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Abstract: The Internet of Things (IoT) is emerging as a new communication paradigm and has
attracted a significant amount of attention from both academic and engineering communities. In this
paper, we consider an IoT market where three roles exist: Wireless Sensor Networks (WSNs),
two service providers (SPs) and end users. The WSNs are responsible for sensing and providing data
to the two SPs. Based on the sensed data from WSNs, the two SPs compete to provide services to the
end users. We model the relationship between the two SPs and end users as a two-stage Stackelberg
game, where the two SPs set the prices for their services firstly, and then the end users decide which
SP to choose. Specifically, we consider two price-competition scenarios of the two SPs, which are
engaged in two games, one is a noncooperative strategic game (NSG) where the two SPs set the prices
for services simultaneously, the other is a Stackelberg game (SG) where SP1 who sets the price first is
the leader and SP2 who sets the price after is the follower. Each user decides whether and which SP
to purchase services from based on prices and service rates. An equilibrium is achieved in each of the
two scenarios. Numerical results are conducted to verify our theoretical analysis.

Keywords: WSNs; service provision; noncooperative strategic game; Stackelberg game

1. Introduction

The Internet of Things (IoT) is emerging as a new communication paradigm and has attracted a
significant amount of attention from both academic and engineering communities. IoT has been widely
applied in a large number of areas, such as health care, transportation, environmental monitoring, and
smart buildings [1–3]. It is estimated that the number of smart objects in homes, offices, factories, and
vehicles will reach 50 billion by 2020 compared with 12.5 billion in 2010 [4]. As shown in Figure 1, the
things that are connected through Internet had passed the population of people on earth by 2008 [1].
According to a report from Cisco, the amount of data generated by IoT devices will reach 600 ZB
data per year by 2020 [5]. IoT devices, such as Apple Watch and Google Glass, need to transmit their
sensed data to the network service provider or the cloud service provider for data processing and
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analysis [6]. Although smart objects are becoming increasingly pervasive and ubiquitous in our daily
life, the market models for the services related to these objects is still in its infancy [4,7]. The emergence
of IoT has brought about new business models and markets [8]. From the economic perspective, the
core benefit of the IoT is to create more revenues for the business [9]. Thus, understanding the business
is of paramount importance. In addition, there may exist many service providers (SPs) who compete
to provision IoT services to users leading to a competitive IoT market. Therefore, the successful
deployment of sensor-based services needs a well understanding of both the market structure and
service pricing schemes.

Figure 1. The growing number of “things” connected to the Internet [1,10].

Software-defined networks (SDN) is an active research area in next generation networks, and it is
recognized as a foreseeable application in IoT [11,12]. In SDN, network intelligence, who is usually
logically centralized in SDN controllers, can monitor and control network states flexibly by OpenFlow
protocols [12]. By using OpenFlow protocol and SDN controller, the owners of network infrastructures,
such as the network service providers owning WSNs, could programmatically assign the virtual
network services to virtual service providers in a fine-grained way [12].

IoT has received a significant amount of attention in recent years and an enormous number of
efforts have been devoted to it. In [1], Miorandi et al. presented a survey of concept, development,
research context and challenges, and applications for IoT. In [9], Niyato et al. proposed a new pricing
scheme for services of SPs offered to end users in the IoT context. Their bundling strategy model
allows multiple SPs to cooperate with each other to form a coalition and deliver their IoT services as a
bundle to the end users, which can attract more end users and obtain more revenue. In [13], Niyato
et al. studied IoT services from the economic aspects, which have a great impact on the successful
applications of IoT. They proposed a game theoretic model, which considers both the substitute and
complementary services, for price competition of IoT services provision.

In [4], Guijarro et al. proposed and analyzed a business model consisting of WSNs, multiple SPs
and end users. These SPs lease sensed data as services from WSNs and compete to provide services
to the end users in an oligopoly IoT market. In [14], Guijarro et al. analyzed a business model for a
service platform which acts as mediator between WSNs and end users. They proposed two payment
methods to solve the profit maximization problem of the service platform. Similar to [14], in [7],
Guijarro et al. proposed a business model for the provision of IoTs services through a Brokering
platform that intermediates between WSNs and the end users . They proposed a payment method
to solve the profit maximization problem of the Brokering platform. In [8], the authors proposed
a business model, which is composed by WSNs, multiple SPs and end users, for the provision of
WSNs-based services. They studied the price competition between two SPs providing services to a
common pool of end users. In [15], the author studied two SPs with their own private sensor networks
competing to provision WSN-based services. A game-based services price decision (GSPD) model is
proposed in cyber-physical systems, where service organizers collect service from service entities and
provide better combined services to users [16]. Although the system model is similar to our work, we
analyze the competition between SPs, while the authors in [16] mainly focus on the price competitive
relationship among service owners.
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Price competition is widely studied in the literature. In [17], Ren et al. studied price competition
in a femtocell communications market between two network service providers, and they analyzed
whether the entrant network service provider to enter the network market or not and which spectrum
sharing technology to adopt to maximize its revenue. However, this work only considered the SG
case. In [18], Zhang et al. studied time-dependent pricing in a duopoly network market, where two
network service providers compete to attract a common pool of users, but they only considered
simultaneous competition case. Although the authors in [19] studied two competition scenarios,
cost factor and users’ heterogeneous preferences for network services were not taken into account.
In [20], the authors proposed a QoE-ensured price-competition model for emerging mobile networks.
However, they only considered one competition scenario, and they did not analyze the effects of
different competition scenarios.

Our system model is mainly inspired by [8,15] as well as [4,7]. We differ from them in the
following aspects. First, Sun et al. [8,15] only considered simultaneous-play competition between two
sensor SPs, that is, the two SPs set the prices for their services simultaneously. However, our work not
only considered simultaneous-play competition but also analyzed the SG scenario where the two SP set
the prices for their services sequentially. In particular, in [8], the authors studied price competition in a
duopoly scenario, where the two SPs buy resources from WSNs, offer the composed useful services to
users, and set the prices for their WSN-based services simultaneously. In [8], the authors incorporated
the reservation prices in the user utility functions, which are not considered in our work. In [15],
the authors analyzed the relationship among two sensor SPs, the network operator, and the end
users, while we mainly considered the relationship between the SPs and users. Based on the Logit
discrete choice model related to the quality of the collected data and the subscription price, the two SPs
decide to subscribe or not to the network operator to upload the collected sensing data that are to be
processed by the network operator, and then provide sensor-data-based services to users. The utility
functions of the SPs and users in [15] are different from us. Second, Guijarro et al. [4] studied price
competition in the oligopoly IoT market where there are more than two SPs, and they only analyzed
the simultaneous-play competition. Third, Guijarro et al. [7] only analyzed the monopoly IoT market
without considering the competition between SPs.

There are also some works proposing business models in cloud service provision, where
SPs compete to provide services for users by leasing resources from infrastructure providers,
such as [21–23]. However, the cloud service provision models are different from us and they only
consider one competition case.

This paper tries to understand the business model of Wireless sensor networks (WSNs)-based
service provision, which is recognized as a likely scenario for the realization of IoT [4,24]. In particular,
we propose a business model and analyze the duopoly price competition between two SPs.
The business model consists of WSNs, who are responsible for gathering sensing data; the two
SPs, who pay to buy the sensing data from WSNs and provide services to end users; and the end users,
who subscribe to services from one of the two SPs.

Our main contributions are summarized as follows:

• We study price competition in an IoT market, where two SPs compete to provide WSNs-based
services to a common of end users. As different types of end users generally have different
requirements for the quality of services [25], we take end users’ different willingness-to-pay (WTP)
for service quality into consideration.

• We model the relationship between the two SPs and end users in the IoT market as a two-stage
Stackelberg game (SG), where the two SPs set the prices for their services in the first stage. Then,
based on the qualities and prices of the offered services of the two SPs, the end users make
decisions to subscribe or not to services from one of the two SPs in the second stage. We note that
although in [15] the relationship between the network operator and the SPs, and the relationship
between SPs and users are both modelled as a two-stage SG, the solution methods in each stage
are different from our work.
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• In SG, the two SPs set the prices for their services sequentially, while in noncooperative strategic
game (NSG), the two SPs set the prices for their services simultaneously. Different from many of
the existing works that only consider SG, in this paper, we consider two competition scenarios
between the two SPs, i.e., a NSG and SG, respectively. A unique equilibrium is achieved in each
of the two scenarios.

• Numerical results are performed to verify the theoretical analysis. Our numerical analysis show
that both SPs can obtain more profits if they offer services with better qualities. SP1 can attract
more users in the SG scenario while SP2 can attract more user in the NSG scenario, and both SPs
get more profits in the SG scenario. We also present the analysis on cost factors to show how they
impact the profits of the two SPs.

The rest of the paper is organized as follows. The system model is introduced in Section 2.
We analyze the duopoly IoT market in Section 3. Numerical results are conducted to verify our analysis
and the results are shown in Section 4. Finally, we conclude this paper and show future works in
Section 5.

2. System Model

The system model used in this paper is shown in Figure 2, which is motivated by [8,15].
The business model is composed by WSNs, two SPs and N end users. The WSNs owned by a
network service provider are responsible for processing and providing data to the two SPs [10,26].
The two SPs, such as Apple and Google, transmit the sensed data to the network work service provider
for further processing and analysis, and pay to the NSP to buy the processed and analyzed data. Then,
the two SPs compete to provide data as services to the end users. The users choose to subscribe to the
services according to the prices and qualities of these services offered by SPs.

Figure 2. The system model.

We assume the data rate of the services provided by SP1 and SP2 are R1 and R2 (measured by the
number of bits per second), respectively, and the price per data rate paid by the two SPs to the network
service provider is µ. The network service provider can provide the sensed data with different QoS
to the two SPs by adopting the paradigm of SDN [11,12,27] . The data rate reflects the quality of the
sensed data services that SPs provide [9,28]. We use the following affine function to denote µ [8]:

µ = α + β(R1 + R2), (1)

where α and β are non-negative constant values. This function implies the fact that the price of per
unit resource will become higher as the aggregate data rate increases.

For SPi, i = 1, 2, its profit can be expressed as

πi = Ni pi − µRi = Ni pi − Ri[α + β(R1 + R2)], i = 1, 2. (2)

where Ni is the number of end users that subscribes to the services of SPi.
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The end users are interested in paying to use a range of services provided by the two SPs.
We assume that the end users have heterogeneous preferences for the quality of the WSNs-based
services. The end users’ heterogeneous preferences are characterized by their WTP, denoted by θ,
which is assumed to be uniformly distributed in [0, 1] with probability distribution function (PDF)
f (·) and cumulative distribution function (CDF) F(·). The uniform distribution is widely used in
the literature [8,21] and one of the main reasons for the assumption of uniform distribution is for
convenience of analysis. A higher value of θ means this user has higher requirement for the quality of
the service.

Following [8,9], the utility that the end user k, k ∈ {1, 2, . . . , N} gets from the service of SPi,
i = 1, 2, is assumed to depend on the data rate Ri, which is denoted as

Uk,i = θkRi − pi, i = 1, 2. (3)

where θk is user k’s WTP and pi is the service subscription price of SPi.

Remark 1. It is important to note that the two SPs the flat-fee pricing schemes, which allow users to freely use
services during a period. Therefore, the unit of the prices of the two SPs can be $. This kind of pricing scheme is
widely in the wireless networks and cloud computing context.

3. Duopoly Competitive IoT Market

In this section, we analyze a duopoly IoT market where two SPs compete by setting optimal
prices for their services to maximize their profits. We consider two competition scenarios: NSG and
SG. The NSG scenario corresponds to the practical IoT market where two SPs set the prices for their
provided services simultaneously, while the SG scenario is the case that an entrant SP2 plans to set the
prices for its services in an IoT market whose incumbent SP1 has set the prices for its services with
better quality.

Based on quality of services and the subscription prices of the two SPs, the end users will make
decisions as to which SP to subscribe to maximize their utilities. The relationship between SPs and
users is modelled as a two-stage Stakelberg game [22], as shown in Figure 3, where the two SPs set the
prices of their services in Stage I, and end users will make their joining decisions in Stage II. We solve
the Stakelberg game by employing the backward induction method [29].

Figure 3. The two-stage Stackelberg game.

We note that there are two types of competition scenarios: static scenario and dynamic scenario.
For ease of analysis, we only consider the static scenario in this paper, and the dynamic scenario is left
for the future work.

Given the data rates R1 and R2, and subscription prices p1 and p2 of the two SPs, the end users
will decide which SP to choose to maximize their utilities. We first consider three types of end users,
θ1, θ2 and θ∗, such that U1,1(θ1, p1) = 0, U2,2(θ2, p2) = 0, and Uk,1(θ

∗, p1) = Uk,2(θ
∗, p2), from which

we have
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θ1 =
p1

R1
, (4)

θ2 =
p2

R2
, (5)

θ∗ =
p1 − p2

R1 − R2
. (6)

For R1 = R2, if p1 ≥ p2, then U1 ≤ U2, all users will choose to subscribe to SP1, and if p1 < p2,
then U1 > U2, all users will choose to subscribe to SP2. For R1 > R2, if p1 ≤ p2, then θ∗ ≤ 0. In this
case, U1 > U2 and all users will choose to subscribe to SP1. For R1 > R2, if p1 > p2, then θ∗ > 0.
We discuss the joining decision policy of users of this case.

The type k user will make the following joining decision policy:

• It will join SP1 if Uk,1(θk, p1) > Uk,2(θk, p2), and Uk,1(θk, p1) > 0, which requires θk > θ∗ and
θk > θ1;

• It will join SP2 if Uk,2(θk, p2) > Uk,1(θk, p1), and Uk,2(θk, p2) > 0, which requires θ2 < θk < θ∗;
• It will join neither of the two SPs if Uk,1(θk, p1) < 0, and Uk,2(θk, p2) < 0, which requires θk < θ1

and θk < θ2.

Based on the above joining decision policy, the fraction of end users that choose SP1 and SP2 are
respectively denoted as

F1 =
∫ 1

max{θ1,θ∗}
f (θ)dθ, (7)

F2 =
∫ θ∗

θ2

f (θ)dθ, (8)

Based on Equations (7) and (8), we get the following results:

Proposition 1. For a given pair of prices (p1, p2), there exists a unique pair fraction of end users F1 and F2

that choose SP1 and SP2 respectively, such that

(1) If θ1 > θ∗, which leads to R1
p1

> R2
p2

, from which we get θ∗ < θ1 < θ2. According to Equations (7) and (8),
we have F1 = 1− F(θ1) and F2 = 0;

(2) If θ1 < θ∗, which leads to R1
p2

< R2
p1

, from which we get θ2 < θ1 < θ∗. According to Equations (7) and (8),
we have F1 = F(θ∗) and F2 = F(θ∗)− F(θ2);

Case 1 is the monopoly IoT market of the SP1 and case (2) is the duopoly IoT market where the
two SPs coexist. As we mainly focus on the analysis of the duopoly IoT market, therefore, we only
consider the case 2. For the R1 > R2 case, from the above discussions, the number of end users with
SP1 and SP2 in equilibrium can be denoted as follows,

N1 = NF1 = N(1− p1 − p2

R1 − R2
), (9)

N2 = NF2 = N(
p1 − p2

R1 − R2
− p2

R2
). (10)

We discuss and describe the joining decision policy of end users in Appendix A.
For R1 < R2, if p1 ≥ p2, then θ∗ ≤ 0. In this case, U2 > U1 and all users will choose to subscribe

to SP2. For R1 < R2, if p1 < p2, we can follow the similar analysis procedure to the R1 > R2 case to get
the results. When R1 < R2, the number of end users with SP1 and SP2 in equilibrium can be denoted
as follows,

N1 = NF1 = N(
p1 − p2

R1 − R2
− p1

R1
), (11)



Sensors 2018, 18, 4422 7 of 20

N2 = NF2 = N(1− p1 − p2

R1 − R2
). (12)

Based on the equilibrium number of the end users in Equations (9)–(12), the two SPs will compete
to maximize their profits, which can be formulated as the following one-shot game:

• Players: SP1 and SP2 are the two players in the game;
• Strategies: SP1 and SP2 determine subscription prices p1 and p2, respectively;
• Payoff: The profits of SPs, which will be defined later by π1 = p1N1 and π2 = p2N2.

3.1. Nash Equilibrium in the Duopoly IoT Market

A pair of prices (p∗1 , p∗1) is said to be a Nash Equilibrium if they satisfy [30]:

π1(p∗1 , p∗2) ≥ π1(p1, p∗2), ∀p1 ≥ 0, (13)

π2(p∗1 , p∗2) ≥ π1(p∗1 , p2), ∀p2 ≥ 0. (14)

In the Nash Equilibrium, any SP cannot change its price unilaterally to increase its profit. That is
equivalent to saying the Nash Equilibrium price is the optimal price that a SP can achieve in an IoT
market when SPs compete with each other. In the Nash Equilibrium, both SPs get the optimal profits.

3.2. Noncooperative Strategic Game (NSG)

We analyze the NSG scenario [19] where the two SPs compete by setting the prices of their services
simultaneously to maximize their profits. It is important to note that we only consider R1 > R2 in
NSG scenario, as the two SPs set the prices for their services simultaneously in this scenario. For the
R1 < R2 case, we can get the similar results. The NSG scenario corresponds to the practical IoT
market where two SPs with different quality of services begin to set the prices for their offered services
simultaneously. Based on the number of end users in equilibrium N1 and the given subscription price
p1, the profit optimization problem of SP1 is formulated as Problem1:

max
p1

π1

s.t. p1 ≥ 0
(15)

where N1 is given in Equation (9) and π1 is denoted as

π1 = N1 p1 − R1[α + β(R1 + R2)]

= N(1− p1 − p2

R1 − R2
)p1 − R1[α + β(R1 + R2)].

(16)

Similarly, given the number of end users in equilibrium N2 and the given subscription price p2,
the profit optimization problem of SP2 in NSG scenario is formulated as Problem2:

max
p2

π2

s.t. p2 ≥ 0
(17)

where N2 is given in Equation (10) and π2 is denoted as

π2 = N2 p2 − R2[α + β(R1 + R2)]

= N(
p1 − p2

R1 − R2
− p2

R2
)p2 − R2[α + β(R1 + R2)].

(18)

By solving the above two problems respectively, we have the following results, which are proved
in Appendix B.
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Proposition 2. There exists a unique Nash Equilibrium price pair (pn
1 , pn

2 ) in the NSG scenario.

Based on Proposition 2, we have the following corollary.

Corollary 1. The profits of the two SPs in the NSG scenario are denoted as:

πn
1 = pn

1 Nn
1 − R1[α + β(R1 + R2)], (19)

πn
2 = pn

2 Nn
2 − R2[α + β(R1 + R2)]. (20)

where Nn
1 and Nn

2 the number of users that choose of SP1 and SP2 in NSG scenario for the R1 > R2 case.

3.3. Stackelberg Game (SG)

We next analyze the strategic interaction between two SP1 and SP2 which is modelled as a
SG [29,31]. We first consider the R1 > R2 case, and then analyze the R1 < R2 case. Under the condition
that R1 > R2, the SG scenario corresponds to the practical case that the entrant SP2 plans to set the
prices for its offered services in an IoT market whose incumbent SP1 has set the prices for its services
with better quality of service. We assume that SP1 is the game leader and SP2 is the game follower.
SP1 first sets subscription price to maximize its profits and SP2 sets subscription price by anticipating
SP1’s response. Then, the equilibrium prices of the two SPs in the SG scenario are obtained by using
the backward induction method.

Based on the subscription price of SP1, SP2 sets subscription price to maximize its profits, which is
formulated as Problem3:

max
p2

π2

s.t. p2 ≥ 0
(21)

where N2 is given in Equation (10) and π2 is denoted in Equation (18).
Given N1 and the subscription price p1, the profit optimization problem of SP1 is formulated as

Problem4:

max
p1

π1

s.t. p1 ≥ 0
(22)

where N1 is given in Equation (9) and π1 is denoted in Equation (17).
By solving Equations (21) and (22), we get the following results, which are proved in Appendix C.

Proposition 3. Under the condition that R1 > R2, there exists a unique Nash Equilibrium price pair (ps
1, ps

2)
in the SG scenario in the IoT market.

Accordingly, we get the following corollary:

Corollary 2. Under the condition that R1 > R2, the profits of SP1 and SP2 in the SG scenario are denoted as:

πs
1 = ps

1Ns
1 − R1[α + β(R1 + R2)], (23)

πs
2 = ps

2Ns
2 − R2[α + β(R1 + R2)]. (24)

where Ns
1 and Ns

2 are the number of users that respectively choose SP1 and SP2 in SG scenario for the
R1 > R2 case.



Sensors 2018, 18, 4422 9 of 20

For the case R1 < R2, we can get the following results by following the similar analysis procedure
to the R1 > R2 case, which are proved in Appendix D.

Proposition 4. Under the condition that R1 < R2, there exists a unique Nash Equilibrium price pair (ps
1, ps

2)
in the SG scenario in the IoT market.

Corollary 3. Under the condition that R1 < R2, the profits of SP1 and SP2 in the Stackelberg game scenario
are denoted as:

πs
1 = ps2

1 Ns2
1 − R1[α + β(R1 + R2)], (25)

πs
2 = ps2

2 Ns2
2 − R2[α + β(R1 + R2)]. (26)

where Ns2
1 and Ns2

2 are the number of users that respectively choose SP1 and SP2 in SG scenario for the
R1 < R2 case.

4. Simulation Results

In this section, we present simulations results to analyze and discuss our analysis in the previous
sections. More in detail, we measure how users’ joining decision policy, and SPs’ equilibrium prices
and profits vary with different parameters in the considered two competition scenarios.

4.1. Parameter Setting

We apply the default parameters of duopoly IoT market as follows: for the R1 > R2 case, R1 = 50,
R2 = 20, for the R1 < R2 case, R1 = 20, R2 = 50, and N is fixed as 10,000 in both of the two cases.
These values are set by referring to [8]. We use MATLAB to get the simulation results.

4.2. Impact of Quality of Data Rate

We first analyze the impact of R1 varying in the range [20, 50] with R2 = 20. Figures 4 and 5
show, respectively, the number of users choosing SP1 and SP2 in the two competition scenarios vary
with R1 increasing. From the two figures we observe that SP1 can attract more users in NSG scenario
than in SG scenario, while SP2 can attract more users in SG scenario than in NSG scenario. The two
figures indicate that the number of users that chooses SP1 decreases in NSG scenario while the number
of users that chooses SP2 increases with R1 increasing. This is because SP1 achieves much higher
equilibrium price for its services with R1 increasing, as can be observed from Figures 6 and 7. From
Figures 4 and 5, it is clearly observed that SP1 attracts more users than SP2 as it can provide higher
quality of service.
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Figure 4. The number of users that choose SP1 with varying R1 in the two competition scenarios for
R1 > R2.



Sensors 2018, 18, 4422 10 of 20

20 30 40 50 60
0

100

200

300

400

 R
1

U
se

r 
nu

m
be

r 
N

2

 

 

 NSG
 SG

Figure 5. The number of users that choose SP2 with varying R1 in the two competition scenarios for
R1 > R2.

Figures 6 and 7 depict how the equilibrium prices set by SP1 and SP2, respectively, vary in the
considered two competition scenarios. The results of the two figures show that both SPs can achieve
higher equilibrium prices in the SG scenario than in the NSG scenario. The two figures also suggest
that both SPs can set the higher equilibrium prices if R1 increases. With comparing these two figures,
we can observe that SP1 sets much higher equilibrium prices than SP2 in the two competition scenarios.
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Figure 6. The equilibrium price of SP1 with varying R1 in the two competition scenarios for R1 > R2.
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Figure 7. The equilibrium price of SP2 with varying R1 in the two competition scenarios for R1 > R2.

In Figures 8 and 9, we compare the profits of the two SPs with varying R1 in the range [20, 60]
and R2 = 20 in NSG and SG scenarios, respectively. From the two figures we can observe that SP1 gets
more profits than SP2 in the two competition scenarios. The two figures also show that both of SP1
and SP2 can get more profits if R1 increases.
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Figure 8. Comparing the profits of the two SPs with varying R1 in the NSG scenario for R1 > R2.
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Figure 9. Comparing the profits of the two SPs with varying R1 in the SG scenario for R1 > R2.

We next analyze the impact of R2 varying in the range [10, 45] with R1 = 50. The number of users
choosing SP1 and SP2 in the two competition scenarios is shown in Figures 10 and 11, respectively.
From Figure 10, we can find that SP1 attracts more users in the NSG scenario than in the SG scenario
while SP2 attracts more user in the SG scenario than in the NSG scenario. We can also observe that the
number of users choosing SP2 decreases even if its data rate increases. This is because more users tend
to choose SP1 whose equilibrium price decreases with R2 increasing, as illustrated in Figure 12.
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Figure 10. The number of users that choose SP1 with varying R2 in the two competition scenarios for
R1 > R2.
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Figure 11. The number of users that choose SP2 with varying R2 in the two competition scenarios for
R1 > R2.
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Figure 12. The equilibrium price of SP1 varies with R2 increasing in the two competition scenarios for
R1 > R2.

In Figures 12 and 13, we respectively show how the equilibrium prices set by SP1 and SP2 vary
with R2 increasing in the two competition scenarios. From Figure 12 we can observe that SP1 sets
higher equilibrium price in SG scenario than in NSG scenario, and its equilibrium price decreases
with R2 increasing. From Figure 13 we can also observe that SP2 achieves higher equilibrium price
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in SG scenario, until reached a threshold; above this threshold, it sets higher equilibrium prices in
NSG scenario. Figure 13 suggests that the equilibrium price of SP2 in NSG scenario first increases then
decreases while its data rate increases.
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Figure 13. The equilibrium price of SP2 varies with R2 increasing in the two competition scenarios for
R1 > R2.

In Figures 14 and 15, we compare the profits of the two SPs with R2 varying range in [5, 45] and
R1 = 50 in NSG and SG scenarios, respectively. From the two figures we can observe that the profit
of SP1 decreases with R2 increasing and the profit of SP2 first increases then it decreases in the two
competition scenarios.
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Figure 14. Comparing the profits of the two SPs with R2 increasing in the NSG scenario for R1 > R2.
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Figure 15. Comparing the profits of the two SPs with R2 increasing in the SG scenario for R1 > R2.

We next analyze the impact of the quality of data rate on the equilibrium prices and profits of
the two SPs for R1 < R2 case in SG scenario. Figure 16 shows the equilibrium price of the two SPs
with R1 varying range in [5, 45] and R2 = 50 in SG scenario. From this figure we can observe that the
equilibrium price of SP1 first increases then decreases with R1 increasing, and the equilibrium price of
SP2 decreases with R1 increasing in SG scenario. Figure 17 shows the equilibrium price of the two SPs
with R2 varying range in [20, 60] and R1 = 20 in SG scenario. From this figure we can observe that the
equilibrium price of SP1 decreases with R2 increasing and the equilibrium price of SP2 increases in the
SG scenario. From this figure we can also observe that SP2 should provide better quality of data rate to
achieve higher equilibrium price.
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Figure 16. The equilibrium prices of the two SPs with varying R1 in the SG scenario for R1 < R2.
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Figure 17. The equilibrium prices of the two SPs with varying R2 in the SG scenario for R1 < R2.

In Figure 18 shows profits of the two SPs with R1 varying range in [5, 45] and R2 = 50 in SG
scenario. From this figure we can observe that the profit of SP1 first increases then decreases with R1

increasing, and the profit of SP2 decreases in SG scenario. Figure 19 shows the equilibrium prices of
the two SPs with R2 varying range in [20, 60] and R1 = 20 in SG scenario. From this figure we can
observe that the profit of SP1 first increases then decreases with R2 increasing, but the change is not
obvious. However, the profit of SP2 increases rapidly with R2 increasing. From Figures 18 and 19 we
get the observation that the quality of data rate has more impact on the profit of SP2.
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Figure 18. The profits of the two SPs with varying R1 in the SG scenario for R1 < R2.
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Figure 19. The profits of the two SPs with varying R2 in the SG scenario for R1 < R2.
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4.3. Impact of Cost Factor

We analyze how the cost factors affect the profits of the two SPs in the two competition scenarios.
We first consider the R1 > R2 case and analyze the impact of α varying in the range [0, 10] with β = 0.5,
R1 = 50 and R2 = 20, then analyze the impact of β varying in the range [0, 1] with α = 10, R1 = 50
and R2 = 20. Figures 20 and 21 show how α affects the profits of the two SPs in NSG scenario and
SG scenario, respectively. Figures 22 and 23 show how β affects the profits of the two SPs with α = 1,
R1 = 50 and R2 = 20 in NSG scenario and SG scenario, respectively. By comparing the four figures we
observe that the cost factor β has a higher impact on the profits of the two SPs than the cost factor of α.

0 2 4 6 8 10
0

2000

4000

6000

8000

α

Pr
of

its
 o

f 
th

e 
tw

o 
SP

s

 

 

 SP1
 SP2

Figure 20. The impact of α on the profits of the two SPs in the NSG scenario for R1 > R2.
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Figure 21. The impact of α on the profits of the two SPs in the SG scenario for R1 > R2.
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Figure 22. The impact of β on the profits of the two SPs in the NSG scenario for R1 > R2.
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Figure 23. The impact of β on the profits of the two SPs in the SG scenario for R1 > R2.
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We next analyze how the cost factors affect the profits of the two SPs in the SP scenario for the
R1 < R2 case. We first analyze the impact of α varying in the range [0, 10] with β = 0.5, R1 = 10 and
R2 = 50, then analyze the impact of β varying in the range [0, 1] with α = 10, R1 = 20 and R2 = 50.
From Figures 22–25, we can observe that the profits of the two SPs decrease with the two cost factors α

and β increasing. We can also observe that β has more impact on the profits of the two SPs.
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Figure 24. The impact of α on the profits of the two SPs in the SG scenario for R1 < R2.
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Figure 25. The impact of β on the profits of the two SPs in the SG scenario for R1 < R2.

5. Conclusions

We studied price competition for the provision of WSN-based services in an IoT market, where
two SPs compete for a common pool of end users. We modelled the interaction between the two SPs
and end users as a Stackelberg game, where the two SPs set the prices for their services in the first
stage, and in the second stage the end users make their decisions to buy services from one of the two
SPs or choose neither of them. In particular, we studied two competition scenarios between the two
SPs, i.e., the NSG scenario and SG scenario.

For the R1 > R2 case, our numerical results show that as the data rate of SP1 increases, SP1 can
attract more users and set higher prices in equilibrium than SP2 in the two competition scenarios,
and SP1 sets higher equilibrium prices in NSG scenario than that in SG scenario while SP2 sets higher
equilibrium prices in SG scenario than in NSG scenario. With the data rate of SP2 increasing, SP1 can
attract more users in NSG scenario than in SG scenario while SP2 can attract more users in SG scenario
than in NSG scenario. Furthermore, the equilibrium prices of SP1 decreases in the two competition
scenarios and the equilibrium price of SP2 first increases and then decreases in the NSG scenario.
For the R1 < R2 case, our numerical results show that the increasing of R1 does not necessary mean
that SP1 can achieve higher equilibrium price. Although SP1 has first-move advantage in the SG
scenario for the R1 < R2 case, it does not obtain more revenue than SP2. Our numerical results on the
cost factors suggest that β has more impact on the profits of the two SPs than α for both R1 > R2 and
R1 < R2 cases.

In this paper, we focus on competition scenarios between the two SPs. In the practical case,
the two SPs may cooperate with each other to improve their profits. For example, they may form a
coalition to improve the profits of them. Such case is widely studied in the literature, such as [32,33].
There are several interesting research directions which can be left as future works. First, a comparison
of the profits in the two competition scenarios and the cooperation case is very interesting. Second,
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we can extend this work to the oligopoly case where there are more than two SPs. In this case, we can
apply the model in [34], where the authors studied price competition in an oligopoly network market.
Third, we can extend the static scenario to the dynamic scenario where the data rate of the two SPs
may change in different time slots and users may have different preferences for services in different
time slots. The evolutionary game can be applied in the dynamic scenario [19].
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Appendix A. Users’ Joining Decision Policies

In Proposition 1, for case (1), if θ1 > θ∗, according to Equations (7) and (8) we can get F1 = 1−
F1(θ1) = 0, F2 = 0. For case (2), if θ1 < θ∗, which means that

θ1 − θ∗ =
R1 p2 − R2 p1

R1(R1 − R2)
< 0, (A1)

As R1 − R2 > 0, from Equation (A1) we get R1 p2 − R2 p1 < 0.
From

θ2 − θ∗ =
R1 p2 − R2 p1

R2(R1 − R2)
, (A2)

θ1 − θ2 =
R2 p1 − R1 p2

R1R2
. (A3)

As R1 p2 − R2 p1 < 0, we get θ2 − θ∗ < 0 and θ1 − θ2 > 0, that is, θ2 < θ1 < θ∗. According to
Equations (7) and (8) we have

F1 = 1− F(θ1), (A4)

F2 = F(θ∗)− F(θ2). (A5)
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Appendix B. Proof of Proposition 2

The objective function of Problem1 in Equation (15) is a convex function, therefore, by taking the
derivative of π1 with respective to p1, and setting the it to zero,

∂π1

∂p1
= 1− 2p1 − p2

R1 − R2
= 0, (A6)

From which, we get

p1 =
R1 − R2 + p2

2
. (A7)

Similarly, by taking the derivative of π2 with respective to p2, and setting the equality to zero,
we have

∂π2

∂p2
=

p1 − 2p2

R1 − R2
− 2p2

R2
= 0, (A8)

From which, we have

p2 =
p1R2

2R1
. (A9)

By solving Equations (A7) and (A9), we get the optimal subscription prices of the two SPs in the
NSG scenario, which are denoted respectively as

pn
1 =

2R1(R1 − R2)

4R1 − R2
, (A10)

pn
2 =

R2(R1 − R2)

4R1 − R2
. (A11)

Accordingly, by substituting Equations (A10) and (A11) into Equations (9) and (10) respectively,
the number of users that choose of SP1 and SP2 in NSG scenario are denoted respectively as

Nn
1 = NF1 = N

2R1

4R1 − R2
, (A12)

Nn
2 = NF2 = N

2(R1 − R2)

4R1 − R2
. (A13)

Appendix C. Proof of Proposition 3

The objective function of Equation (21) is convex, from which the optimal subscription price p2

can be expressed as function of p1 as follows

p2 =
p1R2

2R1
, (A14)

By inserting the above equation into the objective function of and Equation (22), we get an
equivalent problem Problem5:

max
p1

N[1− (2R1 − R2)p1

2R1(R1 − R2)
]p1 − R1[α + β(R1 + R2)]

s.t. p1 ≥ 0
(A15)

It is obvious that the objective function of Equation (A15) is convex, therefore, from the first-order
condition, the optimal subscription price of SP1 in SG scenario denoted by ps

1 is expressed as

ps
1 =

R1(R1 − R2)

2R1 − R2
, (A16)
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By substituting Equation (A16) into Equation (A14) the optimal subscription price of SP2 in SG
scenario (denoted by ps

2) is

ps
2 =

R2(R1 − R2)

2(2R1 − R2)
. (A17)

Substituting Equations (A16) and (A17) into Equations (9) and (10), we obtain

Ns
1 = NF1 =

N
2

, (A18)

Ns
2 = NF2 = N

R1 − R2

2R1 − R2
. (A19)

Appendix D. Proof of Proposition 4

For the R1 < R2 case, the objective functions are the same as the R1 < R2 case, but Ns
1 and Ns

2 are
respectively denoted in Equations (11) and (12).

The objective function of Equation (21) is convex, from which the optimal subscription price p2

can be expressed as function of p1 as follows

p2 =
p1 − R1 + R2

2
, (A20)

By inserting the above equation into the objective function of and Equation (22), we get an
equivalent problem Problem6:

max
p1

N[
p1 + R1 − R2

2(R1 − R2)
− p1

R1
]p1 − R1[α + β(R1 + R2)]

s.t. p1 ≥ 0
(A21)

It is obvious that the objective function of Equation (A21) is convex, therefore, from the first-order
condition, the optimal subscription price of SP1 in SG scenario denoted by ps2

1 is expressed as

ps2
1 =

R1(R2 − R1)

2(2R2 − R1)
, (A22)

By substituting Equation (A22) into Equation (A20) the optimal subscription price of SP2 in SG
scenario (denoted by ps2

2 ) is

ps2
2 =

(4R2 − R1)(R2 − R1)

4(2R2 − R1)
. (A23)

Substituting Equations (A22) and (A23) into Equations (11) and (12), we obtain

Ns2
1 = NF1 =

N
4

, (A24)

Ns2
2 = NF2 = N

4R2 − R1

4(2R2 − R1)
. (A25)

References

1. Miorandi, D.; Sicari, S.; Pellegrini, F.D.; Chlamtac, I. Internet of things: Vision, applications and research
challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]

2. Huang, M.; Liu, Y.; Zhang, N.; Xiong, N.; Liu, A.; Zeng, Z.; Song, H. A services routing based caching scheme
for cloud assisted CRNs. IEEE Access 2018, 6, 15787–15805. [CrossRef]

3. Dong, M.; Ota, K.; Liu, A.; Guo, M. Joint optimization of lifetime and transport delay under reliability constraint
wireless sensor networks. IEEE Trans. Parall. Distrib. 2016, 9, 225–236. [CrossRef]

http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1109/ACCESS.2018.2815039
http://dx.doi.org/10.1109/TPDS.2015.2388482


Sensors 2018, 18, 4422 19 of 20

4. Guijarro, L.; Pla, V.; Vidal, J.R.; Naldi, M. Game theoretical analysis of service provision for the Internet of
Things based on sensor virtualization. IEEE Trans. J. Sel. Areas Commun. 2017, 35, 691–706. [CrossRef]

5. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2015–2020; White Paper; Cisco: San Jose, CA,
USA, 2015.

6. Zhang, W.; Fan, R.; Wen, Y.; Liu, F. Energy Optimal Wireless Data Transmission for Wearable Devices:
A Compression Approach. IEEE Trans. Veh. Technol. 2018, 64, 9605–9618. [CrossRef]

7. Guijarro, L.; Pla, V.; Vidal, J.R.; Naldi, M.; Mahmoodi, T. Wireless Sensor Network-Based Service Provisioning
by a Brokering Platform. Sensors 2017, 17, 1115. [CrossRef] [PubMed]

8. Sun, W.; Guijarro, L.; Pla, V.; Vidal, J.R. Joint resource and price competition in wireless sensor network-based
service provision. In Proceedings of the 14th IEEE Annual Consumer Communications & Networking
Conference (CCNC 2017), Las Vegas, NV, USA, 8–11 August 2017; pp. 254–259.

9. Niyato, D.; Hoang, D.T.; Luong, N.C.; Wang, P.; Kim, D.; Han, A. Smart data pricing models for the Internet
of Things: A bundling strategy approach. IEEE Netw. 2016, 30, 18–25. [CrossRef]

10. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a service model for smart cities
supported by Internet of Things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [CrossRef]

11. Zhou, Z.; Gong, J.; He, Y.; Zhang, Y. Software defined machine-to-machine communication for smart energy
management. IEEE Commun. Mag. 2017, 55, 52–60. [CrossRef]

12. Li, G.; Wu, J.; Li, J.; Zhou, Z.; Guo, L. SLA-Aware Fine-Grained QoS Provisioning for Multi-Tenant
Software-Defined Networks. IEEE Access 2018, 6, 159–170. [CrossRef]

13. Niyato, D.; Lu, X.; Wang, P.; Kim, D.; Han, A. Economics of Internet of Things: An information market
approach. IEEE Wirel. Commun. 2016, 23, 136–145. [CrossRef]

14. Guijarro, L.; Pla, V.; Vidal, J.; Naldi, M. Maximum-profit two-sided pricing in service platforms based on
wireless sensor networks. IEEE Wirel. Commun. Lett. 2016, 5, 8–11. [CrossRef]

15. Sanchis-Cano, A.; Romero, J.; Sacoto-Cabrera, E.J.; Guijarro, L. Economic feasibility of wireless sensor
network-based service provision in a duopoly setting with a monopolist operator. Sensors 2017, 17, 2727.
[CrossRef] [PubMed]

16. Liu, X.; Dong, M.; Ota, K.; Hung, P.; Liu, A. Service pricing decision in cyber-physical systems: insights from
game theory. IEEE Trans. Serv. Comput. 2016, 9, 186–198. [CrossRef]

17. Ren, S.; Park, K.; Schaar, M. Entry and spectrum sharing scheme selection in femtocell communications
markets. IEEE/ACM Trans. Netw. 2013, 21, 218–232. [CrossRef]

18. Zhang, C.; Gu, B.; Yamori, K.; Xu, S.; Tanaka, Y. Duopoly competition in time-dependent pricing for
improving revenue of network service providers. IEICE Trans. Commun. 2013, E96-B, 2964–2975. [CrossRef]

19. Elias, J.; Martignon, F.; Chen, L.; Altman, L. Joint operator pricing and network selection game in cognitive
radio networks: Equilibrium, system dynamics and price of anarchy. IEEE Trans. Veh. Technol. 2013, 62,
4576–4589. [CrossRef]

20. Dong, M.; Liu, X.; Qian, Z.; Liu, F.; Wang, T. QoE-ensured price competition model for emerging mobile
networks. IEEE Wirel. Commun. 2015, 22, 50–57. [CrossRef]

21. Tang, L.; Chen, H. Joint pricing and capacity planning in the iaas cloud market. IEEE Trans.
Cloud Comput. 2017, 5, 158–171. [CrossRef]

22. Li, H.; Dong, M.; Ota, K.; Guo, M. Pricing and repurchasing for big data processing in multi-clouds.
IEEE Trans. Emerg. Top. Comput. 2016, 4, 266–277. [CrossRef]

23. Ardagna, D.; Panicucci, B.; Passacantando, M. Generalized nash equilibria for the service provisioning
problem in cloud systems. IEEE Trans. Serv. Comput. 2013, 6, 429–442. [CrossRef]

24. Liu, X.; Dong, M.; Liu, Y.; Liu, A.; Xiong, N. Construction Low Complexity and Low Delay CDS for Big Data
Code Dissemination. Complexity 2018, 2018, 5429546. [CrossRef]

25. Su, Z.; Xu, Q.; Luo, J.; Pu, H. A Secure Content Caching Scheme for Disaster Backup in Fog Computing
Enabled Mobile Social Networks. IEEE Trans. Ind. Inform. 2018, 14, 4579–4589. [CrossRef]

26. Liu, Z.; Tsuda, T.; Watanabe, H.; Ryuo, S.; Iwasawa, N. Data driven cyber-physical system for landslide
detection. Mobile Netw. Appl. 2018, 1–12. [CrossRef]

27. Wu, J.; Dong, M.; Ota, K.; Li, J.; Guan, Z. Big Data Analysis-Based Secure Cluster Management for Optimized
Control Plane in Software-Defined Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 27–38. [CrossRef]

28. Zhou, Z.; Liao, H.; Gu, B.; Saidul Huq, K.; Mumtaz, S.; Rodrigue, J. Robust Mobile Crowd Sensing:
When Deep Learning Meets Edge Computing. IEEE Netw. 2018, 32, 54–60. [CrossRef]

http://dx.doi.org/10.1109/JSAC.2017.2672239
http://dx.doi.org/10.1109/TVT.2018.2859433
http://dx.doi.org/10.3390/s17051115
http://www.ncbi.nlm.nih.gov/pubmed/28498347
http://dx.doi.org/10.1109/MNET.2016.7437020
http://dx.doi.org/10.1002/ett.2704
http://dx.doi.org/10.1109/MCOM.2017.1700169
http://dx.doi.org/10.1109/ACCESS.2017.2761553
http://dx.doi.org/10.1109/MWC.2016.7553037
http://dx.doi.org/10.1109/LWC.2015.2487259
http://dx.doi.org/10.3390/s17122727
http://www.ncbi.nlm.nih.gov/pubmed/29186847
http://dx.doi.org/10.1109/TSC.2015.2449314
http://dx.doi.org/10.1109/TNET.2012.2198073
http://dx.doi.org/10.1587/transcom.E96.B.2964
http://dx.doi.org/10.1109/TVT.2013.2264294
http://dx.doi.org/10.1109/MWC.2015.7224727
http://dx.doi.org/10.1109/TCC.2014.2372811
http://dx.doi.org/10.1109/TETC.2016.2517930
http://dx.doi.org/10.1109/TSC.2012.14
http://dx.doi.org/10.1155/2018/5429546
http://dx.doi.org/10.1109/TII.2018.2849984
http://dx.doi.org/10.1007/s11036-018-1031-1
http://dx.doi.org/10.1109/TNSM.2018.2799000
http://dx.doi.org/10.1109/MNET.2018.1700442


Sensors 2018, 18, 4422 20 of 20

29. Fudenberg, D.; Tirole, J. Game Theory; MIT Press: Cambridge, MA, USA, 1991.
30. Feng, Y.; Li, B.; Li, B. Price competition in an oligopoly market with multiple iaas cloud providers.

IEEE Trans. Comput. 2014, 63, 59–73. [CrossRef]
31. Zhou, Z.; Tan, L.; Gu, B.; Zhang, Y.; Wu, J. Bandwidth Slicing in Software-Defined 5G: A Stackelberg Game

Approach. IEEE Veh. Technol. Mag. 2018, 13, 102–109. [CrossRef]
32. Zhou, Z.; Yu, H.; Xu, C.; Zhang, Y.; Mumtaz, S.; Rodriguez, J. Dependable content distribution in d2d-based

cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Trans. Intell. Transp.
2018, 19, 953–964. [CrossRef]

33. Su, Z.; Hui, Y.; Xu, Q.; Yang, T.; Liu, J.; Jia, Y. An Edge Caching Scheme to Distribute Content in Vehicular
Networks. IEEE Trans. Veh. Technol. 2018, 67, 5346–5356. [CrossRef]

34. Zhang, C.; Gu, B.; Yamori, K.; Xu, S.; Tanaka, Y. Oligopoly competition in time-dependent pricing
for improving revenue of network service providers with complete and incomplete information.
IEICE Trans. Commun. 2015, 98, 20–32. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.2013.153
http://dx.doi.org/10.1109/MVT.2018.2814022
http://dx.doi.org/10.1109/TITS.2017.2771519
http://dx.doi.org/10.1109/TVT.2018.2824345
http://dx.doi.org/10.1587/transcom.E98.B.20
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Model
	Duopoly Competitive IoT Market
	Nash Equilibrium in the Duopoly IoT Market
	Noncooperative Strategic Game (NSG)
	Stackelberg Game (SG)

	Simulation Results
	Parameter Setting
	Impact of Quality of Data Rate
	Impact of Cost Factor

	Conclusions
	Users' Joining Decision Policies
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	References

