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Abstract: Microelectromechanical System (MEMS) Inertial Measurement Unit (IMU) is popular in the
community for constructing a navigation system, due to its small size and low power consumption.
However, limited by the manufacturing technology, MEMS IMU experiences more complicated
noises and errors. Thus, noise modeling and suppression is important for improving accuracy
of the navigation system based on MEMS IMU. Motivated by this problem, in this paper, a deep
learning method was introduced to MEMS gyroscope de-noising. Specifically, a recently popular
Recurrent Neural Networks (RNN) variant Simple Recurrent Unit (SRU-RNN) was employed in
MEMS gyroscope raw signals de-noising. A MEMS IMU MSI3200 from MT Microsystem Company
was employed in the experiments for evaluating the proposed method. Following two problems
were furtherly discussed and investigated: (1) the employed SRU with different training data
length were compared to explore whether there was trade-off between the training data length
and prediction performance; (2) Allan Variance was the most popular MEMS gyroscope analyzing
method, and five basic parameters were employed to describe the performance of different grade
MEMS gyroscope; among them, quantization noise, angle random walk, and bias instability were
the major factors influencing the MEMS gyroscope accuracy, the compensation results of the three
parameters for gyroscope were presented and compared. The results supported the following
conclusions: (1) considering the computation brought from training dataset, the values of 500, 3000,
and 3000 were individually sufficient for the three-axis gyroscopes to obtain a reliable and stable
prediction performance; (2) among the parameters, the quantization noise, angle random walk,
and bias instability performed 0.6%, 6.8%, and 12.5% improvement for X-axis gyroscope, 60.5%,
17.3%, and 34.1% improvement for Y-axis gyroscope, 11.3%, 22.7%, and 35.7% improvement for Z-axis
gyroscope, and the corresponding attitude errors decreased by 19.2%, 82.1%, and 69.4%. The results
surely demonstrated the effectiveness of the employed SRU in this application.
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1. Introduction

Recently, Positioning, Navigation and Timing (PNT) information is essential for many applications,
for example, smart mobile devices. Global Navigation Satellite System (GNSS) is the most widely
used PNT provider, since it is easy to access the satellites signals all over the world [1–3]. A cheap
receiver in a chip manner is sufficient for many applications, for instance, vehicle, smart phone,
or the shared bicycle [1–6]. Narrowly speaking, GNSS refers to the United States of America (USA)
Global Positioning System (GPS), European Galileo satellite navigation system, China BeiDou satellite
navigation system (constructing), and Russia GLONASS navigation system [4–6], they aim to provide
PNT service covering the earth for both civil and military users; broadly speaking, other regional
satellite navigation systems are also included, for instance, Japan Quasi-Zenith Satellite System (QZSS)
and Indian Regional Navigation Satellite System (IRNSS) [4–6]. With more and more satellites available
in orbit broadcasting navigation signals, the user is able to make full use of more satellites signals in
navigation solutions determination, which efficiently improves the reliability and continuity of the
navigation solutions [4–6]. However, under some signal challenging or degraded environments,
for instance, urban canyon and dense forests, the satellites signals are weak or even blocked,
which makes it hard to output ideal or precise navigation solutions for the GNSS standalone navigation
system [5–8]. Researchers have been devoted to overcome this problem and improve the performance
under these signals degrading conditions [7–10]. Basically, there are two popular approaches in the
navigation community. The first approach is to develop highly sensitive GNSS receiver for weak
signals tracking, specifically high sensitive carrier tracking loop [11]. Abundant results have been
published on this topic, including Vector Tracking Loop (VTL), Multiple Vector Tracking Loop (MVTL),
and some other advanced carrier tracking loops design [11–18]. However, it is not sufficient for signal
outage, no navigation solutions will be output, while GNSS signals are temporarily blocked by the
buildings or something else [19,20].

The second approach is to integrate GNSS with other sensors, for instance, the Inertial Navigation
System (INS), Visual navigation system, or LiDAR navigation system [21–23]. GNSS/INS integration
system is the most popular for providing navigation solutions, including position, velocity, and attitude
information. Inertial Navigation System (INS) is a self-contained navigation system which generates
continuous navigation solutions by processing the measurements from Inertial Measurement Unit
(IMU). IMU usually contains three orthogonal gyroscope and three orthogonal accelerometers, in which
the gyroscope measures the angle rate and the accelerometer collects the acceleration motion [24–26].
When compared with GNSS, the navigation solutions updating frequency is higher, while the INS
is usually 400 Hz or 200 Hz, and the updating frequency of the GNSS solutions is commonly
1–10 Hz [21–25]. However, the GNSS is capable of providing precise location with well accessible
signals, while the errors of the INS diverges over time, due to the various unavoidable noises contained
in the raw measurements or signals of the employed gyroscopes and accelerometers. The advantage of
the GNSS/INS integration navigation system is that the INS can still provide the navigation solutions,
while the GNSS fails to generate navigation solutions. Therefore, it is of great value to improve the
INS accuracy during GNSS signal outage.

Conventional fiber optic or laser gyroscope is of large size with high cost and it is not proper
or suitable for certain applications, especially handheld or portable devices. Microelectromechanical
systems (MEMS) IMU is increasingly popular recently, which is manufactured using MEMS technology.
MEMS IMU has much smaller size and lower cost, and it has been widely used in mobile or handheld
devices, vehicle navigation and weapons guidance [26–35]. However, compared with the highly
accurate laser or fiber optic IMU, MEMS IMU usually experiences more complicated noises [26–32].
Scholars are always devoted to model the noises and compensate the divergence errors to improve the
accuracy of MEMS IMU based navigation system, which can broaden the MEMS IMU applications
furtherly [27–35]. As illustrated in previous papers, the MEMS IMU noise modelling or analysis
method can be classified to the statistical method and Artificial Intelligence (AI) method [33–36].
The statistical methods include Auto Regressive Moving Average (ARMA) and Allan Variance (AV),
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especially the Allan Method has been widely used to analyze and describe the composition of the
gyroscope or the accelerometer noise contained in the output raw signals [33–36]. Generally, the five
basic description parameters are termed as: quantization noise, angle random walk, bias instability,
rate random walk, and rate ramp [33–36]. The other method is the Artificial Intelligence, which refers
to Support Vector Machine (SVM) and Neural Networks (NN). SVM and various Neural Networks are
employed in MEMS IMU de-noising and they have been evaluated by many researchers [33–36].

For both statistical or AI methods, gyroscope or accelerometer raw signals are treated as time series,
and a model is described or learned to compensate the errors caused by the noises. Performance of
the statistical method is limited by the fixed model parameters, and the traditional AI method has
restricted learning capacity which is determined by the structure and working principles [26–36].
Recently, Deep Learning (DL) gains a boom in various applications, which has a better learning
capacity than conventional SVM or neural networks [37,38]. Deep Recurrent Neural Networks (RNN)
is specifically for processing time series data and has been demonstrated effectively in this kind of
application [38–40]. In our previous paper, a Long Short Term Memory Unit (LSTM) (a variant of RNN)
was evaluated in MEMS gyroscope de-noising, and experiments included a comparison of LSTM-RNN
with ARMA, single-layer LSTM, and multi-layer LSTM [38]. Limitations of the proposed algorithms
exposed in the paper were listed as following:

(1) Training data length is fixed and not long enough, it might be meaningful to explore the influence
of the training data length on the deep RNN performance; and,

(2) Only Standard Deviation of the de-noised signals were presented and compared, but no detailed
or further analysis of compensation, which could be a support of selecting proper neural networks
for each MEMS IMU.

In this paper, an advanced variant of RNN Simple Recurrent Unit (SRU) was investigated in
MEMS IMU based navigation system for accuracy improvement. When compared with LSTM, SRU
has less simple structure with faster training speed, specifically; the SRU has less parameter that need
to be determined during training procedure [39,40]. We think the extensions or contributions of this
paper are as follows:

(1) Influence of training dataset length on the SRU-RNN prediction were investigated and explored,
it might be meaningful for reducing computation load;

(2) Compensation degrees of the major noise parameters describing MEMS IMU performance were
presented and compared, which might support the selection of proper or suitable RNN variants
for MEMS IMU de-noising;

(3) SRU was firstly employed in this application; the results could be compared with LSTM presented
in our previous paper for selecting proper RNN in MEMS IMU de-noising.

Reminder of this paper is organized as: (1) the second section gives the basic mathematical
equations and the information flow of the popular SRU-RNN; (2) in the next section, the experiments
results and comparisons are presented to support the conclusions; (3) final sections include the
conclusion, discussion, and reference.

2. Method

In this section, the basic structure and mathematical equations of the Simple Recurrent Unit
Recurrent Neural Networks (SRU-RNN) are introduced and described. This section is divided
into two parts: (1) the architecture and mathematical equations are listed in Section 2.1; (2) the
implementation and the deep SRU-RNN working flow are given in detail in Section 2.2.

2.1. Simple Recurrent Unit

Simple Recurrent Unit (SRU) is the recently proposed variant of RNN, and the SRU has a more
concise structure for accelerating the training procedure [39]. When compared with other RNN variants,
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for instance, Long Short Term Unit (LSTM) and Grated Recurrent Unit (GRU), the SRU has faster training
speed that is brought by its unique structure [39,40]. Figure 1 shows the basic architecture of the employed
SRU, and it is constructed based on the “gate” structure, which also is composed of LSTM and GRU.
In a single layer SRU illustrated as Figure 1, it is usually has two essential components, which are termed
as “light recurrence” and “high network”. The light recurrence component reads the input vector xt and
calculates the sequence of the state ct. This module captures the sequential information [39,40]. The light
recurrent procedure can be summarized as the following Equations (1)–(3):

x̃t = Wxt (1)

ft = σ
(

W f xt + b f

)
(2)

ct = ft � ct−1 + (1− ft)� (Wxt) (3)

Where, W f , W, and b f are the parameter matrices, which will be determined through the training
process. σ(·) is a sigmoid function and the ft is output of this function ranging from 0 to 1. � is the
point-wise multiplication operation.

Figure 1. Basic structure of the Simple Recurrent Unit (SRU) Working flow.

As illustrated in Figure 1, the ft controls the information flow and the current state ct is determined
by adaptively averaging the previous state ct−1 and the current input vector according to ft. Especially,
the SRU is different in using the previous state ct−1. Traditionally, each dimension of ct and ft depends
on all entries of ct−1, and the computation has to wait until ct−1 is fully computed. In the SRU,
a point-wise multiplication � is employed to hence the parallelization (seen as Equations (1) and (2)).

The second component of SRU is the highway network, which is employed to facilitate
gradient-based training of deep networks [39,40]. A reset ‘gate’ rt is used to combine the input
vector xt and the current state ct from the light recurrence [39,40]. The highway network equations are
as following:

rt = σ(Wtxt + br) (4)

ht = rt � g(ct) + (1− rt)� xt (5)

Where, Wr and br are also the parameters learned by the training procedure. Especially, (1− rt)�
xt is a skip connection allowing the gradient to directly propagate to the previous layer, which has
shown to improve the scalability [39,40].
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2.2. Deep SRU-RNN Implementation

Figure 1 is just a single-layer SRU unit and Figure 2 shows the information flow of the two SRU
units. The cell state is conveyed to the next SRU unit and the next SRU combines it with the input
vector to decide the outputs. Basically, a sequence SRU decides the output together, and the structure
is shown in Figure 3. A large dataset is necessary for training the deep SRU-RNN, and the parameters
in each SRU (shown in Equations (1)–(5)) are determined or learned during the training procedure.

Figure 2. Working flow of two Simple Recurrent Unit–Recurrent Neural Networks.

Figure 3. Basic structure of Deep Simple Recurrent Unit–Recurrent Neural Networks Training.

3. Experiments

With the aim of evaluating and verifying the proposed method, a MEMS IMU
MSI3200manufactured by MT Microsystems Company (Hebei, China) is employed in the following
experiments [41]. Since attitude errors play an important role in position accuracy, only gyroscope
de-noising results are presented and analyzed in this paper. A dataset with approximately 10 min time
length is collected and the data collecting set up is shown in Figure 4. Several devices are employed in
the operation including the MEMS IMU, a laptop, power supply and some cables. The MEMS IMU
works at 12 volts and a laptop is employed to store the data. The IMU is composed of three-orthogonal
gyroscopes and three-orthogonal accelerometers, and Table 1 lists the parameters of the employed
MEMS IMU in detail. During the raw signal collecting, the MEMS IMU is placed on the table statically
and the sampling frequency is set to 400 Hz here. The gyroscope output unit is degree/s and the
accelerometer output unit is g (1 g = 9.8 m/s2). Furtherly, according to the IMU setting on table,
specifically, the X-axis gyroscope measures the pitch angle, the Y-axis measures the roll angle, and the
Z-axis measures the yaw angle.
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Table 1. Specifications of MSI3200 IMU.

MEMS IMU

Gyroscope

Range ±300◦/s

Bias instability (1σ) ≤10◦/h
Bias instability (Allan) ≤2◦/h
Angle random walk ≤0.15◦/

√
h

Accelerometer
range ±15 g

bias instability (1σ) 0.5 mg
bias repeatability (Allan) 0.5 mg

Power consumption 1.5 W
Weight 250 g

Size 70 mm× 54 mm× 39 mm
Sampling rate 400 Hz

Figure 4. Gyroscope and Accelerometer raw signals collecting.

3.1. Traing Data Length Analysis

In this sub-section, the influence of the training length on the SRU-RNN is discussed.
Parameters of the employed SRU-RNN are listed in Table 2. Specifically, the training epoch is fixed
as 100, while the length of the input data varies. The structure of the training data, input data length
termed as step and testing data are explained in Figure 5. The yellow part of the line represents the
training data, the middle blue part is the “step”, and the testing data includes the blue and red parts
of the line. Since longer training data means more computation, and thus there might be a trade-off
between training data length and prediction accuracy. Table 2 also lists the other specifications of the
SRU-RNN employed. The learning rate is set to 0.01, and the hidden unit amount is 1. Moreover,
the input data size or step is set 10.

Figure 5. Data structure.

Table 2. Specifications of Simple Recurrent Unit Recurrent Neural Networks (SRU-RNN).

Batch size 128
Training epoch 100
Learning rate 0.01

Hidden unit amount 1
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Table 3 lists the prediction results of different training data length for the three-axis gyroscope,
while the input data size and testing data size are fixed. The training data size varies from 200 to
10,000. For the X-axis gyroscope, the standard deviation (STD) values varying from 0.054 to 0.062 with
the software running time varies from 57.8 s to 77.97 s. Figure 6 shows the SRU-RNN training loss
comparison between data length of 200 and 500. The blue line represents the SRU training loss,
with 200 training data length. The red line represents the SRU-RNN training loss with 500 training data
length. From the Figure 6, it can be seen that SRU with a training date length of 200 does not converge
within the set epoch of 100. However, with the 500 input data length for training, the SRU-RNN is able
to converge within 100 training epoch.

Figure 6. X-axis gyroscope training loss comparison.

In addition, the Y-axis and Z-axis gyroscopes results are also listed in Table 3. Similarly,
the SRU-RNN is unable to converge when the data length is not sufficient with the 100 training
epoch. Figures 7 and 8 show the training loss comparisons. It can be seen that SRU-RNN with
3000 training data length converge, while the SRU-RNN with 1000 training data length is unable
to converge within the set training epoch values. In theory, more training data will lead to slower
convergence speed. However, from the results, the SRU-RNN with more training data converges
faster. SRU-RNN is a deep recurrent neural network depending on the memory. Under this condition,
while the training data is of small length, it is not sufficient for this SRU-RNN training and learning
of the model. Thus, the SRU-RNN is able to converge with sufficient training data length. In aspects
of the standard deviation (STD) of the de-noised testing data, the STD values keeps almost the same,
which might demonstrate that the SRU-RNN has been well trained. Therefore, for the X-axis gyroscope
(Figure 6), 500 is sufficient, however, for Y-axis and Z-axis gyroscopes (Figures 7 and 8), 3000 is
sufficient. The difference between the three gyroscopes might be caused by the MEMS manufacturing
technology, which leads to the difference in the three-axis gyroscopes signals characteristics.

Table 3. Training results of the three-axis gyroscope.

X Y Z

Training
Data Length

STD
(Degree/s)

Time
(Second)

STD
(Degree/s)

Time
(Second)

STD
(Degree/s)

Time
(Second)

10,000 0.062 77.0 0.057 121.5 0.025 86.9
3000 0.054 61.3 0.054 99.0 0.023 82.3
1000 0.055 57.8 / / / /
500 0.055 60.7 / / / /
200 / 57.7 / / / /
/ 0.073 / 0.082 / 0.045 /
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Figure 7. Y-axis gyroscope training loss comparison.

Figure 8. Z-axis gyroscope training loss comparison.

3.2. Different Parameters Compensation Analysis

In Section 3.1, the influence of the training data length on the training or prediction results were
analyzed. As aforementioned in the introduction section, quantization noise, angle random walk,
and bias instability are the major index for describing the MEMS IMU performance. Thus, Figures 9–11
shows the comparison of the de-noised and raw signals, Figures 12–14 presented the Allan Variance
comparison results, and Tables 4–6 show the comparison of the parameters between raw signals and
de-noised signals. For the X-gyroscope, the quantization noise has a minor improvement, while the
angle random walk and bias instability have a 6.8% and 12.5% improvement, respectively. The Y-axis
gyroscope has a 60.5% improvement in quantization parameters and 17.3% and 34.1% in angle random
work and bias instability, respectively. The rest Z-axis gyroscope has an improvement of 11.3%, 22.7%,
and 35.7% in parameters of quantization noise, angle random walk, and bias instability individually.
The attitude errors are listed in Table 7, the roll, pitch, and yaw angles errors decreased by 19.2%, 82.1%,
and 69.4% individually. In this experiment, the X-axis gyroscope measured the pitch angle, the Y-axis
gyroscope measures the roll angle, and the Z-axis gyroscope measures the yaw angles. These attitude
angles were calculated based on the quaternion algorithms, and more detailed could be found in the
reference [42]. Since the IMU was placed statically in a table, the initial values were all set to zero.

As aforementioned in Section 3, the X-axis gyroscope measures the pitch angle, the Y-axis measures
the roll angle, and the Z-axis measures the yaw angle. Figures 15–17 shows the attitude errors. The roll
angle performs the least decrease, which is reflected from the corresponding X-axis gyroscope analysis.
For the raw and pitch angles, they have an improvement of 82.1% and 69.4% with the 500 s time length
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data. The difference between raw angle and pitch angle is caused by that the Y-axis gyroscope has
smaller quantization noise. The Y-axis and Z-axis gyroscope have similar angle random walk and bias
instability (listed in Tables 5 and 6). However, the Y-axis has a 60.5% decrease in quantization noise,
while the Z-axis gyroscope just has 11.3% improvement.

Table 4. Parameters of X-axis gyroscope results.

X

Raw SRU-RNN Percentage

quantization noise (deg/
√

h) 0.15 0.15 0.6%
Angle random walk (deg/

√
h) 0.44 0.41 6.8%

Bias instability (deg/h) 2.48 2.17 12.5%

Figure 9. De-noised and raw signals comparison for X-axis gyroscope.

Figure 10. De-noised and raw signals comparison for Y-axis gyroscope.

Table 5. Parameters of Y-axis gyroscope results.

Y

Raw SRU-RNN Percentage

quantization noise (deg/
√

h) 1.0 0.40 60.5%
Angle random walk (deg/

√
h) 0.23 0.19 17.3%

Bias instability (deg/h) 1.29 0.85 34.1%
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Figure 11. De-noised and raw signals comparison for Z-axis gyroscope.

Figure 12. Allan variance comparison between de-noised and raw signals for X-axis gyroscope.

Table 6. Parameters of Z-axis gyroscope results.

Z

Raw SRU-RNN Percentage

quantization noise (deg/
√

h) 0.62 0.55 11.3%
Angle random walk (deg/

√
h) 0.22 0.17 22.7%

Bias instability (deg/h) 1.12 0.72 35.7%

Table 7. Attitude results comparison.

Attitude

Raw SRU Percentage

Pitch/(degree) −1.04 −0.84 19.2%
Roll/(degree) 7.69 1.38 82.1%
Yaw/(degree) −5.18 −1.58 69.4%
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Figure 13. Allan variance comparison between de-noised and raw signals for Y-axis gyroscope.

Figure 14. Allan variance comparison between de-noised and raw signals for Z-axis gyroscope.

Figure 15. Pitch angles.
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Figure 16. Roll angle errors comparison.

Figure 17. Yaw angle errors comparison.

4. Conclusions

This paper investigated a deep Simple Recurrent Unit Recurrent Neural Networks (SRU-RNN) based
MEMS gyroscope de-noising method, from the experimental results, these conclusions were obtained:

(1) There was a trade-off between the training data length and the de-noising performance, for the
employed Inertial Measurement Unit, 500, 3000, and 3000 was sufficient for learning the model
with set 100 training epoch;

(2) Among the major three Inertial Measurement Unit errors describing parameters, there was no
regular pattern for the compensation degree of the parameters;

(3) The three-axis attitude had an improvement of 19.2%, 82.1%, and 69.4%, and which is consistent
with the analysis from the three gyroscope signals. The results demonstrated the effectiveness of
the proposed SRU-RNN method.

However, there were following limitations of this paper:

(1) In the experiments, the SRU-RNN was trained with fixed parameters including the learning rate
and batch size. Parameters optimization might improve the performance of the SRU-RNN in this
application. Some optimization methods are available in the AI community;

(2) As aforementioned, the SRU-RNN is single layer, and actually a multi-layer SRU-RNN might
improve the performance of the SRU-RNN;

(3) In the experiments, limited by the lab equipment, only the static dataset was collected
and employed.
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Future work will include: (1) further analysis in signals characteristics is necessary for exploring
what causes the difference in training data length; (2) comparing SRU-RNN, LSTM-RNN, and some
other variants of RNN using same MEMS IMU dataset, finding suitable RNN for MEMS gyroscope
and accelerometer raw signals de-noising; (3) dynamic or field testing dataset will be employed for
furtherly investigated the deep learning method in application of MEMS IMU noises modeling; and,
(4) it will be great significance of embedding a deep learning module in MEMS IMU, a feasibility
study will be conducted in a GNSS/MEMS IMU integrated navigation system for evaluating the
performance in GPS signal outage of 60 s.
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