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Abstract: The detection of proteins is of great biological significance as disease biomarkers in early
diagnosis, prognosis tracking and therapeutic evaluation. Thus, we developed a simple, sensitive and
universal protein-sensing platform based on peptide and graphene oxide (GO). The design consists
of a fluorophore (TAMRA, TAM), a peptide containing eight arginines and peptide ligand that could
recognize the target protein, and GO used as a quencher. To demonstrate the feasible use of the sensor
for target detection, Bcl-xL was evaluated as the model target. The sensor was proved to be sensitive
and applied for the detection of the target proteins in buffer, 2% serum and living cells.
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1. Introduction

Proteins play key roles in a wide range of human physiological processes, including catalysis,
signaling, transport and storage, nutrition, immunity and regulation. The expression of many
proteins varies significantly between healthy people and patients with various diseases, which
results in pathological changes [1,2]. These proteins are used as disease biomarkers for tumors,
neurodegenerative diseases, inflammation and other diseases [3–6]. It is important to detect disease
biomarkers for early diagnosis, prognosis tracking and therapeutic evaluation. Numerous methods
have been reported to detect target proteins, such as enzyme-linked immunosorbent assay (ELISA),
electrochemical immunology sensors and mass spectra analysis [7–12]. However, these methods have
some limitations; for example, most involve multistep and time-consuming procedures and often
cannot be well applied to intracellular detection. As a result, new strategies for rapid, convenient and
sensitive protein detection are needed.

Until now, “turn-on” biosensors involving fluorophore and quencher based on specific recognition
have been highly popular [13–16]. Graphene oxide (GO) has been widely used as a quencher due
to its remarkable water-soluble, electronic and mechanical properties. Numerous oxygenic groups
throughout the topmost surface layer enable GO to absorb nucleotide acids, amino acids and proteins
via electrostatic, hydrophobic, hydrogen bonding and π-π stacking interactions [13–17]. By taking
advantage of the strong-yet-selective interactions between peptides and proteins [18], we designed
a novel and general strategy involving the use of modified peptides and GO to selectively detect
target proteins. Zhang et al. found that GO absorbed amino acids, such as arginine, histidine,
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lysine, tryptophan, tyrosine and phenylalanine via electrostatic interaction or π-π stacking interaction.
The strength of interactions between amino acids and GO is in the following order: Arg > His > Lys
> Trp > Tyr > Phe [19]. To simplify covalent modification, we design some arginine residues to the
N-terminus of the peptide ligand for efficient absorption by GO in order to develop a general strategy
for target detection. These arginine residues, combined with GO via electrostatic interactions between
the positively charged arginines and negatively charged edge of water-soluble GO, will enhance the
binding ability between GO and the peptide ligand, which further exhibits good specificity to the
target protein. This design also makes the whole system more simple and controllable [20–22].

In this study, we developed a simple and effective fluorescence “turn-on” protein-sensing platform
using peptides and GO (peptide-GO sensor). The platform consists of a fluorophore TAM that modifies
the peptide, a peptide containing eight arginine residues and peptide ligand that recognizes the target
protein, and GO, which is an excellent quencher of fluorescence molecules [23,24]. The fluorescent
peptide binds with GO, giving a fluorescence-off signal because of FRET-based fluorescence quenching
and constructing the peptide-GO sensor. In the presence of the target, the turn-on fluorescence changes
are monitored as the basis of the detection. To demonstrate the feasibility of using the peptide-GO
sensor for protein detection, Bcl-xL, which is a transmembrane molecular protein in the mitochondria
considered as a tumor biomarker, was evaluated as a model target [25].

2. Materials and Methods

2.1. Apparatus and Materials

The fluorescence spectra were acquired on a SPEX Fluorolog 3-TCSPC spectrometer equipped
with 1 cm path length cuvettes. The pH value was measured by PHS-3C Precision Ph/Mv Meter.
The cell images were acquired on an Olympus Biological Microscope System. The 3 peptides, TAM-PEP
(R4): TAM-RRRRNLWAAQRYGRELRRMSDKFVD, TAM-PEP (R6): TAM-RRRRRRNLWAAQRYG
RELRRMSDKFVD and TAM-PEP (R8): TAM-RRRRRRRRNLWAAQRYGRELRRMSDKFVD, were
synthesized by GL Biochem (Shanghai, China) Ltd. GO (XF-020, 50–200 nm) was purchased from
XianFeng Nano Co. (Nanjing, China). The cDNA3.1-Bcl-xL plasmid was constructed by Genecreate
Biological Engineering Co. (Wuhan, China) Tris-HCl, IPTG, PMSF, Anti-Bcl-xL antibody, Anti-ACTB
antibody, HRP-conjugated Goat Anti-Rabbit IgG, Cell Counting Kit-8, Cytochrome C, BSA, RNase
and lysozyme were purchased from Sangon Biotechnology Co. (Shanghai, China) BeyoECL Star
and trypsin digestion solution were purchased from Beyotime Biotechnology Co. (Shanghai, China)
Lipo ™ 2000 was purchased from Thermo Fisher Scientific Co.(Beijing, China)The deionized water
was prepared on a Milli-Q water purification system and used throughout all experiments.

2.2. Protein Expression And Purification

The expression and purification of Bcl-xL were carried out according to the previous studies [26,27].
Firstly, the constructed plasmid was transformed into BL21 (DE3) strain of E. coli. Secondly, the cells
were inoculated into 200 mL 2× YT culture medium added kanamycin (30 µg/mL) with shaking at
37 ◦C overnight until OD600 = 0.6. Next, 1 mM IPTG was added to induce the expression of Bcl-xL for
4.5 h at 25 ◦C, 220 rmp. After centrifuging at 5000× g, 4 ◦C for 10 min, the precipitation was collected
and resuspended in Tris-HCl buffer (50 mM Tris-HCl, pH 8.0, 5000× g, 4 ◦C, 10 min) and added 7 mL
lysis buffer (20 mM Tris-HCl, pH 8.0, 500 mM NaCl and 10% glycerol) with lysozyme (0.2 mg/mL)
and PMSF (0.5 mM). The cells were sonicated for 30 min and centrifuged at 12,000× g for 30 min at
4 ◦C. The supernatant was incubated on the Ni2+-NTA column for 1.5 h, and the His60 Ni Superflow
Resin was washed by washing buffer (50 mM Tris-HCl, pH 7.0, 100 mM NaCl, 25 mM imidazole and
10% glycerol). The Bcl-xL could be collected by washing with elution buffer (50 mM Tris-HCl, pH 7.0,
100 mM NaCl, 200 mM imidazole and 10% glycerol). The protein concentration was determined using
the BCA method with bovine serum albumin (BSA) as a standard.
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2.3. Fabrication of Peptide-GO Sensor and Fluorescence Detection

The appropriate amount of the peptides was weighed and dissolved in DMSO at a concentration
of 1 mM and diluted to 100 nM with 50 mM Tris-HCl buffer in 2 mL centrifuge tube. Different
concentrations of GO were added into the system and quenched the fluorescence of peptides in
different degree. The fluorescence spectra of peptides were performed with the excitation wavelength
of 540 nm and the emission wavelength from 565 nm to 700 nm. These elements constructed the
peptide-GO sensor to detect target protein. Various concentrations of target Bcl-xL protein were
incubated with sensor for 1 h and the turn-on fluorescence changes were tested.

2.4. Preparation of Human Serum Samples

The serum was removed from the −20 ◦C refrigerator and placed in 4 ◦C refrigerator for about
12 h to dissolve in a relaxed manner. Next, it was transferred to room temperature conditions with
regularly shaking to make it fully soluble. 5 mL serum was added into the 50 mL glass bottle and
diluted with DMEM medium to 50 mL.

2.5. Construction of Bcl-xL Overexpression Cell Line

A common cervical cancer cell-Hela was used in our experiments. DMEM medium containing 10%
serum was used for cell culture. 1.5–3 × 105 Hela cells were incubated in cover glass bottom dish with
1.5 mL antibiotic-free medium for 12–16 h before transfection to ensure that the cell turbidity reached
75% at transfection time. After incubating in carbon dioxide incubator for 12–16 h, the transfected
samples should be prepared, involving 2 µg plasmids diluted into 100 µL Opti-MEM® I Medium and
4 µL Lipo™ 2000 diluted into 100 µL Opti-MEM® I Medium. The two dilutions were mixed, gently
shook up and down and placed at room temperature for 20 min, so that the plasmid DNA could be
fully encapsulated by liposomes. The cover glass bottom dish was washed 2–3 times with sterile PBS
after the medium was removed. Next, 100 µL mixture and 1 mL complete medium were added to each
dish, gently mixed and incubated in a CO2 incubator. After transfection for 4–6 h, the medium was
changed to reduce the toxicity to the cells.

2.6. Western Blotting

12% resolving gel was prepared for proteins separation. After transferred onto a polyvinlidene
fluoride membrane (PVDF, 0.22 µm), the membrane was stained by Ponceau red and cut at 35 kDa,
then washed 3 times in 1× TBST buffer (1 M Tris-HCl 20 mL, pH 8.0, NaCl 8.8 g, Tween 20 2 mL,
ddH2O) and blocked in 1× TBST buffer containing 3% BSA for 1 h. The membranes were incubated
with anti-Bcl-xL antibody and Anti-ACTB antibody respectively at 4 ◦C overnight, then washed
3 times. After incubated with HRP-conjugated Goat Anti-Rabbit IgG for 2 h and washed 3 times,
the membranes were detected using Gel imaging system.

2.7. Cytotoxicity Assay

Hela cells were collected and added to a 96-well plate with 8 × 103 cells per well. The plate was
maintained at 37 ◦C in a 5% CO2/95% air incubator overnight. After adding 0, 0.5, 1, 10, 20, 50 and
100 µg/mL GO into the wells, the cells were cultured for 24 h at 37 ◦C. The cells should be washed
3 times with PBS and cultured for another 4 h after 20 µL 0.5% MTT added into the wells. After the
remaining MTT solution was removed, 150 µL DMSO was added into each well and the plate was
shocked for 10 min to fully dissolve the formazan crystals. Finally, the absorbance was measured by
microplate reader at the excitation of 490 nm.
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2.8. Cell Imaging

Hela cells and Bcl-xL overexpression cells were imaged by confocal fluorescence microscopy as
a control. After respectively co-incubated with the TAM-PEP (R8)/GO mixture for 3 h, Hela cells
and Bcl-xL overexpression cells were imaged by confocal fluorescence microscopy at the excitation of
559 nm.

3. Results and Discussion

3.1. The Principle of the Strategy

As a member of Bcl-2 family, Bcl-xL plays an important role in inhibiting apoptosis by forming
heterodimers with pro-apoptotic proteins or directly developing an oligomeric channel on the
outer membrane of the mitochondria to maintain the normal state of the mitochondrial membrane
when the cells are in stress. It is usually found to be overexpression in tumor cells. As a result,
researchers always use Bcl-xL as tumor biomarker in previous diagnosis, prognosis tracking and
therapeutic evaluation [25]. A commonly used peptide (NLWAAQRYGRELRRMSDKFVD), which
has been reported to bind to Bcl-xL through the BH3 binding domain with a dissociation constant
in the nanomolar range [28,29], was selected. To verify the efficiency of the strategy, we designed
four-, six-, and eight-arginines to the N-terminus of the peptides, which were modified with TAM.
The different number of arginines had varying effects on the electrostatic interaction with GO. The three
new peptides, TAM-PEP (R4), TAM-PEP (R6) and TAM-PEP (R8), were synthesized and used in
subsequent analysis.

Scheme 1 shows the principle underlying our strategy. The TAM-modified peptide demonstrated
a strong red emission signal (λmax = 580 nm). The fluorescence was quenched by GO when the peptide
was absorbed to the surface of GO because of electrostatic interaction. In the presence of the target,
the peptide ligand preferentially binds to its target, causing the peptide to separate from the GO surface
and turning on the red fluorescence. On the contrary, the peptide-GO sensor showed no fluorescence
in the absence of the target. This strategy involving the use of modified peptides and GO was applied
for target protein detection in vitro and in cells. In addition, it was found to detect a wide range of
target proteins in a sensitive and specific manner by simply replacing the corresponding peptides.
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Scheme 1. Schematic diagram of turn-on fluorescence assay for target proteins involving the use of
peptide-GO sensor.

To test the fluorescence signal of the peptide-GO sensor with addition of Bcl-xL, 100 nM TAM-PEP
(R8) was prepared in 50 mM Tris-HCl buffer (pH 8.0) and irradiated at a wavelength of 540 nm.
As shown in Figure 1, a strong fluorescence signal was observed at a wavelength of 580 nm, while the



Sensors 2018, 18, 385 5 of 12

fluorescence was dramatically quenched when 100 ng/mL GO was added to the solution. After adding
5 µM of the target protein (Bcl-xL), approximately 80% fluorescence recovered compared with the
original fluorescence of TAM. This result demonstrated that our strategy is feasible for detecting
target molecules.
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the fluorescence spectrum of TAM modified peptide (blue line), the fluorescence spectrum of
GO-quenched signal (red line), and 5 µM Bcl-xL triggered turn-on fluorescence spectrum (green
line). Ex = 540 nm.

3.2. Optimization of the Detection Conditions

To make the system highly sensitive and specific, we optimized the experimental conditions
including the concentration of GO, pH value of the system and incubation time of the target.
The concentration of GO was directly related to the quenching efficiency and affected the interaction
strength between the peptide and GO, which was close to the sensitivity value of detection. As shown
in Figure 2a, the concentration of GO affected the fluorescence intensity in the absence and presence
of 5 µM Bcl-xL. By adding GO to the solution containing TAM-PEP (R8), the fluorescence intensity
decreased sharply and reached a plateau at 75 ng/mL in the absence of Bcl-xL. In the presence of
5 µM Bcl-xL, the fluorescence intensity increased to different extents because of the various interaction
strengths between the peptide and GO.

Figure 2b shows that the fluorescence change reached a maximum at 75 ng/mL with increasing
concentrations of GO. Therefore, we chose 75 ng/mL GO as the optimal concentration to quench the
fluorescence of TAM in Bcl-xL detection, which was much lower than previous studies [16,17,30,31].
Using the same principle, the pH value was optimized over a pH range of 6.0–9.5. There was almost
identical change in fluorescence intensity in the absence and presence of 5 µM Bcl-xL with increasing
pH. To ensure minimization of the background, pH 8.0 was used in subsequent analysis.

Based on the determined GO concentration and pH value, we studied the response time for the
detection of target by the sensor. As can be seen by inspection of the results in Figure 3, addition of
5 µM Bcl-xL caused the intensity of fluorescence of TAM-PEP (R8) to increase gradually, reaching a
plateau at 50 min. Therefore, we fixed the response time at 50 min in the detection process.
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Figure 2. (a) Effect of GO concentration on fluorescence intensity of TAM-PEP (R8) at the emission
of 580 nm in the absence (black) and in the presence of 5 µM Bcl-xL (red); (b) Recovery intensity of
fluorescence of TAM-PEP (R8) at the emission of 580 nm with different GO concentrations, where
∆F is the difference of the fluorescence intensity with and without Bcl-xL (5 µM); (c) Effect of pH on
fluorescence intensity of TAM-PEP (R8) at the emission of 580 nm in the absence (black) and in the
presence of 5 µM Bcl-xL (red); (d) Recovery intensity of TAM-PEP (R8) at the emission of 580 nm with
different GO concentration, where ∆F is the difference of the fluorescence intensity with and without
Bcl-xL (5 µM). Experiment conditions: TAM-PEP (R8) 100 nM; Incubation time: 1 h; Room temperature.
Excitation: 540 nm.
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Figure 3. Fluorescence intensity of TAM-PEP (R8) in GO solution by addition of 5 µM Bcl-xL as a
function of incubation time. Excitation: 540 nm.

3.3. The Sensitivity and Specificity of the System

To optimize the sensitivity and specificity of the assay system, we tested the 3 peptides, TAM-PEP
(R4), TAM-PEP (R6), and TAM-PEP (R8). 100 nM TAM-PEP (R4, R6, R8) and 75 ng/mL GO were
prepared in 50 mM Tris-HCl (pH 8.0). As shown in Figure 4a, the fluorescence intensity of the
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3 peptides markedly increased with the addition of Bcl-xL. The 3 peptides showed nearly the same
action at different concentrations of Bcl-xL. Figure 4b–d shows that there was good linear correlation
between the fluorescence intensity and Bcl-xL concentrations in the range of 0–1.0 µM, suggesting
that Bcl-xL could be quantitatively detected by the sensor. The limits of detection of the three systems
were calculated to be 8.4, 9.4, 9.9 nM, respectively, for Bcl-xL using the equation limit of detection =
3 × Sb/S (Figure 4). These results demonstrated that this method could be used for quantitative and
sensitive detection of Bcl-xL using the 3 peptide sensors.
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Specificity is one of the most important factors in evaluating a detection system. Therefore, we
investigated the specificity of the 3 peptide sensors. Bovine serum albumin, cytochrome C, lysozyme
and RNase were selected and tested at concentration of 10 µM, while the tested concentration of Bcl-xL
was 5 µM. The different degrees of fluorescence recovery ratio of the 3 peptides might be due to the
varied interaction strengths between the peptides and GO surface. (Figure 5a–c) As shown in Figure 5d,
the fluorescence intensity of the three peptides behaved almost identically in the presence of the target
proteins, while the fluorescence intensity of TAM-PEP (R8) was obviously lower than TAM-PEP
(R4, R6) in the presence of BSA, cytochrome C, lysozyme and RNase. The binding of TAM-PEP (R8)
and GO was less disturbed by other proteins compared with TAM-PEP (R4, R6) due to the stronger
electrostatic interaction or π-π stacking interaction between more arginines and GO. Considering both
sensitivity and specificity, TAM-PEP (R8) was the best peptide-GO sensor for fluorescence turn-on
detection of Bcl-xL.
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Figure 5. (a–c) Fluorescence intensity of TAM-PEP (R4), TAM-PEP (R6), TAM-PEP (R8) sensor in the
presence of Bcl-xL (5 µM), BSA (10 µM), cytochrome C (10 µM), lysozyme (10 µM), and RNase (10 µM)
respectively; (d) Fluorescence recovery ratio (F/F0) of TAM-PEP (R4), TAM-PEP (R6), TAM-PEP (R8)
sensor in the presence of Bcl-xL (5 µM), BSA (10 µM), cytochrome C (10 µM), lysozyme (10 µM), and
RNase (10 µM) respectively, where F and F0 were the fluorescence intensity with and without proteins.

3.4. Bcl-xL Detection in Serum

To test the practicality of our strategy, we applied the sensor for Bcl-xL detection in 2% serum.
We optimized the GO concentration in the range of 0–2 µg/mL in 2% serum system as described in a
previous study [30]. As shown in Figure 6a, in the presence of Bcl-xL, the fluorescence intensity of
TAM-PEP (R8) quenched by GO was increased to different degrees because of the different interaction
strengths between the peptides and GO. Notably, the much smaller change in fluorescence intensity in
the serum assay compared with that in the Tris-HCl buffer assay resulted from the background Raman
scattering and fluorescent components in the serum [32]. There were various degrees of fluorescence
change at different concentrations of GO (Figure S1), which reached the maximum value when the GO
concentration was 0.25 µg/mL (Figure 6a). As a result, 0.25 µg/mL was considered as the optimized
concentration of GO in 2% serum assay.

Figure 6b shows that the fluorescence intensity of TAM-PEP (R8) increased with the addition
of Bcl-xL in 2% serum. The inset exhibited that there was good linear correlation between the
fluorescence intensity and Bcl-xL concentrations in the range from 0 to 1.0 µM, suggesting that
Bcl-xL was quantitatively detected by the peptide-GO sensing platform in 2% serum. These results
demonstrated that this strategy could be used to detect Bcl-xL in serum.
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viewing the confocal fluorescence microscope images shown in Figure 7, remarkable red 
intracellular fluorescence recovery could be monitored in Bcl-xL overexpression cells compared with 
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Figure 6. The peptide-GO sensor tested in 2% serum assay. (a) The Fluorescence intensity changes
of peptide-GO sensor in the presence (F) and in the absence (F0) of 5 µM Bcl-xL with the increasing
amount of GO from 0 to 2 µg/mL in the 2% serum; (b) Fluorescence intensity of TAM-PEP (R8) as
the increasing concentrations of Bcl-xL; the inset was the linear relationship between fluorescence
intensity and Bcl-xL concentrations in 2% serum assay. Experiment conditions: TAM-PEP (R8) 100 nM;
Incubation time: 1 h; Room temperature. Excitation: 540 nm.

3.5. Cell Imaging

The results of an investigation accessing the in vitro response show that the sensor can be used
to detect Bcl-xL in living cells. The feasibility of utilizing the sensor for fluorescence imaging of
intracellular Bcl-xL was explored next. For this purpose, we first conducted an MTT assay to test
the cytotoxicity of GO, as shown in Figure S2, when the GO concentration was less than 10 µg/mL,
there was almost no influence on cell viability. Next, we optimized the GO concentration in cell
imaging. Hela cells were incubated with 1 µM TAM-PEP (R8) in growth media at 37 ◦C for 3 h and
clear red intracellular fluorescence could be observed by confocal fluorescence microscopy (Figure S3a).
In contrast, only weak fluorescence displayed in Figure S3b,c, which were incubated with the mixture
of peptide (1 µM) and GO (5 µg/mL and 10 µg/mL) for 3 h. We chose 5 µg/mL GO in cell imaging,
which had very low cytotoxicity. It is noteworthy that the concentration of GO is much lower than
previous studies in cell imaging [16,17,31]. These results strongly indicated that the sensor permeates
into cells and possesses a good stability in cells.

Providing a vivid contrast to Hela cells, we constructed the Bcl-xL overexpression cells which was
certified through Western blotting. (Figure S4) Then, the TAM-PEP (R8)/GO mixture was co-incubated
with Hela cells and Bcl-xL overexpression cells respectively for 3 h. As can be seen by viewing the
confocal fluorescence microscope images shown in Figure 7, remarkable red intracellular fluorescence
recovery could be monitored in Bcl-xL overexpression cells compared with the nature Hela cells due to
the different amount of the Bcl-xL target. The large amount of Bcl-xL protein in the overexpression cells
could recognize and bind with the peptide, leaving it from the GO surface and emitting the significant
fluorescence. These results proved that our peptide-GO sensor could be applied for fluorescence
imaging and detection of target in cells.
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4. Conclusions

In conclusion, a highly sensitive and selective fluorescent turn-on assay for signaling target
protein was developed by utilizing peptide-GO sensors. This peptide-GO sensor design consists of
a fluorophore, a peptide containing eight arginine residues and peptide ligand that recognizes the
target protein, and GO as a quencher. The feasibility of our design was confirmed by the sensitive and
specific detection of Bcl-xL. By simply replacing the corresponding peptides of targets, this strategy can
be easily generalized to other disease-related protein targets. Our sensor was proved to be stable and
sensitive for the detection of the target proteins in buffer, 2% serum and living cells with much lower
GO concentration compared to previous studies. Therefore, it can be applied for disease diagnosis,
prognosis tracking and therapeutic evaluation.
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