
sensors

Article

Machine Learning-Based Sensor Data Modeling
Methods for Power Transformer PHM

Anyi Li 1,2, Xiaohui Yang 1,*, Huanyu Dong 1,2, Zihao Xie 1 and Chunsheng Yang 3

1 College of Information Engineering, Nanchang University, Nanchang 330031, China;
6101116067@email.ncu.edu.cn (A.L.); 6002115114@email.ncu.edu.cn (H.D.);
6101116073@email.ncu.edu.cn (Z.X.)

2 College of Qianhu, Nanchang University, Nanchang 330031, China
3 National Research Council Canada, Ottawa, ON K1S 5B6, Canada; Chunsheng.Yang@nrc-cnrc.gc.ca
* Correspondence: yangxiaohui@ncu.edu.cn; Tel: +86-139-7094-1450

Received: 16 November 2018; Accepted: 13 December 2018; Published: 14 December 2018 ����������
�������

Abstract: An emerging prognostic and health management (PHM) technology has recently attracted
a great deal of attention from academies, industries, and governments. The need for higher equipment
availability and lower maintenance cost is driving the development and integration of prognostic
and health management systems. PHM models depend on the smart sensors and data generated
from sensors. This paper proposed a machine learning-based methods for developing PHM models
from sensor data to perform fault diagnostic for transformer systems in a smart grid. In particular,
we apply the Cuckoo Search (CS) algorithm to optimize the Back-propagation (BP) neural network in
order to build high performance fault diagnostics models. The models were developed using sensor
data called dissolved gas data in oil of the power transformer. We validated the models using real
sensor data collected from power transformers in China. The results demonstrate that the developed
meta heuristic algorithm for optimizing the parameters of the neural network is effective and useful;
and machine learning-based models significantly improved the performance and accuracy of fault
diagnosis/detection for power transformer PHM.

Keywords: machine learning; effective cuckoo search; BP neural network; IEC-three ratio method;
power transformer PHM; fault diagnosis

1. Introduction

Prognostic and System Health Management (PHM) generally provides capabilities such as fault
detection, fault prediction, and component life tracking to assess product reliability. PHM technologies
include sensing, anomaly detection, diagnosis, prediction and decision support for intelligent
machinery maintenance and health operation. Taking advantage of advances in sensor technologies,
PHM enables a pro-active fault prevention strategy through continuously monitoring the health of
complex systems. A power transformer is a piece of equipment that is of great importance to the
electronic system. Thus, its performance can have a great impact on the power grid [1–3]. Power
transformer aging is an important factor leading to grid failure, which can also cause three main
fault types in transformers: electrical, mechanical, and thermal failure. Among them, mechanical
failure ranks first [4,5]. Therefore, it is critical to improve the accuracy of fault diagnosis of power
transformers [6,7].

Some traditional methods for fault diagnosis of transformers such as dissolved gas analysis
(DGA) [8–10], short circuit reactance (SCR) [11], and frequency response analysis (FRA) [12] have been
widely used in industries. Nevertheless, these methods were limited by the low accuracy of fault
diagnosis when the component of the dissolved gas in oil is complicated. High-dimensional fault data
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on power transformers can lead to the nonlinearity of the whole system, and FRA and SCR in this
condition cannot find the real locations of fault, and also cannot provide the information about the
types of transformers [11].

The methods of power transformer faults’ diagnosis [13] include mainly the International
Electrotechnical Commission (IEC) four-ratio and the three-ratio method, characteristic gas method
and so on. However, these methods generate large errors in the diagnosis of power transformers. The
accuracy will be greatly reduced when the sample data are too small or there are some outliers the
samples. Therefore, artificial intelligence technology with excellent performance is desired to be used
in transformer fault diagnosis. Intelligent algorithms based on the DGA data are the widely-used
methods in transformer fault diagnosis, especially the back-propagation (BP) neural network [14,15].
The BP neural network can be utilized to find the connection weights and bias to implement accurate
diagnostic methods or models for DGA. The updated parameters of BP neural network follow the rule
of gradient descending to avoid mistaking the parameters as the optimal parameters.

Nowadays, many smart optimization algorithms and machine learning algorithms have been
applied to different domains such as power transformers since these methods have great fault diagnosis
performance. There are plenty of power transformer fault diagnoses and other cutting-edge research.
In the fault diagnosis of power transformers, various intelligent and machine learning methods are
used to detect the state of transformers.

As for power transformer fault diagnosis, Khmais et al. [16] developed a fault classification
method of power transformer based on support vector machine (SVM) using train data to build a
multi-layer SVM classifier. This classifier has superior performance in identifying transformer fault
types. Li et al. [17] presented an intelligent method for power transformer fault diagnosis based on
selected gas ratio and SVM. They used a genetic algorithm (GA) to obtain the optimal dissolved
gas ratio (ODGR) for DGA ratio selection and support vector machine parameter optimization.
Three and four-digit coding with faulty information and fuzzy logic is used to improve the result
by Hooshmand et al. [18]. The method has been applied to the diagnosis of dissolved oil in the
transformer. Wang [19] developed a new transformer fault diagnosis method based on a probabilistic
neural network (PNN) and dissolved gas analysis. A hybrid evolutionary algorithm based on particle
swarm optimization (PSO) and BP is used to optimize the parameters of PNN. In order to solve the
problem of power transformer accidents, Trappey et al. [20] developed an intelligent engineering
asset management system. Data-driven models are used to detect potential faults in transformers.
The Principal component analysis (PCA) and BP-Artificial Neural Network (BP-ANN) are used as
prediction models to carry out this task. Zheng et al. [21] proposed a transformer solubility prediction
method based on PSO and least squares support vector machine (LS-SVM). The results demonstrated
that the method is superior to BPNN, Generalized Regression Neural Network (GRNN), Radial Basis
Function Neural Network (RBFNN) and Support Vector Regression (SVR) methods.

With regard to another piece of equipment detected by novel methods, Zhou et al. [22] presented
a method of intelligent fault diagnosis based on ontology and FMECA (Failure Mode, Effects and
Critically Analysis) for the fault diagnosis of wind turbines. This method realizes the knowledge
sharing between deep knowledge and shallow knowledge, improves the fault diagnosis ability and
makes a better decision for the diagnosis system. In order to improve the efficiency and accuracy of
transient probability analysis of flexible mechanisms, a dynamic network method (DNNM) based
on Improved PSO/Bayesian regularization (BR) is proposed by Song et al. [23]. The results show
that the method improves the computational efficiency and provides a meaningful insight for flexible
mechanisms. In order to address the problem of rolling bearing tip under complex working conditions,
it is often affected by mechanical and electrical system faults. Therefore, Lu et al. [24] proposed a deep
learning method based on a convolutional neural network (CNN). Evssukoff and Gentil [25] proposed
a recursive neural fuzzy system for fault detection and isolation in nuclear reactors. It generates good
performance in detecting and isolating various security related faults.
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This paper is extended from the DPDC 2008 conference, entailed, “Cuckoo Search Optimized
NN-based Fault Diagnosis Approach for Power Transformer PHM” [26]. Based on the recommendation
from the SPSC 2008 committee, we extensively rewrote the paper by extending the experiments and
providing more validation results obtained from real transformer sensor data collected in a smart grid.
The main contributions are as follows: (1) to develop machine learning-based models for transformer
PHM, we proposed a novel method to enhance the cuckoo search algorithm for optimizing the
parameters of multi-layer back-propagation neural network for fault diagnosis of a power transformer.
(2) We introduce the important factors such as improvement rate (IR) to update the function of cuckoos
(solutions). (3) Given the mutation of the process of finding optimal solution, we consider that
the mutation of solution x, which is controlled by mutation probability Pm. (4) We evaluated the
developed machine learning-based PHM models by using the real operational data collected from
power transformers in a smart grid. The results demonstrated the high performance of the PHM
models for transformer fault diagnosis.

The paper is organized as follows. After the Introduction section, Section 2 presents the machine
learning-based method, using a Cuckoo search algorithm to optimize the BP neural network for
power transformer fault diagnosis. Section 3 introduces the developed machine learning-based model
for power transformer fault diagnosis; Section 4 presents the experiments and the results; Section 5
discusses the results and draws the conclusions.

2. Methods

2.1. Modified Cuckoo Search (MCS) Algorithm

Cuckoo Search Algorithm (CS) is a nature-inspired meta heuristic algorithm which imitates
parasitic brood behavior of cuckoos [27]. To simulate the behavior of cuckoo nesting, the CS algorithm
sets three rules. The cuckoo produces an egg each time, which represents a solution to the problem,
and randomly places the eggs in a nest for hatching. In addition, the number of nests is fixed and set
a value Pa ∈ (0, 1) to describe the probability that the nest owner finds the that the egg is a foreign
egg. CS is enhanced by the Levy flight so that CS can explore global space and local space of solution
and combine them with local search and global search mechanisms that make itself efficient [28]. In
addition, important parameters Pa and step-size α of CS algorithm in fine-tuning of solution vectors
are used to adjust the convergence rate of the algorithm. However, the standard CS algorithm uses a
constant value for these parameters by the experience. Unquestionable parameter setting and constant
parameters during iterations will decrease the performance of CS algorithm [29].

Thus, in order to improve the ability and overcome disadvantages, a modified Cuckoo Search
Algorithm (MCS) is proposed in [30], which the main task is to implement the iterative process in
which parameters Pa and α are updated via function in the appropriate range.

In order to use feedback information during evolution, parameters Pa and α are set as proportional
to the improvement rate (IR). In addition, the IR can be computed by

IR =
∑NN

i=1 NIi

NN
, (1)

where

NIi =

{
1, f (xt+1

i ) < f (xt
i ),

0, otherwise,
(2)

where NI is the number of improvement of solutions. f is the fitness function we set. NN is the total
population size.

The discovery probability Pa and step size α are dynamically updated as follows:

Pa = Pamin + (Pamax − Pamin) · IRm, (3)
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α = αmin + (αmax − αmin) · IRn, (4)

where αmax and αmin are the maximum and minimum values of step size α, respectively. Pamax and
Pamax are the maximum and minimum values of discovery probability Pa, respectively. m and n are
nonlinear factors for adjusting the speed of change of the control parameters.

There are two different strategies in MCS for exploration and exploitation. The first strategy uses
Mantegna’s algorithm [31] as follows:

xt+1
i = xt

i + αL(s, λ), (5)

where

L(s, λ) =
λΓ(λ)sin(πλ/2)

π

1
s1+λ

, (s� s0 > 0). (6)

Here, L is the characteristic scale of the data set. α in Equation (5) is the step size. λ is the Levy
exponent which controls the scale of distribution. s is the step size that can be computed as follows:

s =
U
|V|1/λ

, (7)

where U ∼ N(0, σ2), V ∼ N(0, 1). In addition, σ2 can be calculated as follows:

σ2 = [
Γ(1 + λ)

λΓ((1 + λ)/2)
· sin(πλ/2)

2(λ−1)/2
]1/λ. (8)

The second strategy is to attract the closest individuals of the current solution and conduct a
global random walk.

These two strategies are randomly selected by the switching probability Pc, and the second
strategy is described as follows:

xt+1
i = xt

i + t1 · (xt
q1 − xt

i ) + T · (xt
q2 − xt

q3), (9)

where the integers q1, q2 and q3 represent three mutually different indices randomly selected in the
range [1, 2, ..., NN], which are different from the integer i. T is scaling factor and t1 is a random number
within the interval [0, 1].

In addition, to strengthen the global search capability of MCS, a mutation strategy is also
introduced through mutation probability Pm. In addition, the mutation is as follows:

xt+1
ik = xt

ik + t2 · (xt
ik − xt

jk), (10)

where t2 is a random number in the interval [−1, 1]. i and j are different integers selected within the
range [1, 2, ..., NN]. k is an integer within the range [1, 2, . . . , D], D is the solution space dimension.

In addition, the parameter Pa is to judge the probability of hosts finding exotic birds’ eggs. It
can determine whether to generate the next new nest. At this time, the location update equation is
given by

xt+1
i = xt

i + r1 · (xt
q1 − xt

q2) + r2 · (xt
best − xt

q3), (11)

where the integers q1, q2 and q3 denote three different integers. r1 and r2 are randomly generated
numbers in [0, 1].

The initial location of MCS can be expressed as:

xi = Lb + rand× (Ub− Lb), (12)

where the Ub and Lb are the upper and lower bounds of the search space, respectively.
The pseudo-code of modified CS algorithm is shown as Algorithm 1.



Sensors 2018, 18, 4430 5 of 17

Algorithm 1: Pseudo-code of the modified CS algorithm

1 Begin Input: PS: the population size

2 t = 0;

3 Generate the initial population xt by Equation (12);

4 Update objective function f (xt) and define FES← PS;

5 while FES < Max FES do

6 t← t + 1;

7 Set the number of improvement P← 0;

8 for i = 1 to PS do

9 if rand > Pc then

10 Obtain the new solution uti by Equation (5);

11 else

12 Obtain the new solution uti by Equation (9);

13 end

14 if rand < Pm then

15 Record the mutation by Equation (10);

16 end

17 Update the function value f (uti );

18 if f (uti ) < f (xti ) then

19 NI ← NI + 1;

20 end

21 FES← FES + 1;

22 end

23 Compute the best rate IR by Equation (1);

24 Compute the step size α by Equation (3);

25 Compute the discovery probability Pa by Equation (4);

26 for i = 1 to PS do

27 Obtain the new solution uti by Equation (11);

28 Update the function value f (uti );

29 FES← FES + 1;

30 end

31 end

Output: Best classification and predication results

2.2. Back-Propagation (BP) Neural Network

Back-propagation (BP) neural network is a multi-layer feed-forward neural network,
which belongs to an uncertain nonlinear mathematical model [32–34]. The BP network consists
of an input layer, hidden layer and output layer. The two processes of forward propagation and back
propagation are of great importance to the BP neural network [35,36]. The BP network can have better
performers in classification and prediction because of the combination of these two processes. In the
forward propagation, the data are passed through the input layer and combined with the hidden layer
weights and thresholds to calculate layer by layer, and finally reach the output layer to obtain the
classification result. In back propagation, when the output in the output layer does not comply with
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expectations, the error signal will propagate back. It uses an error gradient descent algorithm to reduce
the mean square error (MSE) between the network output value and the actual output value, and the
network adjusts the weights and thresholds layer by layer from the output layer to all hidden layers.
Finally, the corrected result is output to the output layer.

• Feed-forward

After recording the input value vector x, the activation al in the input layer l can be computed in
a simple and compact vectorized form:

al = f (wlal−1 + bl) (l = 2, 3, ..., L), (13)

where wl and bl
j are the weight and the bias between the (l − 1)th and the lth layer.

To set the corresponding activation, this paper uses the most popular sigmoid function:

σ(x) =
1

1 + e−x . (14)

The quadratic error criterion function of sample n is C:

C =
1

2n ∑
x
‖y(x)− aL(x)‖2. (15)

• Back-Propagation

While reaching the layer L, the output error δL can be calculated by

δL = ∇aC
⊙

σ′(zL). (16)

∇aC contains the rate of C changing.
⊙

denotes the entry-wise product of two vectors.
Subsequently, the error in the next layer is

δl = ((wl+1)Tδl+1)
⊙

σ′(zl), (17)

where (wl+1)T is the transpose for the (l + 1)th layer.
⊙

σ′(zl) is the Hadamard product
within the interval .

According to the error gradient descent method, the threshold can be calculated as follows:

∂C
∂bl

j
= δl

j . (18)

Any weight in the network is:
∂C

∂wl
jk
= al−1

k δl
j . (19)

By combining Label (11) with Label (12), the error goes backward through the activation function
in layer l.

The BP neural network model structure can be seen in Figure 1.
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Figure 1. BP neural network model structure.

2.3. MCS Optimized BP Neural Network (MCS-BP)

The fault diagnosis of a power transformer based on an MCS optimized BP neural network can be
used as a comprehensive diagnosis platform, which combines the data of gas in oil with the detection
system, and then obtains good results by supervised learning methods.

As shown in Figure 2, MCS optimizes the block diagram of BP neural network. The following are
the main steps:

Step 1: At first, use an IEC three-ratio method to process the features of DGA data of
power transformer.

Step 2: Randomly choose the different types of faults of power transformers into the
neural network.

Step 3: Initialize the parameters of the BP neural network.
Step 4: Initialize the modified cuckoo search size xi (i = 1, 2, ..., N), population size N, switching

probability Pc, mutation probability Pm, and value of step size α0, maximum value of step size αmax,
minimum value of step size αmin, maximum value of discovery probability Pamax, minimum value of
discovery probability Pamin, nonlinear factor m and n, scaling factor F and the fitness function f (x).
The fitness function we used in this paper is the mean square error (MSE), as follows:

f (x) =
1

2n

N

∑
i=1

(Yi −Oi)
2, (20)

where Yi is the measure value and Oi is the predicted result.
Step 5: Calculate the fitness value of the initial nest via the fitness function, and then select the

current optimal solution in the solution space.
Step 6: Generate a random number K1 and compare with Pc. Compare K1 and Pc, if K1 > Pc,

update nests xt+1
i via Equation (5), otherwise by Equation (9).

Step 7: Generate a random number K2 and compare with Pm of MCS. If K2 < Pm, perform the
mutation via Equation (10); otherwise, it is unchanged.

Step 8: Calculate the updated solution’s fitness value and update the discovery probability Pa and
the step size α via Equation (3) and Equation (4).

Step 9: Generate a random number K3 and compare with Pa. If K3 > Pa, update nests xt+1
i via

Equation (11), or do not change. Compare the last fitness values with new birds’ nests, keep the
optimal bird’s nest as the contemporary best nest xb.
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Step 10: If it can reach the maximum iteration condition, proceed to the next step, or return
to Step 6.

Step 11: Substitute the optimized weights and bias of the BP neural network.
Step 12: Input the test set into the trained BP neural network to get the classification output.

Comparing   f(ui
t ) and f(xi

t ), and  f(xi
t )  

replacing  with better value

Computing the objective function, 
and recording the optimal solution 

and the nest position

Begin

Data

Initializing BPNN

Getting weights 
and bias

Training BPNN

Stop?

Output Prediction 
and classification 

results

Finish

Initializing the nest number   , 
    ，objective function   

   rand compared with  
Pc and Pm? 

Stop?

n
aP

Updating nest and getting new 
nest f(xi

t )

Computing the objective function of 
new nest and comparing with last nest, 
then recording the best solution f(ui

t )

Updating nest  f(ui
t ) , the value of 

objective function 

Yes

No
No

No

Yes

Yes

( )f x

BP neural network MCS algorithm

Figure 2. The flowchart of MCS-BP.

3. MCS-BP for Power Transformer Fault Diagnosis Platform

In this paper, power transformer fault diagnosis is mainly divided into four parts: data collection
and preprocessing, segmentation of data set, neural network model-training, and comparison between
test set output and train set output, as is shown as Figure 3.
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Figure 3. Structure flow of the power transformer fault diagnosis process.

In Figure 3, firstly power transformer DGA data will be processed in feature selection via the
IEC three-ratio method. This procession can be seen in Table 1. Then, 70% of the data can be used in
the training model, which has been sorted randomly to ensure the train set and test set containing
all types of faults. The other 30% of the data is utilized to test the optimized model. In this study,
we test five types of faults of power transformers, which are the thermal faults T > 700 ◦C, thermal
faults T < 300 ◦C, high energy discharge, low energy discharge and partial discharge. It can be seen as
Table 2, and each group of data is balanced. There are 109 sets of data.

Table 1. Diagnosis using the three-ratio method (IEC 60599) [37].

Fault Type C2H2/C2H4 CH4/H2 C2H4/C2H6

PD <0.1 <0.1 <0.2
D1 >1 0.1–0.5 >1
D2 0.6–2.5 0.1–1 >2
T1 NS >1/NS <1
T2 <0.1 >1 1–4
T3 <0.2 >1 >4

Table 2. Fault type used in analysis.

NO. Fault Type Fault Type Code

Fault 1 Thermal faults T > 700 ◦C T3
Fault 2 Thermal faults T < 300 ◦C T1
Fault 3 High energy discharge D2
Fault 4 Low energy discharge D1
Fault 5 Partial discharge PD

Through this optimization model, the potential faults of power transformers can be predicted
and classified.
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4. Experimental Setup and Results

4.1. Experimental Setup

In order to evaluate the performance of the proposed method in power transformer fault diagnosis,
we obtain real-world data to implement experiments. By IEC three-ratio processing 109 sets of DGA
data, the feature-filtered data sets are obtained, some of which are shown in Table 3. In this paper, the
neural network is used as the basic classifier, so the encoding method of data is shown in Table 4.

Table 3. Statistical data of partial samples.

C2H4 H2 C2H6 Fault Type

0.019 0.0899 2.157 T1
0.029 0.231 2.654 T1

0.0246 0.9655 8.2797 T3
0.0541 1.2551 8.9697 T3

1.38 0.211 5.396 D2
0.12 0.438 5.664 D2
8.097 2.694 1.752 D1
8.382 2.708 1.768 D1

0 0.041 0.149 PD
0.088 0.052 0.099 PD

The MCS-BP method is compared with other excellent predictive classifiers BP, CS-BP, Multi-Verse
Optimizer-Multi-Layer Perceptron (MVO-MLP), PSO-BP, GA-BP, PNN and SVM, respectively. Firstly,
the accuracy and error rate of the algorithm of MCS-BP is compared with CS-BP and BP, and the
superiority of the algorithm of MCS in the optimization of a neural network is proved. Secondly,
by comparing the MCS-BP algorithm with other machine learning algorithms and optimization
algorithms, it is proved that the algorithm has strong robustness and classification performance.

Table 4. Output target coding of different faults.

T3 T1 D2 D1 PD

Coding
format

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

4.2. Experimental Results

Firstly, the MCS-BP algorithm and CS-BP algorithms are compared. In this experiment, the
parameters of the BP neural network are the same, its structure is 3-4-5, three-dimensional input,
five-dimensional output, for MCS and CS, the MCS algorithm sets the Levy exponent λ to 1.5, the step
size α0 to 0.1, αmax to 0.5, αmin to 0.05, the discovery probability Pamax to 0.5, Pamin to 0.1, Pc to 0.3, Pm

to 0.3, m to 0.5, and n to 0.5. The CS algorithm sets the discovery probability Pa to 0.25, λ to 1, and the
step size α to 0.4. The accuracy of classification is shown in Table 5. For five types of fault outputs,
MCS-BP has a high recognition rate of 97.14% with asterisk, and the classification recognition rate of
different fault types is higher than or equal to the BP and CS-BP algorithms.

As shown in Table 6, the training set and test set MSE of MCS-BP are the smallest. Compared with
the other two algorithms, the performance of MCS is better than that of normal BP and standard CS.
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Table 5. The comparison of basic methods (* means the best result in the table).

Fault
Type

Accuracy Rate (%)

BP CS-BP MCS-BP

T3 100.00 100.00 100.00
T1 100.00 85.71 100.00
D2 85.71 85.71 85.71
D1 100.00 100.00 100.00
PD 0.00 100.00 100.00

Total 77.14 94.29 97.14 *

Table 6. Comparison of sample errors.

Model MSE of Train Sample MSE of Test Sample

BP 0.0330 0.1571
CS-BP 0.0053 0.0220

MCS-BP 0.0058 0.0204

Next, we use many different algorithms to further evaluate the classification performance of
MCS-BP. The GA sets the crossover probability to 0.7 and the mutation probability to be 0.01. The PSO
algorithm sets the maximum speed to 1, the minimum speed to −1, the solution space is [−5, 5]
and the learning factor to 1.49445. The recognition rate is shown in Table 7. From Table 7, it can be
found that the recognition rate and Micro F1-score of MCS-BP is obviously higher than that of other
algorithms, and for fault type T1 and PD, the classification recognition rate of other algorithms is
very low, and the diagnosis rate of MCS-BP is still very high. The error rate comparison is shown in
Table 6, from which we can see that the MSE of MCS-BP is still the smallest, indicating the excellent
performance of MCS-BP. From Table 8, we further know that the performance of the classification of
MCS-BP is better than other models via each fault type F1-score and the Macro F1-score (98.46%).

In order to further evaluate the performance of MCS-BP, we plot the output results of different
algorithms, such as Figure 4, Figure 4a,c,e,g for the output of training set and the layout of predicted
classification results, and Figure 4b,d,f,h for the output of test set classification. Its test set classification
effect is not ideal; however, the MCS-BP (a), (b) shows a good recognition rate, and (b) shows that only
the third fault type judgment is an error.

Table 7. The comparison of different methods (* means the best result in the table).

Fault Type
Accuracy Rate (%)

MCS-BP MVO-MLP PSO-BP GA-BP PNN SVM

T3 100.00 100.00 100.00 100.00 83.33 83.33
T1 100.00 71.43 85.71 57.14 85.71 28.57
D2 85.71 100.00 85.71 100.00 100.00 71.43
D1 100.00 100.00 100.00 100.00 66.67 100.00
PD 100.00 85.71 85.71 85.71 85.71 85.71

Total 97.14 * 91.43 91.43 88.57 78.57 73.81

Table 8. The comparison of different methods with F1-score (* means the best result in the table).

Fault Type
Macro F1-Score (%)

MCS-BP MVO-MLP PSO-BP GA-BP PNN SVM

T3 100.00 100.00 100.00 100.00 100.00 90.91
T1 100.00 92.31 60.00 92.30 44.44 44.44
D2 92.30 100.00 100.00 92.30 100.00 83.33
D1 100.00 100.00 100.00 100.00 100.00 100.00
PD 100.00 92.30 92.30 92.30 92.30 92.31

Macro F1-score 98.46 * 96.92 90.46 95.38 87.35 82.20
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Figure 4. The classification results of different models. (a), (c), (e) and (g) represent the results of
train sample classification for different methods, respectively. (b), (d), (f) and (h) are the results of test
sample classification for different methods, respectively.

By Figure 4, we know that the developed method is better than other algorithms with respect to
stability as the test data results can reflect that our model won’t fall into the problem of over-fitting,
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and both the train sample and test samples have great classification results. It indicates that this model
is helpful for fault diagnosis of power transformer because it can give a suitable decision for which the
fault type of power transformer is contained.

In addition, to clarify the optimization effect of MCS on BP during the iteration process,
we consider the variation of the fitness (error) of the MCS, as shown in Figure 5. From generation 1 to
generation 50, the fitness value of MCS in the process of optimizing neural network decreases rapidly
in generations 1 to 4, which shows that the efficiency of global optimization and local optimization
of MCS is very high. Then, it falls into a local extremum in generation 18 or so. However, after a
period of iteration, it jumps out of a local extremum point and continues to search for optimization.
In addition, we completed the Receiver Operating Characteristic (ROC) Curve, which is shown in
Figure 6, and obtain the value area under the curve (AUC). Both of them can prove that our model
has great performance of classification for power transformers. For Figure 6a, we can see that each
fault class can be classified well.
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Figure 5. The curve of fitness of MCS-BP.
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Figure 6. The curve of ROC-AUC of different models. (a–d) represent the receiver operating
characteristic curve with AUC for MCS-BP, MVO-MLP, PSO-BP and GA-BP, respectively.

5. Conclusions

In this paper, we propose a machine learning-based method, CS optimized BP neural network
model for power transformer fault diagnosis. This algorithm can adjust the search step of solution
space adaptively to find a better global optimal solution, and the fitness value of each solution is
utilized to build the mutation probability to avoid local convergence. In addition, the MCS enhances the
exploitation capacity and convergence rate. We conducted the experiments to validate the developed
models by using 109 sets of real-world data collected from power transformers. Compared with
other algorithms, experimental results show that the MCS method we developed outperformed other
methods and can converge to the optimal solution for most test cases.

To validate the machine learning-based models or methods for fault diagnosis, more extensive
experiments and more advanced metrics and evaluation tools are in high demand. This will be our
future work. We will continue to enhance the performance of the algorithms and models and evaluate
the performance of the models under different circumstances of the error rate and operating efficiency,
using other evaluation tools and metrics.

Author Contributions: A.L. designed the whole method for research. A.L., Z.X. and H.D. wrote the draft. A.L. and
Z.X. contributed to the experiment. C.Y. gave a detailed revision. X.Y. provided important guidance for this paper.
All authors have read and approved the final manuscript.

Funding: This work was supported in part by the National Science Foundation of China (51765042, 61463031,
61662044, 61773051), the Jiangxi Provincial Department of Science and Technology JXYJG-2017-02.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PHM Prognostic and health management
MCS Modified Cuckoo Search Algorithm
BP Back-propagation
MCS-BP Modified Cuckoo Search Algorithm optimized Back-propagation neural network
DGA Dissolved gas analysis
GA Genetic algorithm
PCA Principal component analysis
PSO Particle Swarm Optimization
IR improvement rate
α step-size
Pa discovery probability
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f fitness function
λ Lévy exponent
Pc switching probability
Pm mutation probability
al activation functions
C cost function
σL output error
MVO multi-verse optimizer
MLP multi-layer perceptron
PNN probability neural network
MSE mean square error
SVM support vector machine
xt

i the nest in t generation
xt+1

i the nest in t + 1 generation
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