric delay can be significantly reduced using
the between-epoch, second-order, time-difference algorithm. Consequently, the rounding success rate
for the estimated float combined cycle slips using the second-order time-difference algorithm can be
significantly improved compared to the first-order time-difference algorithm.
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According to Tables 4 and 5, the optimal geometry-free pseudorange minus phase combinations
were [−4, 1, 4], [−3, 6, −2], [4, −2, −3] for BDS and [−6, 1, 7], [3, 0, −4], [4, −8, 3] for GPS, respectively.
To evaluate the effectiveness of the proposed method, two types of evenly distributed cycle slips
were simulated.

1© The combined cycle slips satisfy the condition of
∣∣∣i .

N1 + j
.

N2 + k
.

N3

∣∣∣ ≤ 1 to verify the
performance in identifying small combined cycle slips.

2© The cycle slips for each of the original carrier phase observations were defined as 1 cycle to
verify the ability of identifying small cycle slips.

First, we used three independent, geometry-free, pseudorange minus phase combinations to detect
and repair the cycle slips on the original carrier phase observations using Equation (6) and ignored
the between-epoch ionospheric delay variations. According to Equation (6), when

.
I is sufficiently

large, misjudgment may occur even if no cycle slips occur on the original carrier phase observations
(i.e.,

.
Nijk = 0(

.
N1 =

.
N2 =

.
N3 = 0)). Consequently, the performance will be reduced under conditions

of high ionospheric activity. The cycle slip detection results for raw observations are shown in Figure 4.
It is apparent that misjudgments occur in all cases due to the presence of relatively large between-epoch
ionospheric delay variations.
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Second, the proposed method was tested with data that were inserted with simulated cycle
slips. Cycle slip detection and repair results are shown in Figure 5 and Table 6. It is apparent
that the proposed method can correctly detect and repair simulated cycle slips that are as small as
1 cycle. Moreover, there were no insensitive cycle slip pairs that occurred in response to the proposed
method. For example, although BDS cycle slips pair (5, 4, 4) cannot be identified by geometry-free
pseudorange minus phase combinations [−4, 1, 4] and [4, −2, −3], it was obviously identified by
[−3, 6, 2]. Consequently, it can still be uniquely determined by the three independent cycle slip
detection combinations. Finally, the simulated cycle slips can be correctly identified even under
conditions of high levels of ionospheric activity. Using C09 for example, as shown in Figure 5,
the between-epoch ionospheric delay variations can exceed 0.1 m from GPST 9:00 to 10:00. However,
after applying the second-order time difference, the ionospheric variations are close to zero, and the
simulated cycles-slips at GPST 09:59:30 can be correctly detected and repaired (as shown in Figure 5
and Table 6).
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Table 6. Cycle slip detection and repair results.

PRN Time
(HH:MM:SS)

Simulated
Cycle Slip

.̂
Ni1j1k1

.̂
Ni2j2k2

.̂
Ni3j3k3

Computed Integer
Cycle Slip

C03
04:09:30 (1,1,1) 1.02 0.96 −1.02 (1,1,1)
12:29:30 (5,4,4) −0.02 1.02 −0.01 (5,4,4)
20:49:30 (22,17,18) 1.02 0.01 −0.06 (22,17,18)

C09
01:39:30 (1,1,1) 1.04 1.01 −1.03 (1,1,1)
05:49:30 (5,4,4) −0.03 0.94 0.01 (5,4,4)
09:59:30 (22,17,18) 1.05 0.09 −0.01 (22,17,18)

C12
13:19:30 (1,1,1) 1.18 1.08 −1.10 (1,1,1)
15:49:30 (5,4,4) 0.04 1.07 −0.06 (5,4,4)
18:19:30 (22,17,18) 0.80 −0.04 0.08 (22,17,18)

G01
14:09:30 (1,1,1) 1.77 −0.91 −0.91 (1,1,1)
15:49:30 (5,4,4) 0.08 −0.20 0.98 (5,4,4)
16:39:30 (22,17,18) −1.01 1.03 −1.08 (22,17,18)

G24
01:39:30 (1,1,1) 2.09 −1.06 −1.04 (1,1,1)
03:44:30 (4,3,3) −0.02 0.01 0.97 (4,3,3)
05:49:30 (23,18,17) −1.01 1.03 −1.08 (23,18,17)

G25
06:39:30 (1,1,1) 1.96 −1.03 −1.13 (1,1,1)
07:54:30 (4,3,3) 0.07 −0.08 0.95 (4,3,3)
09:09:30 (23,18,17) −1.14 1.08 −0.91 (23,18,17)

PRN, pseudorandom noise code.

4.2. Kinematic Test

In this section, BDS observations from the car-driven experiment and GPS observations from
the airborne experiment are used to further evaluate the real-time cycle slip detection and repair
performance of the proposed method under kinematic conditions. The ionosphere is quiet for both the
car-driven experiment and airborne experiment, and the simulated cycle slips are previously inserted to
observations. To reduce the impact of relatively large pseudorange noise in the kinematic environments,
geometry-free pseudorange minus phase combinations with relatively large wavelengths were chosen.
Consequently, according to Table 2 through Table 5, the chosen BDS cycle slip detection combinations
were [−4, 1, 4], [−3, 6, −2], and [4, −2, −3], which had combined wavelengths of 8.14 m, 13.321 m,
and 12.211 m, respectively. The chosen GPS cycle slip detection combinations were [−6, 1, 7], [3, 0, −4],
and [4, −8, 3], which had combined wavelengths of 29.305 m, 14.653 m, and 29.305 m, respectively.

4.2.1. Kinematic Test for BDS

The BDS kinematic data were collected from the car-driven experiment conducted in Wuhan
on 27 October 2016. The sampling interval was 0.5 s. The type of GNSS receiver and antenna
that were used in the experiment were a ComNav M300 receiver and a NovAtel 704-WB antenna.
The observational environments and GNSS antennas in car-driven experiment are shown in Figure 6.
The trajectory of the car is shown in Figure 7. The speed of car was approximately 50 km/h.
Observations from C01, C06, and C14 were analyzed to verify the cycle slip detection and repair
results of the proposed method and are shown in Figures 8–10 and in Table 7.
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Sensors 2018, 18, 427 16 of 21

Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 

 

 
Figure 8. Cycle slip detection for C01 with sampling interval of 0.5 s. 

 
Figure 9. Cycle slip detection for C06 with sampling interval of 0.5 s. 

 
Figure 10. Cycle slip detection for C14 with sampling interval of 0.5 s. 

Table 7. Cycle slip detection and repair results. 

PRN 
Time 

(HH:MM:SS) 
Simulated Cycle 

Slip 1 1 1

ˆ
i j kN  

2 2 2

ˆ
i j kN  

3 3 3

ˆ
i j kN  

Computed Integer
Cycle Slip 

C01 
02:53:40 (1,1,1) 0.97 0.98 −0.97 (1,1,1) 
03:00:20 (5,4,4) −0.04 1.14 0.02 (5,4,4) 
03:07:00 (22,17,18) 1.05 0.02 −0.03 (22,17,18) 

C06 
02:53:40 (1,1,1) 1.01 1.08 −1.03 (1,1,1) 
03:00:20 (5,4,4) −0.05 1.03 0.04 (5,4,4) 
03:07:00 (22,17,18) 1.13 0.04 −0.17 (22,17,18) 

C14 02:53:40 (1,1,1) 1.03 1.00 −1.03 (1,1,1) 

Figure 10. Cycle slip detection for C14 with sampling interval of 0.5 s.

Table 7. Cycle slip detection and repair results.

PRN Time
(HH:MM:SS)

Simulated
Cycle Slip

.̂
Ni1j1k1

.̂
Ni2j2k2

.̂
Ni3j3k3

Computed Integer
Cycle Slip

C01
02:53:40 (1,1,1) 0.97 0.98 −0.97 (1,1,1)
03:00:20 (5,4,4) −0.04 1.14 0.02 (5,4,4)
03:07:00 (22,17,18) 1.05 0.02 −0.03 (22,17,18)

C06
02:53:40 (1,1,1) 1.01 1.08 −1.03 (1,1,1)
03:00:20 (5,4,4) −0.05 1.03 0.04 (5,4,4)
03:07:00 (22,17,18) 1.13 0.04 −0.17 (22,17,18)

C14
02:53:40 (1,1,1) 1.03 1.00 −1.03 (1,1,1)

03:00:20 (5,4,4) −0.01 1.00 0.00 (5,4,4)
03:07:00 (22,17,18) 1.11 −0.04 −0.08 (22,17,18)

4.2.2. Kinematic Test for GPS

The GPS kinematic data were collected from the airborne experiment conducted at Xi’an in China
on 24 April 2015. The sampling interval was 0.2 s. The type of GNSS receiver and antenna that were
used in the experiment were a NovAtel ProPak6 receiver and an Antcom aviation GNSS antenna
(743GNSSA-XT-1). The airplane and antenna used in the airborne experiment are shown in Figure 11.
The trajectory of the airplane is shown in Figure 12. The speed of airplane was approximately 300 km/h.
Observations from G03, G09, and G26 were analyzed to verify the cycle slip detection and repair
results of the proposed method and are shown in Figures 13–15 and in Table 8.
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Table 8. Cycle slip detection and repair results.

PRN Time
(HH:MM:SS)

Simulated
Cycle Slip

.̂
Ni1j1k1

.̂
Ni2j2k2

.̂
Ni3j3k3

Computed Integer
Cycle Slip

G03
05:13:51 (1,1,1) 1.81 −0.89 −1.08 (1,1,1)
05:16:31 (4,3,3) −0.06 0.03 0.99 (4,3,3)
05:19:11 (23,18,17) −0.85 0.91 −0.92 (23,18,17)

G09
06:00:31 (1,1,1) 2.01 −1.01 −1.00 (1,1,1)
06:03:11 (4,3,3) −0.21 0.12 0.90 (4,3,3)
06:05:51 (23,18,17) −1.17 1.10 −1.06 (23,18,17)

G26
05:13:51 (1,1,1) 1.80 −0.88 −1.09 (1,1,1)
05:16:31 (4,3,3) 0.01 0.00 0.99 (4,3,3)
05:19:11 (23,18,17) −1.03 1.02 −1.02 (23,18,17)

4.2.3. Analysis of Results

It is apparent in Figures 8–10 and Figures 13–15 that the proposed method can also be applied to
process kinematic observations to effectively identify and repair cycle slips that are as small as 1 cycle.

The pseudorange noise observed during the kinematic experiments is generally larger than that
observed during the static experiments. According to Equation (7), the impact of pseudorange
noise decreases when divided by a larger combined wavelength. Optimal combinations with
larger wavelengths can be constructed by using triple-frequency observations compared to
dual-frequency observations. As such, the availability of triple-frequency observations plays an
important role in cycle slip detection and repair, especially for preprocessing observations collected
from kinematic experiments.

4.3. Summary of Static and Kinematic Test Results

In summary, the proposed method can detect and repair as small as 1 cycle slip for both static
and kinematic observations. Moreover, the cycle slip detection possibility is improved under high
ionospheric activity, and there are no insensitive cycle slips existing in our method.

5. Conclusions

In this paper, we present a new real-time cycle slip detection and repair method for undifferenced
GPS/BDS triple-frequency observations collected by a single receiver under conditions of high
ionospheric activity. In the approach, the cycle slips on the original triple-frequency carrier phase
observations were correctly and uniquely determined by applying the second-order time difference
algorithm to three linearly independent geometry-free pseudorange minus phase combinations.
The proposed approach has multiple advantages. First, no insensitive cycle slips exist in our method.
Second, the impact of ionospheric delay variations can be significantly reduced by using the
second-order time-difference algorithm even if the between-epoch ionospheric delay varies rapidly,
resulting in an improved cycle slip rounding success rate. Finally, triple-frequency carrier phase and
pseudorange observations of only three consecutive epochs are required for data processing. Therefore,
the method enables the implementation of high-efficiency cycle slip detection and repair in real time.

The performance of the method was verified by both static and kinematic tests. It was shown
that the method can detect and correctly repair cycle slips as small as 1 cycle under conditions of high
ionospheric activity. Additionally, the method is effective in processing kinematic data. However,
the performance of the method may be influenced by the pseudorange noise level. The cycle slip
combinations can be determined with a rounding success rate of more than 99% in the case of the
0.3 m and 0.6 m pseudorange noise, whereas the success rate is only approximately 95% in the case
of the 3 m pseudorange noise. These results indicate that the cycle slip detection performance of the
presented method is reduced when pseudorange noise is particularly large (e.g., 3 m or larger).
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