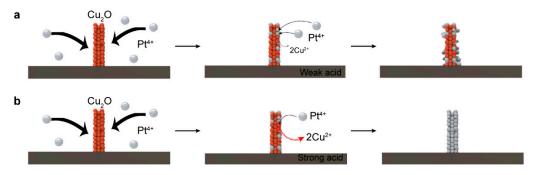


Supporting Information


Selective Functionalization of High-Resolution Cu₂O Nanopatterns via Galvanic Replacement for Highly Enhanced Gas Sensing Performance

Ju Ye Kim 1,2,⁺, Soo-Yeon Cho 1,2,⁺ and Hee-Tae Jung 1,2,*

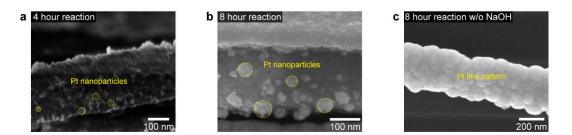

- ¹ Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; juyekim@kaist.ac.kr (J.Y.K); chosooyeon@kaist.ac.kr (S.-Y.C)
- ² Korea Advanced Institute of Science and Technology (KAIST) Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- + These authors contributed equally to this work.
- * Correspondence: heetae@kaist.ac.kr; Tel.: +82-042-350-3931

Table of Contents

- 1. Schematic illustrations of expected galvanic reaction process.
- 2. Scanning electron microscope (SEM) observations depending on various reaction condition.
- 3. XRD spectrum of the Cu₂O nanopattern before and after thermal oxidation.
- 4. Photo and SEM image of the Cu₂O nanopattern sensors.
- 5. Elemental distribution analysis by transmission electron microscopy (TEM) energy dispersive X-ray spectroscopy (EDS).
- 6. The composition analysis of over-galvanic reacted sample to confirm a selective decoration property of galvanic reaction.
- 7. Schematic of the overall gas delivery system.
- 8. NO₂ gas sensing performance comparison based on CuO or Cu₂O materials.
- 9. Response and recovery time of the Cu₂O/Pt nanopattern sensor to 1-4 ppm NO₂.
- 10. Selectivity characterization of the Cu₂O/Pt nanopattern sensor.
- 11. Long-term stability of the Cu₂O/Pt nanopattern sensor.

Figure S1. Schematic illustrations of expected galvanic replacement process. (a) When the reaction occurs in weak acid condition, both Pt reduction on Cu₂O surface and replacement for Cu₂O occur due to the mild limitation of galvanic reaction. On the other hand, (b) in strong acid condition without adding NaOH, galvanic reaction process predominates resulting in complete replacing Cu₂O with Pt.

Figure S2. SEM images of **(a)** 4 hour reaction in pH 5 solution (with NaOH), **(b)** 8 hour reaction in pH 5 solution (with NaOH) and **(c)** 8 hour reaction in pH 2 solution (without NaOH). In a mild galvanic reaction condition, Pt particle aggregation occurs allowing the reduction of Pt rather than replacing Cu₂O with Pt. In a strong condition, however, all Cu₂O replaced into Pt wire.

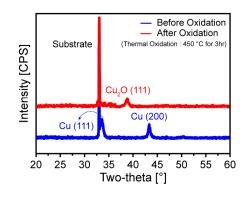
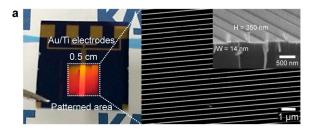
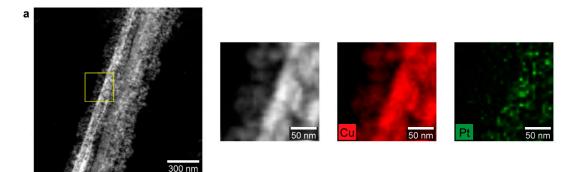


Figure S3. XRD spectrum of the Cu₂O nanopattern before and after thermal oxidation.

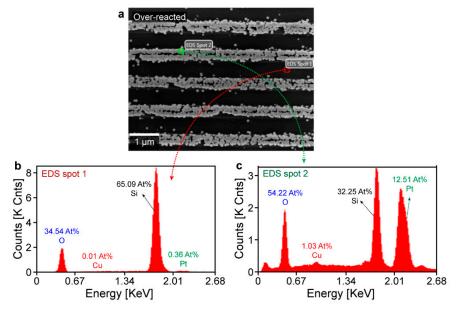

Figure S4. Photo and SEM image of the Cu₂O nanopattern sensors.

Figure S5. Elemental distribution analysis of the fabricated Pt/Cu₂O pattern array by energydispersive X-ray spectroscopy (EDS). (a) Left figure shows high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of selectively Pt functionalized Cu₂O nanopattern and its elemental mapping analysis is shown sequentially.

TEM Sample Preparation

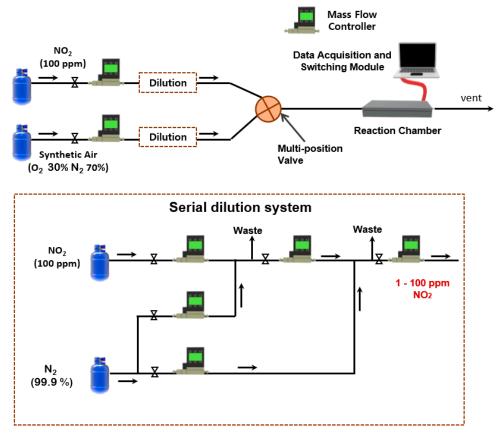

For preparation of TEM sample, poly(methylmethacrylate) (PMMA, Sigma-Aldrich) was coated on synthesized Cu₂O line pattern on SiO₂ substrates (3000 rpm, 45 s). After thermal treatment at 180°C for 3 min to evaporate the solution, the substrate was immersed on potassium hydroxide (KOH) 2M solution at 95°C for separating the line pattern from the substrate. After 2~3 hours, line pattern film was floating which means separation from the SiO₂ substrate. Once the film was cleaned with acetone and water, it was transferred to Ni TEM grid and washed with acetone once again and then dried in the oven overnight.

Figure S6. The composition analysis of over-galvanic reacted sample (complete reaction from Cu₂O to Pt) in low magnification. (a) Scanning electron microscopy (SEM) image in low magnification. Point spot energy-dispersive X-ray spectroscopy (EDS) analysis for (b) the space between the line patterns and (c) line pattern surface itself.

Sensing Material	NO ₂ concentration (ppm)	Sensor response	Response definition	Operating temperature (°C)	ref
Cu ₂ O thin film	1.5	3	(R _g -R _o)/R _o	150	1
CuO particulates	50	0.036	$(R_a - R_g)/R_g$	150	2
CuO nanowires	4	1.17	R_g/R_a	~370	3
CuO plates	50	2.2	R_a/R_g	200	4
p-CuO nanowires	10	0.55	$(R_g - R_o)/R_o$	300	5
2.2 Cr-CuO	100	134.2	R_a/R_g	250	6
Cu ₂ O/CuO-10	0.001	13.5	(I _g -I _a)/I _a	RT	7
Pt/Cu₂O ultrahigh nanopattern	4	2.75	R _a /R _g	300	This work

Table S1. NO2 gas sensing performance comparison based on CuO or Cu2O materials.

Figure S7. Schematic of the overall gas delivery system. NO₂ and synthetics air was introduced in a controlled manner into the reaction chamber by using the MFC, tubing system, and multiposition valve. The serial dilution system was also used to obtain 1–100 ppm concentrations of the NO₂.

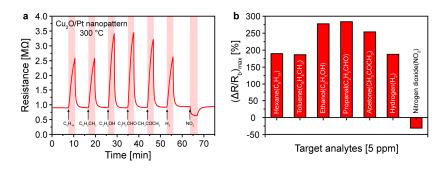
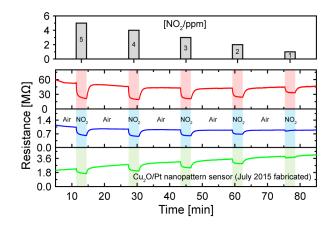




Figure S8. Response and recovery time of the Cu₂O/Pt nanopattern sensor to 1-4 ppm NO₂.

Figure S9. Selectivity characterization of the Cu₂O/Pt nanopattern sensor. (a) Real-time response behavior of the sensors to various analytes including hexane, toluene, ethanol, propanal, acetone, hydrogen, NO₂ (all 5 ppm). (b) Maximum response amplitudes of the sensors to each analytes.

Figure S10. Long-term stability of the Cu₂O/Pt nanopattern sensor (Real-time sensing signals to 1-5 ppm NO₂ with sensors fabricated three years ago).

References

- 1. Shishiyanu, S.T.; Shishiyanu, T.S.; Lupan, O.I. Novel NO₂ gas sensor based on cuprous oxide thin films, *Sens. Actuators, B.*, **2006**, 113, 468–476, doi: 10.1016/j.snb.2005.03.061.
- Das, A.; Venkataramana, B.; Partheephan, D.; Prasad, A.K.; Dhara, S.; Tyagi, A.K. Facile synthesis of nanostructured CuO for low temperature NO₂ sensing, *Phys. E.*, **2013**, 54, 40–44, doi: 10.1016/j.physe.2013.06.007.
- 3. Kim, Y.-S.; Hwang, I.-S.; Kim, S.-J.; Lee, C.-Y.; Lee, J.-H. CuO nanowire gas sensors for air quality control in automotive cabin. *Sens. Actuators, B.*, **2008**, 135, 298–303, doi: 10.1016/j.snb.2008.08.026.
- 4. Li, Y.; Liang, J.; Tao, Z.; Chen, J. CuO particles and plates: Synthesis and gas-sensor application, *Mater. Res. Bull.*, **2008**, 43, 2380–2385, doi: 10.1016/j.materresbull.2007.07.045.
- 5. Kim, J.-H.; Katoch, A.; Choi, S.-W.; Kim, S.S. Growth and sensing properties of networked p-CuO nanowires, *Sens. Actuators, B.*, **2015**, 212, 190–195, doi: 10.1016/j.snb.2014.12.081
- Kim, K.-M.; Jeong, H.-M.; Kim, H.-R.; Choi, K.-I.; Kim, H.-J.; Lee, J.-H. Selective Detection of NO₂ Using Cr-Doped CuO Nanorods, *Sensors.*, 2012, 12, 8013–8025, doi: 10.3390/s120608013
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Han, Y.; Kong, E.S-W.; Yang, Z.; Zhang, Y. An ultrasensitive NO₂ gas sensor based on a hierarchical Cu₂O/CuO mesocrystal nanoflower. *J. Mater. Chem. A.*, **2018**, 6, 17120-17131, doi: 10.1039/c8ta04404j.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).