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Abstract: In sensor-based systems, the data of an object is often provided by multiple sources. Since
the data quality of these sources might be different, when querying the observations, it is necessary
to carefully select the sources to make sure that high quality data is accessed. A solution is to perform
a quality evaluation in the cloud and select a set of high-quality, low-cost data sources (i.e., sensors
or small sensor networks) that can answer queries. This paper studies the problem of min-cost
quality-aware query which aims to find high quality results from multi-sources with the minimized
cost. The measurement of the query results is provided, and two methods for answering min-cost
quality-aware query are proposed. How to get a reasonable parameter setting is also discussed.
Experiments on real-life data verify that the proposed techniques are efficient and effective.

Keywords: sensor-based systems; sensor-cloud systems; data quality; quality-aware query;
source quality

1. Introduction

The quality of data can severely impact the data-driven applications. It is reported that data error
rates of enterprises can be as high as 30% [1]. In some multi-sources applications, such as wireless
sensor networks, Internet of Things or data fusion, data quality-aware sensing have been identified
as one of the key concerns of sensor-based architecture [2]. In sensor-cloud systems which integrate
hybrid networks [3], virtual sensors and their data can be queried by users via user interfaces. However,
the quality of data returned by different data sources (i.e., virtual sensors) tends to be different due to
different environments, and the quality of the historical data can be used as an index for generating
plans of future queries. In some recent architectures, such as fog computing [4–6], edge devices are
used to carry out a substantial amount of computation. The differences of computing capability and
storage capacity between the devices also result in different quality of the data.

In these systems, a common fact is that there might be multiple sources providing the data of the
same object, but the sources vary in data quality. Therefore, it is important to control and evaluate
data quality. The quality of data and sources can be evaluated in the cloud based on classic data quality
methods (which are not lightweight and therefore may be difficult to perform on sensors). Then, a set
of data sources, which can provide relatively high quality data at low cost, will be selected to return the
required data. In this way, we do not have to visit or wake up the rest of the data sources, and thus can
save resources. Following example demonstrates the case of data sources with different data quality.

Example 1. Three sources in Figure 1 provide weather conditions observed in the same place at the same time.
However, these sources provide different observations of the same object. For instance, Source 1 claims that the
temperature is 26 °C, but Source 2 and Source 3 claim that the temperature is 26.7 °C or 16 °C.
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Some relative quality constraints can be used to infer the relative quality of the observations. For example,
if we know that the temperature sensor used by Source 2 possibly be a newer model of the sensor of Source 1,
we can infer that the value of temperature provided by Source 2 tends to be more accurate than Source 1. Arcs
with probability can represent the existence of relative quality constraints. In Figure 1, the arc from (temperature,
26.7 °C) to (temperature, 26 °C) indicates that there may exist a relative quality constraint that “the sensor of
Source 2 provides higher quality temperature than the sensor of Source 1”, and the probability of the existence of
the constraint is 0.9.

According to relative quality constraints shown by Figure 1, the observations of temperature and wind
speed of Source 3 might be less accurate than those of Source 1 and Source 2. That is, if we only access the data
from Source 3, we might get inaccurate values. In this case, if the user is willing to pay a higher cost, perhaps we
can access the other two data sources to obtain higher quality data.

Figure 1. Data sources with different data quality.

When selecting sources for answering a query with relative quality constraints, both low cost and
high quality are required. In this paper, we study the min-cost quality-aware query (MQQ for short)
answering problem which aims to get high quality results from multi-sources with the minimized cost.
This paper is extended based on the conference version of SCS 2018 [7]. The contributions of this paper
are as follows.

1. A general definition of MQQ answering problem is provided.
2. The data quality measurement of quality-aware query on multi-sources is defined based on

relative data quality constraints. Two methods for solving the min-cost quality-aware query
answering problem are proposed.

3. If the users do not have enough knowledge of the data, it is often difficult for them to set the
reasonable quality threshold. To deal with this problem, a method is proposed to automatically
help the users to find a proper quality threshold.

4. The experiments on real-life data are conducted, which verifies the efficiency and effectiveness of
the provided solutions.

The rest of this paper is organized as follows. Section 2 discusses the related work. Section 3
provides the problem definition. Section 4 gives the data quality measurement. Section 5 studies the
solutions of MQQ answering problem. Section 6 discusses the strategies of setting a reasonable quality
threshold. Section 7 shows the experimental results. Section 8 concludes the paper.

2. Related Work

Data quality. There is currently a lot of work on constraint-based data quality [8–22]. The problem
of data quality evaluation is studied in these works. These constraint-based methods can be roughly
categorized into two classes.

(1) The first class of methods can directly compute the quality score of a data set. Some constraints,
such as functional dependencies, conditional functional dependencies, denial constraints and editing
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rules, are used as data quality rules to detect errors in a given dataset [8–11]. Some systems use these
kinds of rules to find the dirty data in a given data set [12], and the quality score of a data set can be
defined as the proportion of clean data in the data set. Meanwhile, the trustworthy of data sources in
data fusion can also be considered as the quality score of data sources [13].

(2) The second class consists of methods for computing relative data quality. The relative
quality has been studied for many years, and a lot of rules are proposed to evaluate the relative
completeness, accuracy, currency, etc. The relative data quality constraints can be derived based on
their methods. For example, the relative accuracy constraints can determine the relative accuracy of
different tuples [14]. Inclusion dependencies and conditional inclusion dependencies can determine the
relative completeness of data set [15]. The currency rules can be used to determine the relative currency
of different tuples or data sources [16,17]. Some techniques for data fusion and truth discovering
also study how to derive relative data quality constraints [18–20]. These techniques can find the copy
dependencies between different sources, and the copy dependencies can be used to derive the relative
currency or completeness constraints of different sources [21,22].

The two classes of methods can either directly compute the absolute quality score of one source or
compute the relative quality score between two sources based on the observations. However, they do
not take into consideration how to evaluate and guarantee the data quality of query results, and thus
is different from our work.

Sensor-cloud. There are currently many studies on the architecture of sensor-cloud [3,23–29].
Alamri A. et al. [3] surveyed the early works of sensor-cloud. Madria S. et al. [23] proposed a new
cloud of sensor (CoS) which was composed of virtual sensors built on top of physical wireless sensors
rather than the device of traditional cloud. Based on the CoS, Olympus [24] is proposed by combining
an information fusion and CoS-based decentralized WSAN virtualization model. Application decision
processes are performed partly within physical sensors and partly within the cloud. Fazio M. et al. [25]
proposed a cloud framework called Cloud4sens, which combines both data-centric and device-centric
models to meet different needs of cloud clients. To improve the performance of cloud-based sensor
system, Lyu Y. et al. [26] proposed a periodic-task based high-performance scheduling model with a
cloud-supported caching mechanism for the multisensor gateway. Abdelwahab S. et al. [27] proposed
a global architecture of Cloud of Things, and adopted a distributed sensing resource discovery and
virtualization algorithms to deploy virtual sensor networks on top of a subset of the selected IoT
devices. Zhu C. [28] proposed a multi-method data delivery scheme for green sensor-cloud among
WSNs, cloud and users to achieve low delivery cost and less delivery time. Dinh T. et al. [29] proposed
a location-based interactive model of IoT-cloud for mobile cloud computing applications, and the
model provides sensing services on demand based on interests and locations of mobile users.

A common feature of these sensor-cloud architectures is that they combine some of the hybrid
sensor networks to get a virtual sensor network, while using cloud services to handle the interaction of
the virtual sensor network and end users. This ensures that the underlying hybrid sensor networks are
transparent to the end users. The evaluation of data quality will consume a lot of computing resources
(some evaluation problems require square or higher time overhead, or even be NP-hard problems),
so it is difficult to be taken on the sensor side, and we need to deploy it in the cloud. There are three
benefits. First, we can utilize the computing power of the cloud to quickly complete the evaluation of
data quality. Second, the deploying it in the cloud can make the quality evaluation independent of the
specific architecture of the underlying virtual sensor network. Third, since we will select better sensors
to answer user queries after the evaluation of data quality, we can also save computing resources and
power on the sensor side.

Quality-aware sensing. There are a lot of works to ensure some extra properties when executing
queries in data-driven and sensor-based systems, such as security [30–34] or trustiness [35–37].
Quality-aware query has also been studied in some data-driven systems [38–40]. Lian X. et al. [38]
formalized the RDF data by inconsistent probabilistic RDF graphs, and studied the quality-aware
subgraph matching problem. Yeganeh N. K. et al. [39] provided a data quality-aware system
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architecture which supports data quality profiling and data quality-aware SQL. The sample conditional
data profile generated by the system can be used as a type of quality constraints in our work, but
the work does not focus on how to get a best query result with cost and quality requirements.
Wu H. et al. [40] studied the quality-aware query scheduling in wireless sensor networks. The provided
framework can determine the target quality of each query. The work can be used as the basis for this
study, but it does not consider optimization problems when there are multiple query results, and it
also does not consider how to do quality-aware query in sensor-cloud systems.

3. A General Definition of MQQ Answering Problem

3.1. Preliminaries

First we provide some basic concepts which will be referred in the following sections.
Data sources. Let S = {S1, ..., Sn} be a set of data sources, where Si = {φ1, ..., φmi} is the ith data

source consisting of mi observations. An observation φ = (s, o, v) is a triple consisting of a source s,
an object o and a corresponding value v. For instance, (S2, humidity, 60%) indicates that Source S2

observes that the humidity is 60%. All the observations in a same source is with the same s.
Data quality constraints. Quality function hq is defined to represent data quality constraints.

hq(φ, φ′) = p means that the quality of φ probably be higher than the quality of φ′, and the existence
probability of this constraint is p. For example, hq(φ, φ′) = 0.9 means that the data quality of φ is higher
than φ′ with the probability 0.9. The quality constraints can be considered as the relative data accuracy
or other relative data quality measurements [14–17]. These constraints can be used to evaluate the
quality of the observations and sources. How to find and leverage these constraints will be addressed
in the next section.

Access cost. Each data source Si ∈ S has a access cost cost(Si) ∈ R+, indicating the cost of
querying the data provided by Si. High data quality sometimes means high access cost, thus MQQ is
defined to try to balance the cost and quality.

3.2. Definition of MQQ Answering Problem

Quality-aware query. A quality-aware query Q is a query with data quality requirements. Q is
in the form of Q = (OQ, θ), which is a pair of an object set OQ and a quality threshold θ. OQ consists
of the objects queried by Q. θ is a lower bound, which represents the requirement that the quality of
the returned observations must be no less than θ.

MQQ answering problem. A MQQ aims to find the observations of OQ from sources in S which
satisfying data quality lower bound and with minimized access cost. Formally, the MQQ answering
problem can be defined as follows.

Input: a quality-aware query Q = (OQ, θ),
Output: a observation set Φ which satisfies the following conditions:

1. For each o ∈ OQ, ∃φ ∈ Φ such that φ is the observation of o, that is, Φ contains the observations of
all queried objects,

2. Φ can satisfy the quality lower bound θ,
3. @Φ′ returned by SΦ′ ⊆ S such that Φ′ satisfies condition (1) and (2), and ∑S∈SΦ′

cost(S) <

∑S∈SΦ
cost(S).

As of now, we have not discussed how to calculate the data quality of query results. In the
following sections we will first consider how to calculate the data quality of a set of observations,
and then present the analysis of MQQ answering problem.

4. Measuring Data Quality Based on Quality Constraints

Ideally, each data source corresponds to a certain quality score (sometimes the score is called
absolute quality score), then we can use certain quality scores to directly resolve subsequent
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quality-aware query problems. However, in many cases, we can only get the relative quality rule
of two data items [14–17]. For example, an accuracy rule ψ = ∀t1, t2 ω → ti ≺Ai tj can enable
us to determine the relative accuracy of tuple ti and tj on attribute Ai. A uncertain currency rule
ψ = ∀t1, t2 (ω → ti ≺Ai tj, cer(ψ)) can provide the possibility that observations provided by one
source will become obsolete earlier than another source. The semantic of a quality rule is that if the
condition ω on the left-hand side is satisfied, the inequality of ti[A] and tj[A] on the right-hand side is
established (with a probability or certainty). ti[A] and tj[A] are the values (i.e., observations) of two
tuples on object A, thus the inequality of right-hand side indicate the relative data quality. Base on the
rules, if two tuples satisfy ω, hq(ti[A], tj[A]) = p can be derived from the right-hand side, where ti[A]

and tj[A] correspond to the φ and φ′ in the definition of data quality constraint in Section 3.1.
In practice, quality rules are either discovered from a training data set [41,42], or written by the

domain experts. For example, the owner of the sensor network may provide the knowledge that “model
A is a newest model of the temperature sensor used in my network, which can provide more accurate data than
other models in 90% of cases”. Based on the knowledge, if we have a set of temperature data {26, 27, 28},
and we find that 27 is provided by a sensor of Model A, 26 and 28 is provided by sensors of Model B,
we will know that hq((ModelA, temperature, 27), (ModelB, temperature, 26)) = 0.9.

To deal with the relative quality constraints, we propose a data source quality score based on the
semantic of possible worlds.

4.1. Quality Graph

As defined before, quality constraints are represented by the quality function hq. hq(φ, φ′) = p
indicates that the quality constraint exist with probability p. Thus, uncertain graphs [43,44] can be
used to model the constraints, that is, observations are the nodes in the graph, and relative quality
constraints are the weighted arcs.

Definition 1 (quality graph). Given an object o, the observation set Φo containing all the observations
corresponding to o, and the data quality function corresponding to Φo, the quality graph Go = (V, A) is defined
as follows.

1. Each node vφ ∈ V corresponds to an observation in Φo.
2. For each pair (φ, φ′), if hq(φ, φ′) 6= null, there exists an arc from φ to φ′ in A, the weight of the arc (φ, φ′)

is hq(φ, φ′).

In the definition, hq(φ, φ′) = null means that hq is not defined at (φ, φ′). Figure 2 is the quality
graph of the object “temperature” in Figure 1. For the arcs in Go, the semantic of the arc weight is the
probability of the arc’s existence. For example, if the weight of an arc a is 0.9, the probability of a’s
existence is 0.9, and the probability of non-existence is 1− 0.9 = 0.1. Therefore, possible worlds [45]
can be used to describe different situations of data quality. Figure 3 shows the the four possible
worlds corresponding to Figure 2, and the probabilities of each possible worldc are 0.02, 0.18, 0.08, and
0.72, respectively.

Figure 2. The direct graph of the observations of temperature in Figure 1.
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Figure 3. The possible worlds of a quality graph.

4.2. Data Quality Score

The data quality score of an observation φ of the object oφ is defined as the probability that the
quality of φ is NOT lower than any other observations of oφ. We use Goφ to denote the quality graph of
oφ. In any possible world, the quality of φ is higher than the quality of φ′ if there exists an arc from φ

to φ′. Therefore, the quality score of φ is the probability that the in-degree of vφ equals to 0, where vφ

is the node corresponding to φ.

Definition 2 (quality score of an observation). Let W be the set of all the possible worlds corresponding to
Goφ . dq(φ) = ∑w∈W Pw × f (w) is the quality score of Φ, where f (w) = 1 if node vφ has an in-degree of 0 in
w, otherwise f (w) = 0.

According to the semantics of the arcs in the quality graph, a naive idea to calculate the quality
score of a node is to enumerate all possible worlds and check in which possible worlds the node’s
in-degree is 0. However, if we assume that the existence of the arcs are independent of each other,
the quality score of φ is the product of the non-existence probabilities of all the in-arcs of φ, that is,
dq(φ) = ∏a∈in(vφ) (1− weight(a)), where in(vφ) is the in-arc set of vφ, and weight(a) is the weight of
arc a in Goφ . Furthermore, we assume the observations are independent of each other, the quality of an
observation set Φ can be similarly defined.

Definition 3 (quality score of observation set). Given an observation set Φ, the quality of Φ is the probability
that for each observation φ ∈ Φ, the quality of φ is not lower than any other observations, that is,

dq(Φ) = ∏
φ∈Φ

dq(φ). (1)

Given a quality-aware query Q = (OQ, θ), the query result of Q is a set of observations. Therefore,
the data quality of the query results is the same as the quality of the observation set. More precisely,
condition (2) (i.e., “Φ can satisfy the quality lower bound θ” ) in the definition of MQQ answering
problem can be rewritten by “dq(Φ) ≥ θ”.

5. Methods for Solving MQQ Answering Problem

As is defined in Section 3, if Φ is a valid output of MQQ answering problem, Φ should satisfy
three conditions, i.e., (1) Φ covers all the objects in OQ, (2) dq(Φ) is no less than θ, and (3) the access
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cost of finding Φ is minimized. Please note that if condition (2) is not considered, MQQ answering the
problem is an equal problem of “weighted set cover” which is a NP-hard problem [46].

In this section, we first provide a search and prune method to accurately solve the MQQ answering
problem, then provide an approximate method to try to get a feasible (but not necessarily optimal)
solution quickly.

5.1. The Search and Prune Method

The main idea is that we first find the observation set with highest quality score, then we
continually replace one observation in current set by an unused observation of the same object with a
lower or equal quality score, to see if the new set after replacement can satisfy the quality threshold at
a lower cost. The replacement step is repeated until the quality threshold cannot be satisfied or there is
no less-cost solution.

Figure 4 shows the search tree of this process. Each node in the tree represents an observation set,
and each child corresponds to a substitution of its parent. Since we replace exactly one observation
each time, for each node Φ = {φ1, ..., φk} in the search tree, if Φ′ = {φ′1, ..., φ′k} is the child of Φ, Φ′ has
exactly one observation different from Φ. That is, ∃j s.t. φj 6= φ′j, and φi is the same as φ′i for any other
i 6= j. Moreover, we have dq(φj) ≥ dq(φ′j).

Figure 4. The main idea of the search and prune method for MQQ answering.

To ensure that the search can finally enumerate all possible solutions, we sort all the observations
associated with the same object based on their quality scores. The current observation is hereby
replaced by the next observation in the sorted sequence to generate a new observation set in the search
tree. For each node Φ in the search tree, Φ may have 0 to |OQ| child nodes. The total number of
nodes in the full search tree is exponential, thus we need an effective pruning strategy to speed up
the process.

Prune strategy. Since we always replace one observation by another observation with an equal or
lower quality score, the quality score of a parent node is always not lower than its children. Theorem 1
formalizes this conclusion.

Theorem 1. For any node Φ and its child Φ′ in the search tree, dq(Φ) ≥ dq(Φ′).

Proof. Let Φ = {φ1, ..., φk} and Φ′ = {φ′1, ..., φ′k}. As we have discussed before, ∃j s.t. φj 6= φ′j,
dq(φj) ≥ dq(φ′j), and for any i 6= j, φi is the same as φ′i . According to the definition of quality score
of observation set, dq(Φ) = dq(φj)×∏i 6=j(dq(φi)), and dq(Φ′) = dq(φ′j)×∏i 6=j(dq(φ′i)). Therefore,
dq(Φ) ≥ dq(Φ′).
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For any node Φ and its child Φ′, dq(Φ′) ≤ θ if dq(Φ) ≤ θ. Thus, if the quality threshold θ cannot
be satisfied by Φ, it also cannot be satisfied by any descendant node of Φ. Thus the subtree rooted at Φ
can be pruned off.

Let OQ be the object set queried by Q, the time complexity of the worst case is still exponential, i.e.,
O(|OQ||S|). It is still unbearable in the condition of high efficiency requirement. Therefore, we propose
an approximate search strategy which can quickly provide a feasible solution when the user is willing
to relax the requirements for the cost.

5.2. Approximate Search

When a specified data source is asked to return multiple observations, the access cost only needs
to be paid once. Thus, a replacement that adds data sources necessarily reduces the quality and
increases the cost at the same time. For node Φ and its child Φ′, we have Theorem 2, where SΦ and
SΦ′ are the source sets returning Φ and Φ′ respectively, cost(Φ) = ∑S∈SΦ

cost(S) is the cost of Φ.

Theorem 2. cost(Φ) ≤ cost(Φ′) and dq(Φ) ≥ dq(Φ′) if S 6∈ SΦ and SΦ′ = SΦ ∪ {S}.

Proof. According to Theorem 1, dq(Φ) ≥ dq(Φ′). Since SΦ′ = SΦ ∪ {S}, cost(Φ′) = ∑S′∈S cost(S′) +
cost(S) = cost(Φ) + cost(S), we have cost(Φ) ≤ cost(Φ′).

According to Theorem 2, an idea to quickly get a feasible solution is to drop the substitution that
add new data sources. That is, for any node Φ, only the observations returned by SΦ are used to do the
replacement. More precisely, for any node Φ and its child Φ′, we stipulate that a replacement should
ensure either SΦ′ = SΦ or SΦ′ = SΦ\{S}, where S ∈ SΦ. The search is terminated when the quality
threshold cannot be satisfied or there is no less-cost solution.

It is easy to observe that this search strategy only considers the subset of the data sources which
provide the observations with the best quality score. The solution returned by this strategy necessarily
satisfies the conditions (1) and (2) in the definition of MQQ answering problem, but does not necessarily
satisfy the condition (3) (i.e., the cost may not be the lowest).

5.3. Discussions

Please note that the above search methods do not have much restrictions on the definition of data
quality score. The only restriction is that the quality score should not reduce after replacement. More
concretely, our data quality definition for the observation set is in a multiplicative form, but other
forms (e.g., average or maximum) of data quality metrics which guarantee the quality score not reduce
after replacement, are applicable to the search strategy in this section. If there are any other reasonable
quality metrics which may not based on the semantic of possible worlds but can ensure that the quality
score do not reduce after replacement, our search method can also be applied to these quality metrics
with a few modifications.

When implementing the above two strategies, the efficiency can be further optimized in
two aspects.

1. For the two search strategies, it is very important to efficiently get the next data source to do
the replacement. To this end, |O| ordered lists can be maintained, and the ith ordered list stores
the high-to-low ordering of the sources that can provide object oi. A element of the ordered list
is a quad of the form (S, φ, dq(φ), next), where next is a pointer to the next quad in the ordered
list. Thus, during the search, we can use dq(φ) to calculate the quality score of the current search
tree node, and use next to get the next data source that can be used to do the replacement in
constant time.

2. Different branches of the search tree may have the same node. In implementation, we can first
check to see if the current node already has a duplicate that has been processed. The node is
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discarded if the answer is yes. This operation can avoid repeating process and can save a lot
of time.

6. A Method for Selecting the Quality Threshold

When writing a MQQ Q = (OQ, θ), if the end user does not have much knowledge about the data,
it might be difficult to set a proper threshold θ. Therefore, we propose a method that can automatically
determine the reasonability of a threshold, and can help the user to find a proper threshold.

6.1. Determining the Reasonability of a Threshold

There are two cases that the quality threshold is not set properly.

1. The quality threshold is set too high such that no observation set can satisfy the threshold.
2. The quality threshold is set too low, which is likely to cause large search space, and to lead to

unendurable query latency.

Therefore, determining the reasonability of a threshold can be divided into two steps.

6.1.1. Deal with High Threshold

First we need to determine whether the threshold is too high. A quality threshold θ is deemed to
be too high if we cannot find any data source which can provide the queried observations and meet
the quality threshold. This is a trivial problem since we just need to check whether the root node of the
search tree can satisfy θ. As we have discussed in Section 5, the root node corresponds to the highest
quality score. Therefore, all the nodes in the search tree cannot satisfy θ if the root node fail to satisfy θ.
If the time to construct a search tree node can be considered as constant, then the time complexity to
determine whether the threshold value is too high is O(1).

6.1.2. Deal with Low Threshold

If the threshold is not too high, we need to determine whether it is too low. Since a low threshold
will make the query to be processed slowly, the user should be reminded to raise the threshold in this
case. We found that when using accurate search, the search time may rise by more than twofold when
the threshold is decreased by 0.01 in some cases.

To determine whether the threshold is too low is much difficult. The first difficulty is that we
cannot precisely define what is “too low”. To deal with this difficulty, we can use historical data to
estimate the query latency and let the user to determine whether the threshold is too low. The second
difficulty is that it is hard to precisely know the query latency without any prior knowledge since the
data needed by different queries are also different. However, it is easy to observe that the query delay
is mainly affected by the size of search space, thus the estimate of query latency can be converted to
the estimate of the search space size.

Estimate of the search space size. We provide a method to estimate the size of search space based
on the idea of estimating the layer number of the tree using depth-first search. The process is as follows.
We expand the search tree from top to bottom in the way similar to Section 5, but the difference is that
we do not generate a full search tree. We only do the replacement in each layer once, that is, generate
only one new node in each layer. The process of the expanding stops if the new node cannot meet
the quality threshold requirement. The height of the tree at the time point that the process stopped is
the estimate of the search tree. For example, if we only generate the left most nodes in the search tree
shown by Figure 4, the height of the tree is estimated to be 4 because the node generation of the search
tree stops at the fourth layer. Let h denote the real height of the search tree, and ĥ denote the estimated
height of search tree, then the search space size (i.e., the upper bound of the total number of nodes of

the search tree) can be estimated to be |OQ|ĥ−1 since each node has at most |OQ| children.
A correspondence table of search space size and time overhead can be maintained based on the

historical data. Alternatively, other models of search space size and query latency also can be built



Sensors 2018, 18, 4486 10 of 15

based on some machine learning methods. Based on the models, the estimate of the search space size
can be converted to the estimate of the query latency.

However, the accuracy of the estimate is determined by the accuracy of the estimate of the height
of the search tree, and this estimate has a lot to do with the position of the nodes generated for each
layer. For instance, in Figure 4, if we generate the rightmost (rather than the leftmost) node in each
layer, the estimate of the height of the search tree is at least 5.

Since the accurate search needs to traverse all branches, it is not difficult to observe that we only
generate a path in the search tree when doing the estimation. The real height h is the length of the
longest path in the search tree, and the estimate of the height must be no more than the real height.
Formally, we have

ĥ ≤ h. (2)

Based on this conclusion, we can infer that the larger the estimate, the closer it is to the real height.
To find a better estimate of the height, we propose two generation strategies for nodes, which are
applicable to different scenarios.

Strategy 1 (FixedPos). This strategy generates the node in a fixed position each time. Concretely,
a location k is selected before the estimation, and the kth data source is replaced to obtain a new child
node each time. This strategy applies to situations where pruning is not considered and there is some
domain knowledge of the query. For example, when we know in advance that “the kth object in
the query has the most replaceable data sources”, searching down at position k is more likely (not
necessarily) to get a higher search tree than other positions. ĥ tends to be closer to h.

Strategy 2 (RandPos). This strategy generates the node in a random position each time. When
pruning is considered or there is no domain knowledge of the query, if we do not perform an accurate
search, we cannot know how to use depth-first search can get the most accurate estimate. Therefore,
we can randomly selecte a ki (0 < ki ≤ |OQ|) for layer i, and the kith data source is replaced to obtain a
new child node in layer i + 1. If time permits, we can also perform multiple random strategies and
pick the largest (and therefore the most accurate) estimate.

After ĥ is obtained, the query latency can be estimated based on the table or model mentioned
above. Then, the estimated query latency can be reported to the user, and the user can determine
whether the latency is acceptable. If not acceptable, the threshold is marked as too low.

6.2. Finding a Reasonable Threshold

If the threshold is considered to be unreasonable, we can give some suggestions to help the user
correct the threshold.

1. If the threshold is considered to be too high, we only need to return the quality score of the root
node of the search tree and tell the user that there is no query result higher than this score.

2. If the threshold is considered to be too low, we need to return a set of candidates to guide the
user in adjusting the threshold. As stated in Theorem 1, when the search tree is expanded to the
lower layer, dq is not increased (i.e., the value of dq only decreases or keeps unchanged). Therefore,
in the estimation process, the layer where dq changes can be recorded and converted into a query
latency. That is, we ignore those layers whose dq is unchanged and record the layers whose dq
decreases. The historical data can be used to learn the possible query latency regarding the number
of layers. The recorded can be given to the user as a candidate set to help the user to adjust the
threshold setting.

7. Experimental Results

We conduct the experiments on a real-life data set. The codes are written in Python and run
on a machine with i5 2.50 GHz Intel CPU and 8 GB of RAM. The dataset consists of air quality data
generated by a network of 56 sources located in Krakow, Poland. The dataset is from https://airly.eu/.
The available object set is {temperature, humidity, pressure, pm1, pm25, pm10}. Since the data set does

https://airly.eu/
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not provide the cost of data sources, we random assign each source a cost. In practical applications,
the cost can be the bandwidth, power consumption, or the money of getting data, etc. We first
compared the two different search methods (i.e., the accurate search and the approximate search).
After that, we studied the performance of the two strategies of search space size estimation.

7.1. Performance of the Search Methods

7.1.1. Varying |S|

A parameter that has a significant impact on efficiency and performance is the number of data
sources, i.e., |S|. Figure 5 shows the experimental results of runtime, cost and quality under different
|S|. Here we fixed |OQ| to 4 and the quality threshold to 0.95.
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Figure 5. Experimental results when varying |S|.

Runtime. We compared the runtime of accurate search and approximate search. The worst case
of accurate search is O(|OQ||S|). This theoretical analysis is consistent with the experimental results.
The efficiency of approximate search is much higher than that of accurate search. When the number
of data sources is 10, the time cost of the two is similar, but as the number of data sources increases,
the time cost of the accurate search increases exponentially, while the time cost of the approximate
search is basically not change much because it controls the choice of the data sources.

Cost. We compared the cost of the result of the query returned by the accurate search and the
approximate search. As the number of available data sources increases, the costs of the results of the
two methods are both declining. This is because that the more data sources we can access, the more
likely we are tantamount to discover data sources with high-quality and low-cost. Overall, the cost
of the accurate search results is substantially lower than that of the approximate search, because the
accurate search returns the optimal solution.

Quality. The quality of the optimal solution returned by accurate search is usually closer to
the quality threshold and therefore lower than the quality of the result of the approximate search.
Please note that when the data source is 10, there is no result that satisfies the quality threshold.
To comprehensively compare the two methods, when implementing the two methods, we require that
both methods return the highest quality result in this case. At this time, the results of the two methods
are the same, and the quality score is 0.945.

7.1.2. Varying |OQ|

When varying |OQ|, the relative merits of the two methods in different aspects are the same as the
situation of changing |S|, but the trends of runtime, cost and quality are different. We fixed |S| to 56
(i.e., we use all the available data sources) and the quality threshold to 0.95. We change |OQ| from
1 to 6. Figure 6 shows the experimental results.
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Figure 6. Experimental results when varying |OQ|.

Runtime. Since the runtime of the accurate search varies greatly, the vertical axis of Figure 6a
uses a logarithmic scale. As can be seen from the results that the time cost of accurate search is much
higher than the approximate search. As |OQ| increases, the runtime increases first and then decreases.
This is because when |OQ| is large enough, the result that satisfies the quality threshold is gradually
reduced (the quality score is the probability multiplication, thus more observations will make the
probability smaller). Based on the pruning strategy of Theorem 1, the search space is also gradually
reduced. When |OQ| = 3 and 4, since the combination of sources and values that satisfy the quality
threshold will explode, the number of nodes in the search tree generated by accurate search also
increases, resulting in a sharp increase in runtime. Meanwhile, since the sources that can be used for
the extension of the search tree are pre-constrained in approximate search, the number of search tree
nodes increases slower, and the runtime is considerably less than the accurate search.

Cost. As |OQ| increases, the cost increases, because in order to find the records of all objects in
OQ, it is often necessary to access more data sources. Overall, the cost of accurate search is lower than
the cost of approximate search, but when |OQ| = 6, the two are the same, because no result meets the
quality threshold at this time, both methods return the result with highest quality score.

Quallity. As |OQ| increases, the quality of the results decreases. Accurate search sacrifices quality
to reduce costs while ensuring that the quality threshold is satisfied, so sometimes the resulting quality
scores are lower than the approximate search. For example, in the case of |OQ| = 3 or |OQ| = 4,
accurate search can find the solution that with lowest cost, but the quality is also lower than the
solution returned by approximate search.

7.2. Evaluation of Search Space Size Estimation

The most important step in adjusting the inappropriate quality threshold is to estimate the size
of the search space and the height of the search tree. We have experimented with the two estimation
strategies (i.e., FixedPos and RandPos) proposed in Section 6.1. The experimental results are shown in
Figure 7. In the experiments, |S| and |OQ| are set to be the maximum values (i.e., 56 and 6 respectively),
and the quality threshold θ varies from 0.5 to 1.

Efficiency. We first compare the runtime of the two strategies. The time cost of RandPos is overall
slightly higher than FixedPos. When the threshold changes, the time cost of RandPos and FixedPos
decreases(that is, the efficiency rises). This is explained by the fact that the higher the threshold, the
earlier the search process stops. At the same time, we found that the time cost of both strategies is
much lower than the time cost of accurate search and approximate search. Even if the quality threshold
is set very low, the two strategies can complete the entire estimation process within 30 ms. With the
same settings, accurate search and approximate search may take tens of minutes to return results.
Therefore, the time cost for estimating the size of the search space is negligible compared to the time
the query is executed. In other words, if we can perform the estimation before the query starts, we can
assume that this will add little extra time cost.

Effectiveness. We compare the estimated height and true height of the search tree. The experimental
results are shown in Figure 7b, where ratio of height is defined as ĥ/h. Since ĥ ≤ h, the ratio of height
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is in [0, 1]. This value indicates the accuracy of the estimate. It can be observed in the experimental
results that the performance of RandPos is relatively stable compared to FixedPos. When the threshold
changes, the performance of RandPos is stable (basically kept above 0.8), while FixedPos may fluctuate
depending on the fixed position to be replaced. Concretely, some of the branches in the search tree
may be pruned very early. For example, some objects may have fewer candidate values, then FixedPos
may have no value to replace very early on these objects. Or, some attributes fail to satisfy the quality
threshold after a few steps of replacement, so the corresponding branches will be pruned early. When
the threshold is set to 0.9, the situation that the replacement of a single location cannot satisfy the
quality threshold is very easy to occur, so the estimated accuracy is not stable enough. When the
threshold is 1, the search tree height is 1 because there is no query result can meet the threshold, so the
height ratio of FixedPos and RandPos is 1, that is, both of the two strategies can accurately estimate
the height of the search tree.
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Figure 7. Experimental results of search space size estimation.

In summary, the time overhead of the two strategies is much lower than the execution of the
search, and the estimated search tree height is basically close to the real situation. Therefore, if we
can perform the estimation operation before the query starts, it can effectively avoid the unreasonable
threshold setting while adding little time overhead.

8. Conclusions and Future Work

This paper studies the problem of answering MQQ query on multi-sources in sensor-cloud
systems. First, a general definition of MQQ answering problem in the multi-source environment is
given. After that, the quality measurement is provided based on relative quality constraints, and two
methods for solving the MQQ answering problem are proposed. To deal with the case that it is
difficult to set the reasonable quality threshold, a method to automatically check the resonablility of
the threshold is proposed.

In future work, we will study how to get more types of quality scores of different sources by the
methods of data mining or machine learning, and will explore other forms of quality-preserving queries.
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