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Abstract: A systemic problem for microelectromechanical systems (MEMS) has been the large gap
between their predicted and actual performances. Due to process variations, no two MEMS have
been able to perform identically. In-factory calibration is often required, which can represent as
much as three-fourths of the manufacturing costs. Such issues are challenges for microsensors that
require higher accuracy and lower cost. Towards addressing these issues, this paper describes how
microscale attributes may be used to enable MEMS to accurately calibrate themselves without external
references, or enable actual devices to match their predicted performances. Previously, we validated
how MEMS with comb drives can be used to autonomously self-measure their change in geometry in
going from layout to manufactured, and we verified how MEMS can be made to increase or decrease
their effective mass, damping, and or stiffness in real-time to match desired specifications. Here,
we present how self-calibration and performance control may be used to accurately sense and extend
the capabilities of a variety of sensing applications for the Internet of things (IoT). Discussions of
IoT applications include: (1) measuring absolute temperature due to thermally-induced vibrations;
(2) measuring the stiffness of atomic force microscope or biosensor cantilevers; (3) MEMS weighing
scales; (4) MEMS gravimeters and altimeters; (5) inertial measurement units that can measure all
four non-inertial forces; (6) self-calibrating implantable pressure sensors; (7) diagnostic chips for
quality control; (8) closing the gap from experiment to simulation; (9) control of the value of resonance
frequency to counter drift or to match modes; (10) control of the value of the quality factor; and (11)
low-amplitude Duffing nonlinearity for wideband high-Q resonance.
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1. Introduction

Attributes of microelectromechanical systems (MEMS) include a wide variety of transduction
capabilities in packages that are small in size, weight, power, and cost. Such attributes facilitate
the Internet of Things (IoT), where physically-sensed information about the environment is passed
between objects (things) and the Internet. In addition to monitoring the performance of critical
processes, MEMS that are widely and ubiquitously distributed will enable the Internet to sense the
physical world. Examples of IoT application areas include: (1) society—health care, media and
entertainment, smart environments, intelligent transportation, smart retail, security and surveillance;
(2) environment—smart agriculture, disaster management, pollution control, and smart power plants;
and (3) industry—supply chain management, aerospace and aviation, transportation and logistics,
smart metering, warehouse and storage [1–4]. IoT will generate an enormous amount of data.
The quality of sensed data will be based on the performance of MEMS. Although MEMS are very
precise, they have accuracy issues.

There are many IoT applications that do to not require MEMS sensors with high accuracy,
precision, or performance control, but for present or future applications that cannot afford wide
margins of uncertainty, then highly accurate, precise, and extended behavioral control may make
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such applications possible. For instance, the inability of today’s MEMS to self-calibrate means that a
distribution of MEMS will have a large uncertainty and unknown accuracy. Inaccurate data fed into
an accurate model will yield inaccurate results. That is, while a 10% uncertainty can be sufficient for
some applications, it may not be sufficient for others, and for applications that require a distribution of
MEMS to behave identically, or to match prediction, or to change behavior altogether, such systems
may greatly benefit from performance control technology.

For envisioned IoT applications that require accurate sensing or well-specified performance,
advances in calibration or control for MEMS during deployment is needed. Due to systemic process
variations, increasing design complexities, and increasing integration, the International Technology
Roadmap for Semiconductors (ITRS) identifies packaging and testing as the greatest challenges for
microelectromechanical systems (MEMS) technologies [5–7]. An inertial measurement unit (IMU)
is one example of an integrated system, consisting of a tri-axis accelerometer (translation), tri-axis
gyroscope (rotation), tri-axis magnetometer (compass), and pressure sensor (altimeter), where the
greatest challenge is improving resolution, bias, and drift while reducing costs.

There has not been a quick and inexpensive method to test such 10 degree of freedom (DOF)
multimode sensors at the wafer- or chip-level, which bottlenecks throughput, increases cost, and
impedes design improvements. Such difficulties require designers to consider the back-end of
manufacturing issues, such as packaging and testing, at the beginning of the design process. In-factory
testing of devices amounts to 25% to 75% of manufacturing costs [5].

The MEMS community is also lacking a comprehensive set of measurement standards. Although
there are plenty of testing methods, there are too few testing standards. Standards are needed because
different testing methods yield different measurement results, which discourages a consensus on
preferred methods. The lack of standards creates problems at hand-off points between processing
stages, between manufacturers, and it negatively affects international commerce. Currently, there
are standards for measuring Young’s modulus, cantilever length, layer thickness, and residual
stress/strain [8]. However, the standards themselves can have issues. For instance, the Young’s
modulus standard requires the measurement of density (which has no microscale standard), thickness
(where profilometry is affected by surface roughness and underlying gap, and ellipsometry is affected
by material transparency and spot size which is typically much larger than flexure width), undamped
out-of-plane resonance (many MEMS deflect in-plane, and many materials are anisotropic), anchor
type (boundary compliance and fillets measurably affect performance), and actuation method (affects
mode shape). Most measurement methods are functions of one or more quantities that do not have a
standard, are not well-measured, or are found in a look-up table. Such issues yield large uncertainties
(>10%) and unknown accuracy.

A 10% error results in a measurement value having just one significant digit. Inaccurate
data can result in misinformed decisions. Although some IoT applications will not require
measurements beyond one significant digit, there are many IoT applications envisioned that will need
to correctly measure small subtleties, be able to recalibrate after long-term dormancy or after harsh
environmental changes, and be able to bridge the large gap between measurement and corresponding
predictive models.

Regarding process variations, geometric and material properties measurably vary between
facilities, between successive runs at the same facility, and between chips on the same wafer. Device
packaging, which can also affect performance, often needs to be considered throughout all stages of
sensor design. Small variations can significantly affect performance. For instance, a quarter-micron
overcut (near the diffraction limit of visible light) on a flexure that is 2 µm in width will result in planar
stiffness that is nearly twice as large as was predicted by its layout geometry.

Due to the numerous design parameters and the issues with measuring them, a “black box”
method is often employed in the factory to calibrate MEMS, where output signals are correlated
with input disturbances. In addition to the abovementioned problems of testing multi-DOF systems,
since the equation of motion of the system remains unknown, it is possible for output signals due to
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untested combinations of disturbances to incorrectly identify causes. Unlike the electrical domain,
where inductance, resistance, capacitance, voltage, and current are readily measured and traceable to
international measurement standards, there have not been accurate and traceable ways to measure
microscale mass, damping, stiffness, displacement, and force for MEMS.

In addition to efforts for measuring manufactured geometric and material properties, there
have been efforts to compensate for such process variations such as post-fabrication mechanical or
electrical tuning.

Examples of mechanical tuning include methods that remove material to adjust mass or stiffness
such as laser trimming [9] or reactive ion etching or ion milling [10], and methods that add material
such as polysilicon deposition [11] or silver electro-deposition [12]. Such methods were shown to help
compensate for process variation by adjusting resonant frequency by 10%.

Prior efforts in electrical tuning include methods to improve quality factor, adjust stiffness, and
modify effective damping. For instance, in Reference [13], quality factor was increased three orders by
increasing the effective stiffness of a cantilever through position-controlled feedback. In Reference [14],
position-controlled force-feedback used to improve bandwidth and linearity. In Reference [15], tapered
comb fingers under a DC bias reduce resonant frequency. In Reference [16], position-controlled
digital force-feedback was used to modify effective stiffness to reduce resonance frequency by 93%.
In References [17–19], effective damping was reduced through velocity-controlled electrical feedback.
And in Reference [20], tunable bifurcation was demonstrated in a linear system using analog electronic
feedback spring softening and hardening.

Towards the self-calibration and performance control of MEMS for IoT applications, this paper
describes: (1) how mass, damping, stiffness, and force of a MEMS device can be accurately measured
with quantifiable uncertainty in Section 2; (2) how such quantities can be changed on demand in
Section 3; and (3) how such capabilities may benefit IoT in Section 4. We summarize in Section 5.

2. Self-Calibration

This section describes how packaged and deployed MEMS devices with comb drives can be made
to accurately measure their own mass, damping, stiffness, displacement, and force without the need
for in-factory calibration or external references. The extension of this metrology to other types of
MEMS sensors is discussed below. The method is accurate, repeatable, and reliable. Here, accuracy is
a measure of the difference between the average value and the true value; uncertainty is the order of
the most significant uncertain digit due to the totality of measurement noise; repeatability is the ability
of a measurement method to obtain the same value after reassembling the experiment; and reliability
is the ability of the same measurement method to achieve the same results by using different testing
equipment (i.e., test equipment by a different manufacturer). We define verification as a test of how
well different methods of analyses agree with each other (such as analytical theory versus simulation);
and we define validation as a test of how well a measurement method agrees with the true value.

Validation. The lack of accurate and traceable measurement standards for MEMS makes direct
validation difficult because the true value is unknown. However, a condition that must hold true in
the validation of any metrological method is that two or more sensors that use that method must agree
on their measured values whenever identical disturbances are applied. For instance, although the
amount of an applied force may be unknown, two different sensors that use the same metrological
method to measure that force should agree on their measurements of that force.

Assumptions. We assume that: (1) Geometric features that are within close-proximity to each other
undergo identical process variations. This assumption is, of course, measurable through validation
tests. (2) The following analysis requires that comb drives operate within their linear range of motion.

Sequence of measurements. We previously presented the electrically-probed measurement of the
gap between structures and flexure width. The measurements were validated against scanning
electron microscopy [21,22]. In either case, a relationship was necessarily identified that expressed
the mechanical quantity as a function of electrical measurands only. Doing so enables measurements
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to be performed completely within a packaged chip. Since most MEMS relations are coupled to
each other by one or more other mechanical quantities, then a sequence of quantity extraction exists.
That is, relationships between unknown mechanical quantities mi (such as stiffness, width, mass,
gap, damping, force, Young’s modulus, density, etc.) and measurable electrical quantities ei (such
as capacitance, voltage, frequency, etc.) can be expressed by the following electro-micro-metrology
(EMM) functions Gi:

m1 = G∗1 (e1)

m2 = G2(m1, e2) = G1(e1, e2)

m3 = G3(m2, e3) = G2(e1, e2, e3)
...
mN = GN(mN−1, eN) = GN(e1, . . . , eN)

(1)

where the first seed relation G∗1 is special in that it is not a function of any mechanical quantity.
All subsequent measurements of mechanical quantities mi, i > 1, depend on one or more prior
measurements mj, j < i. However, each mi quantity is ultimately a function of electrical measurands
only. In all, relations in Equation (1) form a ordered sequence of quantity extractions. Due to
interdependency between mechanical quantities, a large number of mechanical quantities can be
determined from a much smaller number of electrical measurands.

Quantifiable uncertainty. The uncertainty of an electrical measurand, δej, is easily determined
by, for example, the order of the most significant uncertain digit on its readout meter. Subsequently,
the uncertainty of the mechanical quantity, δmi, of the MEMS device can be determined by a 1st-order
multivariate Taylor expansion about ej as shown in Equation (2).

In Equation (2), the small-valued electrical uncertainties δej are multiplied by the large-valued
electromechanical sensitivities ∂Gi/δej. It is not uncommon to have uncertainties on the order of
O
(
10−18) with corresponding sensitivities on the order of O

(
1012). As length scale decreases, so too

does the sensitivity, which is a reason why this metrology method becomes tractable at the microscale
and below:

δm1 =
∂G∗1
∂e1

δe1

δm2 =
∂G2

∂e1
δe1 +

∂G2

∂e2
δe2

δm3 =
∂G3

∂e1
δe1 +

∂G3

∂e2
δe2 +

∂G3

∂e3
δe3

...

δmN =
∂GN
∂e1

δe1 + . . . +
∂GN
∂eN

δeN .

(2)

Example. Let’s apply the above EMM concepts to the type of MEMS shown in Figure 1. The device
consists of two pairs of comb drives for actuation and sensing, a pair of asymmetric gaps, and a
pair of folded flexure spring supports. Upon fabrication, packaging, and deployment, the device
would be subjected to process variations, packaging stress, and environmental changes, yielding
the following unknown properties: Young’s modulus, Poisson’s ratio, viscosity, geometric overetch,
layer thickness, material density, permittivity, fringing field factor, curvature of radius for the fillets
located at all vertices, gaps between comb fingers, etc. As a consequence, the quantities that depend on
such properties are unknown as well. This includes mass, damping, stiffness, force, displacement, etc.
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Figure 1. Simulated illustration of an electrically-probed calibration of a MEMS device. One probe
applies a voltage V1 to close one of two asymmetric gaps, while the differential capacitance to traverse
gap1 is measured. Many other aspects of the design, such as the type flexures, are irrelevant. By closing
the gaps and resonating the structure, the device’s mass, damping, stiffness, and state can be accurately
and precisely measured after packaging and long-term dormancy. This is, it is capable of self-calibration.

The first step is to find an EMM expression G∗1 that relates an unknown mechanical quantity to
electrical quantities. For our testcase, we choose our first seed relation to be overetch. A variety of
methods can be used to close gaps, depending on gap size, such as DC voltage, resonance, mechanical
force, etc. Overetch can then be used to determine displacement (G2), which will be used to determine
force (G3), which will be used to determine stiffness (G4), and so on. As derived in Reference [2],
geometric overcut can be determined by measuring the change in capacitances (∆C1 and ∆C2) required
to close the manufactured gaps (gap1 and gap2 in Figure 1). That is:

gap1 = gap1,Layout + ∆gap = gap1,Layout

(
1− n + ∆C2/∆C1

1 + ∆C2/∆C1

)
(3)

where ∆gap [m] is overcut, i.e., the difference in going from layout gap gap1,Layout to manufactured gap
gap1; and n 6= 1 is the ratio between the gaps, i.e., gap2,Layout = n gap1,Layout. This first measurement of
a mechanical quantity is a function of electrical measurements and exactly-known design parameters.
It is important to note that the change in capacitance ∆C1 =

[
Ccomb

1 (gap1) + CP
1

]
−
[
Ccomb

1 (0) + CP
1

]
cancels out the parasitic capacitance CP

1 , which enables this method to be reliable because parasitic
capacitance will be different for each comb drive and between each test setup (e.g., dielectric charging,
probe contact area, cable orientation, etc.). The well-defined gap-stops enable the method to be
repeatable. And utilizing precise electrical measurands enables high accuracy and low uncertainty. For
instance, Analog Devices (ADI, Norwood, MA, USA) reports to have sensed an average comb drive
displacement of 100 femtometers (a thousandth of the diameter of a hydrogen atom) due to a change
in comb drive capacitance of a zeptofarad [23]. Such a sensitivity ratio (comb drive displacement to
change in capacitance) agrees with our results below.

The result from Equation (3) can be used to measure the next mechanical quantity, displacement.
Since the comb drives will be operating within their linear range, then the ratio of change in capacitance
to the distance traversed is the comb drive constant Ψ1 = ∆C1/gap1 [F/m]. Therefore, for any
intermediate deflection, x < gap1, that produces a change in capacitance ∆C(x), the deflection can be
measured as:

x = ∆C(x)/Ψ1 [m]. (4)
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The linear operating range also permits us to equate ∂C1/∂x= ∆C1/∆x = Ψ1. Therefore, the drive
force, generated by an applied voltage V1, which includes variable comb finger gaps and fringing
fields, is:

Fdr =
1
2

Ψ1V2
1 [N]. (5)

The ratio of the change in force to change in displacement is a measure of stiffness, which includes
nonlinearities, defects, fillets, non-rectangular cross sections, course sidewalls, variable widths, variable
Young’s modulus, anchor compliance, etc. The stiffness of the system is:

K =
1
2

Ψ2
1V2

1 /∆C(x) [N/m]. (6)

Once stiffness is known, a measure of system mass can be obtained by measuring undamped
displacement resonance frequency. However, since a high vacuum is necessary for undamped
displacement-resonance frequency, a much more practical measure can be done by measuring the
velocity-resonance frequency ω

( .
xmax

)
= ω0 =

√
K/M, which is independent of damping, unlike

displacement-resonance. Since mass, stiffness, and velocity-resonance is related by M = K/ω2
0, from

Equation (6) we have:

M =
1
2

Ψ2
1 V2

1
∆C1 ω2

0
[kg]. (7)

Damping D is related to mass by D = 2Mγ2, where the exponential decay rate is γ =√(
ω2

0 −ω2
r
)
/2 and ωr is the damped displacement-resonance frequency. We therefore have:

D =

√
ω2

0 −ω2
r

2
Ψ2

1 V2
1

ω2
0 ∆C1

[N·s/m]. (8)

At this point in our sequence of quantity extractions, we now have quantities that define the
microsystem’s equation of motion along the x-direction:

M
..
x + D

.
x + Kx = Fdr + ∑ Fexternal (9)

Continuing on, the sequence of quantity extractions leads to relations for displacement amplitude,
quality factor, Young’s modulus, material density, viscosity, layer thickness, etc. For example,
amplitude and qualify factor are:

xmax =
Fmax

D
√(

ω2
0 −ω2

r
)
/2

[m] (10)

and:

Q = ωd
M
D

=
1
2

√
ω2

0 + ω2
r

ω2
0 −ω2

r
(11)

where ωd =
√(

ω2
0 + ω2

r
)
/2 is the exponentially decaying oscillation frequency without drive

excitation (Fdr = 0).
So instead of being limited to frequency response, this metrological method enables accurate

measurements of mass, damping, stiffness, force, and state of the system. In particular, this facilitates
accurate sensing of force and displacement due to external disturbances, which can be quite useful
since nearly all physical quantities can be traced to relations that depend on force and displacement.
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As Equation (2) describes, measurements of uncertainties for each of the extracted quantities
of (3) to (11) can be determined by a truncated multivariate Taylor expansion, where each electrical
measurand is expressed in terms of its nominal and uncertain quantities; i.e., emeasured → e± δe .
For instance, for capacitance and voltage, we have:

∆Cmeasured =
(

C f inal ± δC
)
− (Cinitial ± δC)

=
(

C f inal − Cinitial

)
±
√

2
∑

i=1
(δCi)

2

= ∆C±
√

2 |δC| [F]

(12)

and similarly:
Vmeasured = V ±

√
2 |δV| [V], (13)

where it is assumed that δC and δV represent the totality of all noise, which can be conservatively
determined by the decimal place of the most significant uncertain digit on, say, the capacitance or
voltage meter’s readout display. For example, the uncertainty expressions for displacement (4) and
force (4) are:

δx =

{
√

2 gap1,Layout
(n− 1)(2∆C(x)− ∆C1 − ∆C2)

(∆C1 + ∆C2)
2

}
δC (14)

δF =

{ √
2 V

gap1,Layout(n− 1)

}
δC +

{ √
2 (∆C1 + ∆C2)

gap1,Layout(1− n)

}
δV (15)

where the curly-bracketed expressions are the sensitivities. For the device in Figure 1, the sensitivity
of δx is on the order of O

(
109) meters/Farad for the device in Figure 1, so an uncertainty for δx that

would be on the order of an angstrom requires that δC = O
(
10−10) [F].

Off-the-shelf capacitance meters can have precisions of δC = O
(
10−12)F, or a pF [24–26]. The most

precise capacitance meters to date have δC = O
(
10−21)F, or zF [27,28]. Similarly, the sensitivities of

δF are O
(
106) and O

(
10−9) for the first and second terms in Equation (15). The order of precision for

voltage source/meters typically range from millivolts to nanovolts. Such a range of precisions for
capacitance and voltage are expected to result in a range of force uncertainties from micronewtons to
femtonewtons. However, there are also other ways to improve precision. In Reference [21] it is shown
that the order of EMM uncertainties also depends on design parameters, which affect the order of
sensitivities for δx and δF. That is, there will be a decrease in sensitivity if there is a decrease in comb
finger gap gf, or if there is an increase in the number of comb fingers Nf, gap ratio n, layer thickness
h, or gap-stop size gap1. So by choice of device design parameters and meter precisions, a desired
precision magnitude may be achieved. Tangible examples of force magnitudes are provided in Table 1.



Sensors 2018, 18, 4411 8 of 19

Table 1. Relative magnitudes of tangible forces.

Force Tangible Phenomena Conventional Tools

1 N Weight of Newton’s apple
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10−1 N Translational force on a pitcher’s curveball
10−2 N Width of 1 cm3 of water
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10−3 N Particulates in 1 m3 of urban air
10−4 N Indentations
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10−5 N Surface tension per centimeter of water
10−6 N Solar radiation/m2 near earth
10−7 N Exact force/length of a pair of 1 ampere wires 2 m apart
10−8 N Weight of a dust mite, or hydrogen/liter of water pH7
10−9 N Covalent bond

10−10 N Noncovalent bond, or DNA rupture
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10−11 N Gravitational force between two 1 kg masses 1 m apart
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10−12 N Light pressure of a 1 mW laser pointer, or protein folding
10−13 N Casimir force/µm2 on parallel plates 1 µm apart
10−14 N Weight of bacterium, or force of its Brownian motion
10−15 N Resolution of optical tweezers
10−16 N Force between a pair of electrons 15 µm apart
10−17 N Resolution of magnetic force resonance force microscopy
10−18 N Unpaired electron spins

3. Performance Control

The previous section described how system mass, damping, stiffness, force, and state can be
accurately and precisely measured using electro micro metrology (EMM), this section describes how
the effective mass, damping, and stiffness of a MEMS device can be changed, such that the microsystem
can modify its performance on demand (POD). EMM can be used to recalibrate to the modified effective
mass, damping, and stiffness of a PODMEMS device.

With control over effective mass, damping, and stiffness, PODMEMS devices are expected to
be able to compensate for performance variations due to processing, packaging, temperature, noise,
damping, or extend dynamic range, or be used to accommodate multiple application modes. Such
control is achieved by continuously monitoring the state of the proof mass, and feeding back forces
Ff b

(
xτ ,

.
xτ ,

..
xτ
)

onto the proof mass that are proportional to displacement, velocity, and or acceleration.
A system-level view of the feedback for a PODMEMS device is shown in Figure 2. With the addition
of feedback forces Ff b, the equation of motion (9) becomes:

M
..
x + D

.
x + Kx = Fdr −

[
Ff b

(
xτ ,

.
xτ ,

..
xτ
)]

= Fdr − [FK + FD + FM]

= Fdr −
[
Kexτ + De

.
xτ

+ Me
..
xτ
] (16)

where Ff b = FK + FD + FM; the state-proportional terms are FK = Kexτ , FD = De
.
xτ , and FM = Me

..
xτ ;

and the sensed displacement xτ = x(t− τ), velocity
.
xτ

=
.
x(t− τ), and acceleration

..
xτ

=
..
x(t− τ) of

the proof mass are subject to feedback delay τ due to the RC time constant of the analog feedback
circuit. The quantities Ke, De, and Me are the electrically-generated proportionality constants that can
increase or decrease the effective mass, damping, or stiffness system. That is, Equation (16) may be
rewritten as:

Fdr =
(

M
..
x + Me

..
xτ
)
+
(

D
.
x + De

.
xτ
)
+ (Kx + Kexτ)

= Me f f
..
x + De f f

.
x + Ke f f x

(17)
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where the effective mass, damping, and stiffness may be expressed as:

Me f f ≈ M + Me − Deτ

De f f ≈ D + De − Keτ + Meω2τ,
Ke f f ≈ K + Ke,

(18)

assuming low latency. For large latencies, exact expressions for Me f f , De f f , and Ke f f are derived in [29].
As seen in Equation (18), there is a small amount of crosstalk within the effective mass and damping,
i.e., Deτ, Keτ, Meω2τ, where the amount of crosstalk is reduced by feedback delay.
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The dynamical range of PODMEMS is much greater than what can be achieved by MEMS 
that do not exploit feedback. Due to feedback latency, instability is also possible. The dynamic 
range and stability of a PODMEMS device can be visually determined by Figure 3a–d as follows 
(exact expressions for stability are derived in Reference [29]). The vertical and horizontal axes in 
Figure 3 are Ke/K and De/D. The family of curves (or lobes) indicate the bounds of instability, 
where PODMEMS is stable within the lobe, which is bounded between the curve and dashed line 
at Ke/K = −1. PODMEMS is unstable outside a given lobe. The family of lobes are parameterized by 
Me in Figure 3a,b, and parameterized by delay τ in Figure 3c,d. Interesting aspects of Figure 3 are 
that: (1) most MEMS, which are passive, are constrained to operate at the origin, at (Ke/K, De/D, Me/M) 
= (0, 0, 0), while PODMEMS may operate throughout the entire 3D performance control space of 
(Ke/K, De/D, Me/M); (2) as shown in Figure 3d, there are regions where the overall damping can be 
negative while stability is maintained; (3) the electrical mass, damping, and stiffness are allowed to 
be several orders greater in magnitude than their purely mechanical counterparts; and (4) due to the 
small length scale and time scale of MEMS, the domain of stability for any PODMEMS is very 
sensitive to feedback latency. 

Figure 2. MEMS + performance controller [29]. Symmetric feedback components on the right and
left (not shown) sides of the structure operate 180◦ out of phase for continuous feedback response
throughout each cycle. Feedback forces are applied to left and right combs according to position,
velocity, and acceleration.

The dynamical range of PODMEMS is much greater than what can be achieved by MEMS that
do not exploit feedback. Due to feedback latency, instability is also possible. The dynamic range
and stability of a PODMEMS device can be visually determined by Figure 3a–d as follows (exact
expressions for stability are derived in Reference [29]). The vertical and horizontal axes in Figure 3 are
Ke/K and De/D. The family of curves (or lobes) indicate the bounds of instability, where PODMEMS is
stable within the lobe, which is bounded between the curve and dashed line at Ke/K = −1. PODMEMS
is unstable outside a given lobe. The family of lobes are parameterized by Me in Figure 3a,b, and
parameterized by delay τ in Figure 3c,d. Interesting aspects of Figure 3 are that: (1) most MEMS,
which are passive, are constrained to operate at the origin, at (Ke/K, De/D, Me/M) = (0, 0, 0), while
PODMEMS may operate throughout the entire 3D performance control space of (Ke/K, De/D, Me/M);
(2) as shown in Figure 3d, there are regions where the overall damping can be negative while stability
is maintained; (3) the electrical mass, damping, and stiffness are allowed to be several orders greater in
magnitude than their purely mechanical counterparts; and (4) due to the small length scale and time
scale of MEMS, the domain of stability for any PODMEMS is very sensitive to feedback latency.
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where, instead of such characteristic behaviors being constant as they are for passive MEMS, such 
characteristics for PODMEMS are greatly modifiable, controlled by electrical feedback forces that 
depend on real-time state monitoring. 

Let’s apply the above PODMEMS concepts to the MEMS device shown in Figure 2. The design 
parameters for the device are: pairs of folded flexures having width w = 2 µm, thickness h = 20 µm, and 
length L = 294.7 µm; pairs of 100-finger comb drive arrays with finger length Lf = 20 µm, finger width 

Figure 3. Domains of stability for PODMEMS [29]. The horizontal-axis is the ratio of electrical to
mechanical damping. The vertical-axis is the ratio of electrical to mechanical stiffness. The dome areas
between the curve and horizontal line Ke/K = −1 are domains of stability. Within a dome, stability
decreases the closer the state is to its boundary. Stability is zero on the boundary. And outside a dome,
instability increases the farther the state is from its stability boundary. The plot in (a) shows stability
domains for different values of Me. (b) is a magnified view about point (De/D, Ke/K) = (0, 0); (c) shows
stability domains for different values of τ; and (d) shows a magnified view near (0,0). Note, further
magnification of (d) shows that all curves do not intersect at a single point near (−1, −2.9 × 10−3).

With a system described by Equation (17), the characteristic effective exponential decay rate γe f f ,
quality factor Qe f f , amplitude at displacement resonance xmax, and velocity resonance ω0 are:

γe f f =
1
2

De f f /Me f f (19)

Qe f f =
ωd,e f f

2γe f f
(20)

xmax =
Fdr

De f f ωd,e f f
(21)

ω0,e f f =

√
Ke f f

Me f f
(22)

De f f


<
√

4Me f f Ke f f , under-damped

=
√

4Me f f Ke f f , critically-damped

>
√

4Me f f Ke f f , over-damped

(23)

where, instead of such characteristic behaviors being constant as they are for passive MEMS, such
characteristics for PODMEMS are greatly modifiable, controlled by electrical feedback forces that
depend on real-time state monitoring.

Let’s apply the above PODMEMS concepts to the MEMS device shown in Figure 2. The design
parameters for the device are: pairs of folded flexures having width w = 2 µm, thickness h = 20
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µm, and length L = 294.7 µm; pairs of 100-finger comb drive arrays with finger length Lf = 20 µm,
finger width wf = 2 µm, and gap gf = 2 µm; Young’s modulus E = 160 GPa, density ρ = 2300 kg/m3,
structure-to-substrate gap ggnd = 2 µm, viscosity µ = 1.75 × 10−5 sPa, and proof mass area am =
17,424 µm2 (including flexures and combs). This yields a lumped mass, damping, stiffness, and
nonlinear stiffness of M = ρ × volume = 8 × 10−10 kg, D = µam/ggnd = 1.55 × 10−7 Ns/m, K =
2Ehw3/L3 = 2 N/m, and KNL = K + κx2, where κ = π2Ewh/(64L3) = 4.10 × 1010 N/m3. The purely
mechanical period of the structure is 12.57 µs. Specifications of off-the-shelf electronics for simple
feedback yields a delay time of τ ≈ 50 ns.

When designing feedback control systems, it can be useful to express maximal mechanical forces
in terms of equivalently-applied voltages; i.e., the voltage necessary to generate the equivalent feedback
force. For simple harmonic motion, we have:

VK =

√
Kxmax/

1
2

Ψ (24)

VD =

√
Dωrxmax/

1
2

Ψ (25)

VM =

√
Mω2

r xmax/
1
2

Ψ (26)

where the applied control voltages VK, VD, and VM, correspond to feedback forces FK, FD, and
FM. For example, using the PODMEMS device from Figure 2 where ωr= 50 krad/ sec and Ψ ≈
2N f εh/g f = 3.5× 10−14 F/m, for xmax = 0.1 µm, we have VD = 0.66 V and VK = VM = 10.6 V; or for
xmax = 1 µm, we have VD = 2.1 V and VK = VM = 33.6 V. That is, control voltages can be reduced by
decreasing xmax, K, or D, or by increasing Ψ or M. Ψ can be increased by decreasing finger gaps size gf,
or increasing layer thickness h, or number of fingers Nf.

For example, let’s apply the above analysis to halving or doubling the resonance frequency of
a MEMS device. This can be done by decreasing Ke f f or Me f f such that ω0,e f f =

√
Ke f f /Me f f =

1
2

√
K/M or 2

√
K/M. This involves setting Ke f f = K + [Ke] = K + [−3K/4] = K/4 to halve the

resonance or Me f f = M + [Me] = M + [−3M/4] = M/4 to double the resonance of its purely
mechanical counterpart.

4. Possible IoT Applications

This section envisions a few possible applications of self-calibration and performance control that
may be useful for IoT and other application areas.

4.1. Metrology

The benefits of self-calibration are expected to: (1) reduce the cost of MEMS devices since the
costly expense of in-factory calibration can be reduced or eliminated, which should also increase
manufacturing throughput; (2) greatly extend the usefulness of sensors since devices will be able to
re-calibrate after long-term dormancy or after harsh environmental change; (3) improve the quality of
data being analyzed in terms of increased accuracy and reduced uncertainty; and (4) close the large gap
in going from experiment back to simulation, to build experimentally-accurate predictive computer
models of IoT sensors and of their environments. Examples follow:

Temperature sensors. Accurate measurements of temperature can be useful for improved: weather
predictions, ecological health monitoring, infrared sensing, sensing of factory equipment or chemical
processes, implantable health monitoring, continuous measurement of engine efficiency, heat energy,
pressure, volume, thermal efficiency, coefficient of performance, entropy production, etc. Due to the
length scale, most microdevices are subject to measurable thermally-induced vibrations. From the
equipartition theorem, mechanical potential energy is related to thermal energy by 1

2 K
〈

x2〉 = 1
2 kBT [30]
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where kB is the Boltzmann constant, T is absolute temperature, and
〈

x2〉 is the mean-square of
displacement due to thermally-induced vibrations, and other sources. Since EMM enables accurate
measurements of flexure stiffness K and displacement x, then by the equipartition theorem, the absolute
temperature T of the MEMS device can be accurately measured.

Atomic force microscopy and biosensors. Once a MEMS device is accurately calibrated, it becomes an
accurate sensor for calibrating other devices, such as cantilevers for atomic force microscope (AFM),
cantilevers for biosensors, the self-calibration of AFM-on-chips, mass sensors, etc. See Table 1. Due
to the inaccuracies and large uncertainties (>10%) of conventional cantilever stiffness measurement
methods [30–34], it is difficult for biotechnologists to discern targeted from nonspecific bindings, and
most AFM users do not use the AFM to measure force [35–37]. However, by pressing the tip of a
cantilever against the sidewall of a calibrated MEMS device (Figure 4), the MEMS device can apply a
known force (5) to deflect the cantilever by measured amount (4). The force balance relation would
be F = (K + KAFM)x, where KAFM is the unknown AFM cantilever stiffness to be determined. Since
xAFM = x, then the photodiode can be simultaneously calibrated.
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Mass sensors. Depending on application, a mass m can be adsorbed onto a calibrated vibrating
diaphragm, or m can be measured within a microfluidic channel embedded within flexures and proof
mass. Although nano- to micro-mechanical resonant mass sensors have been able to detect a change in
frequency due to additional mass m, the accurate measurement of that added mass has been difficult
due to the inability to accurately measure the system stiffness K and mass M [38–40]. The ability of
EMM to accurately measure MEMS stiffness K and mass M can be used to measure the added mass m
of a resonating device; i.e., ω0 =

√
K/(M + m), where m is the unknown to be determined.

Gravimetry. Gravimeters are often used to measure changes in the earth’s gravitational field due
to large underground deposits of resources, human activities, or seismology. The accuracy of relative
or absolute MEMS-based gravimeters [41,42] depend on accurate calibration of stiffness and mass.
By tilting an EMM-calibrated MEMS device from being perpendicular to parallel to the direction of
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gravitational acceleration, then absolute gravity can be measured as K x = M
..
xg, where

..
xg is the

unknown gravitational acceleration being measured.
Altimetry. Conventional MEMS altimeters work by measuring atmospheric pressure [43,44].

The measurement of height can be an additional dimension added to GPS. As a MEMS device changes
in height hg, there is a small change in gravity. The change in gravitational force on a MEMS proof
mass of, say, M= 10 × 10−9 kg, by the height of a person, the Empire State Building, or the cruising
altitude of a passenger jet is 4 fN, 1 pN, or 26 pN, as determined by Newton’s law of gravitation:
∆F = G MEarth M

[
R−2

Earth −
(

REarth + hg
)−2
]
, where G = 6.67 × 10−11 m3 · kg−1 · s−2, MEarth = 5.9 ×

1024 kg, REarth = 6.37 × 106 m. Or, if gravity is assumed to be constant, the change in height ∆hg can be
determined by equating gravitational potential energy to the mechanical potential energy stored in the
flexure: M

..
xg ∆hg = 1

2 K
(

x2 − x2
re f erence

)
.

Inertial measurement units. More accurate translational and or rotational reckoning may be required
by mobile IoT devices such as drones, self-driving vehicles, robots, precision handheld tools, automated
surgical tools, manufacturing machines, refined GPS (<<1 m), air/marine/space craft, etc. Present
IMUs have difficulty with drift due to thermal expansion from changes in temperature [45]. EMM can
be used to recalibrate IMUs as temperatures change, and because the equation of motion is known,
the forces due to movement within a non-inertial reference frame can be accurately measured. These
forces include: (1) the Coriolis force due to the proof mass M moving with velocity

.
r =

.
x in a frame

that is rotating with frequency vector ω: FCoriolis = −2M ω× .
r; (2) the Euler force due to M located

at a displacement vector r from the point of rotation of a nonconstant frequency vector
.

ω that is
changing in magnitude and or direction: FEuler = −M

.
ω × r ; (3) the centrifugal force on MEMM

along the direction of vector r from the point of rotation vector ω to M: Fcentri f ugal = −M ω× (ω× r);

and (4) the translational force due to the acceleration
..
R of the sensor’s chip (or frame of reference):

Ftranslational = −M
..
R. Since a self-calibrated IMU would be able to directly measure these non-inertial

forces, then the respective unknowns (ω,
.

ω, r,
..
R) become measurable.

Pressure sensors/Sound sensors. Conventional MEMS pressure sensors or microphones are usually
based on piezo or capacitive transduction [46–48]. Pressure sensors typically consist of a diaphragm
that is exposed to external pressures and substances. The diaphragm of implantable pressure sensors
for blood pressure monitoring can become coated with biomatter, which changes the diaphragm’s
effective stiffness. Using a vertical comb drive to sense diaphragm deflection, the diagram may be
re-calibrated to its new stiffness prior to measurement. Additionally, if an implantable sensor consisted
of a pair of calibrated pressure sensors at a known distance apart, then in addition to absolute pressure,
the viscosity and velocity of blood flow may also be measured.

Diagnostic structure/Quality control. Examples of prior efforts in MEMS diagnostics include
using large arrays of test structures [49] and coupled measurement plus computer modeling [50].
Once a device’s mass, damping, and stiffness are measured, continuing on with the sequence of
property extractions, geometric and material properties can be determined as well. In this way,
an EMM diagnostic chip can accompany each process run for quality control purposes. Since EMM
can be electrically probed, the testing and corresponding modification of the fabrication recipe can
be automated. The diagnostic chip may also be placed at different locations about the wafer to
examine how, say, Young’s modulus, varies across the wafer, from wafer to wafer, from run to run.
For MEMS devices that are not amenable to direct EMM calibration, an EMM test structure device
can be manufactured alongside the main device, within close-proximity, such that the main IoT
sensor and the EMM test structure would be subjected to closely-matched geometric and material
property variations.

Experimentally-accurate modeling. The performance of a fabricated MEMS device diverges
significantly from its originating CAD model due process variations and other nonidealities.
By substituting a device’s measured parameters into the CAD model, higher-order effects can be
studied for a better understanding of the device behavior. Improved understandings can enable the
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causes of subtle disturbances to be more easily identified or can pinpoint areas of improvements for
the next design generation to shorten design cycles. This can ultimately extend to the refined modeling
of distributed IoT phenomena such as environmental models.

4.2. Performance Control

The benefits of performance control are expected to: (1) close the large gap in going from
simulation to experiment, whereby the device corrects for variations in processing, packaging, and
environment; (2) optimize sensing behavior to environmental conditions; (3) extend utility and
dynamic range beyond the limits of structural micromachining constraints; and (4) maintain or
improve manufacturing yield while improving performance.

Resonance control. MEMS sensors often utilize resonance for stronger signal to noise ratios,
filtering, signal processing, timing, inertial navigation, communications, etc. As previously mentioned,
prescribing a particular resonance is problematic due to process variations and requires tuning [51].
As illustrated in Figure 5a, a wafer of identically laid out resonators that were predicted to have
a particular resonance frequency within CAD will differ in resonance upon fabrication. However,
by adjusting the effective mass or stiffness by electrical force feedback, the desired resonance can be
obtained. Moreover, the resonances of all devices can change to a different value on demand (see
Figure 5b). For example, the resonance can be reduced by a factor of two by reducing the effective
stiffness by a factor of four. That is, by setting the feedback electrical stiffness to be Ke = − 3

4 K, then

the new resonance becomes ω0,new =
√

Ke f f /M =
√
(K + Ke)/M =

√
1
4 K/M = 1

2 ω0,old.
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Figure 5. An illustration of PODMEMS resonance control for a multitude of resonators that were
initially designed to resonate at 30.0 kHz. (a) Due to process variations, none of the MEMS devices will
naturally resonate at 30.0 kHz. (b) By activating PODMEMS performance control, all devices will be
able to identically resonate at 30.0 kHz, or change resonance on demand to a different frequency, such
as 15.0 kHz.

Frequency locking. Drift is a significant challenge for devices that rely on a particular resonance
frequency, such as IMUs, clocks, and notch filters. Small shifts in resonance frequency from drift can
result in significant amplitude attenuation due to extremely narrow bandwidths. Besides tracking
frequency [52,53], it may be possible to counter drift by correcting changes in the effective stiffness in
real time to maintain a constant resonant frequency. For instance, since MEMS resonance (i.e., stiffness)
drifts with temperature, K(T), the MEMS device can be regarded as the slave-oscillator of a phase
locked loop, where the constant driving frequency is the master-oscillator. A phase detector measures
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the phase between the drifting MEMS frequency and the constant driving frequency. The phase signal
is then amplified, filtered, and can be used to increase or decrease the electrical feedback stiffness
KPLL

e , which counters the drifted frequency of the MEMS device, maintaining a desired frequency
ω0 =

√
[K(T)± KPLL

e ]/M = const., which effectively locks the device to a constant frequency that is
independent of temperature.

Mode matching. The ability to match or follow frequencies can be beneficial. For instance, the small
Coriolis force that is proportional to the velocity of the primary mode in vibratory gyros is what
drives the secondary mode to amplitudes that are often on the order of nanometers. The size of the
amplitude depends on how well the primary and secondary resonance modes are matched. Matching
can also eliminate blind spots. Blinds spots in vibratory gyros happen when the velocity in the primary
mode nears the turning points of oscillation, when velocity becomes too small to produce a significant
Coriolis force for the secondary mode, FCoriolis = −2M ω× .

r1. That is, FCoriolis → 0 as
.
r1 → 0 at the

turning points of oscillation, regardless of the size of the input disturbance ω during that moment.
Vibratory gyros experience such blindness twice per period, which contributes to inaccurate results.
However, a pair of matched gyros that maintain a 90◦ phase between them should able to eliminate
blind spots, whereby one gyro will have a peak velocity whenever the other has a zero velocity, such
that either velocity is significant at all times.

Nonlinear dynamics. Geometric nonlinearity in stiffness affects the linearity of sensors. Such
nonlinearity can be reduced or increased by a feedback force of the Duffing-type Fκ = ±κe(xτ)3.
Such control can be used to increase the linearity of sensors or to introduce nonlinearity to linear
(small-deflection) devices [20]. The early onset of nonlinearity can be used to maintain a large resonance
amplitude during frequency shifts by spring hardening or softening. For example, a feedback voltage
of V = 4.5 V at an amplitude of x = 2.2× 10−7 m is equivalent to κe = 4× 1012 N/m3, which is two
orders greater than the purely mechanical geometric stiffness (see Figure 6). If the driving frequency is
detuned to ω = 51.5 krad/s, instead of driving at ω = ω0 = 50.0 krad/s, then as the response curve
translates to the left due to an increase in temperature of, say, 100 oC, then the displacement amplitude
would only change by about 0.02%. However, if the response curve was that of a linear high-Q device
(vertical pole with an extremely narrow bandwidth), then a slight shift in resonance would experience
significant attenuation in displacement amplitude.
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Figure 6. Nonlinear frequency response of M
..
x + D

.
x + Kx + (κ + κe)x3 = F0 cos(ωt), where M =

8× 10−10 kg, D = 1.55× 10−7 Ns/m, K = 2 N/m, κ = 4× 1010 N/m3, κe = 4× 1012 N/m3, and
F0 = 1.7× 10−9 N due to a driving voltage of V0 = 0.9 V. Note that κe is two orders larger than the
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purely mechanical κ, which enables the device to experience high nonlinearity at a much smaller
amplitude, which would otherwise result in a linear response. The benefit of an early onset of
nonlinearity enables large amplitudes to be maintained during resonance drift; i.e., left (or right)
translation of the response curve due to an increase (or decrease) in temperature.

Displacement noise reduction. An increase in effective damping can be useful for static
measurements, reduction of transients, or nanoscale manipulation or positioning beyond the thermal
noise limit [17,18]. For static measurements, systems that are effectively critically-damped offer the
fastest route to static equilibrium by setting De f f to be

√
4Me f f Ke f f . This is done by feeding back a force

that is proportional and opposite to sensed velocity. A reduction in displacement noise by damping
could also benefit applications that would otherwise require a significant amount of averaging.

High Q. Quality factors Q are critically important for gyro sensitivity (bias ◦/h). Applications for
gyro sensitivity range from low-end tactical (1◦/h < bias < 15◦/h, 1000 < Q < 10,000), tactical (0.1◦/h <
bias < 1◦/h, 10,000 < Q < 40,000), to navigational (0.001◦/h < bias < 0.1◦/h, 40,000 < Q < 10M). As Q
increases from 1000 to 10 M, cost increases from $10 to $100k. A decrease in effective damping Deff
should be useful for achieving a higher effective quality factor Qeff, whereby the energy lost per cycle
is fed back into the system. Achieving high-Qeff through feedback should be less costly. Usually, the
higher the Q, the more difficult it is to match driving frequency with device resonance frequency due
to drifting temperatures due to a narrowing vertical bandwidth. However, as modeled in Figure 6,
nonlinear feedback may be viewed as effectively increasing the bandwidth, not by increasing the
width of the curve, but by controllably bending the curve to the right by spring hardening or bending
the curve to the left by spring softening. Such nonlinearity effectively increases the frequency range
at which the driving frequency results in a large displacement amplitude. This enables high-Q
resonators to more easily maintain a large displacement amplitude while the resonance drifts by
using a detuned driving frequency. Previously, spring softening has been achieved by using small
gap-closing electrodes with limited displacement amplitude, and spring hardening has been achieved
by exploiting mechanical geometric stiffness due to large displacement amplitudes [54].

Modularity. Devices that can modify their effective mass, damping, and or stiffness should be
amenable to achieving modularity, where a new device should be able to mimic the performance of the
old device that it is replacing. Or conversely, a distribution of old sensors may be required to update
their performances to that of new sensing specifications.

Beyond micromachining limits. It should be possible to significantly reduce the effective mass or
stiffness along a particular degree of freedom to that of, say, a nanoscale device. That is, while there
are micromachining limits to the flexures and proof masses for MEMS, the effective stiffness or mass
can be reduced in the x-direction to that of a much smaller device. Since this method of performance
enhancement does not require approaching the fragile limits of micromachining, more robust devices
can be designed that maintain high manufacturing yields.

5. Conclusions

The small size and low power requirements of MEMS sensors are favorable attributes for IoT.
IoT applications that require accurate sensing analysis with low uncertainty require the sensed input
data to be also be accurate with low uncertainty. Presently, most MEMS devices are inaccurate with
large uncertainties. However, we have shown that is it possible to develop MEMS devices that can
autonomously calibrate themselves to achieve much higher accuracy and much lower uncertainty.
And since uncomprehensive in-factory calibration is time-consuming and bottlenecks throughput, it
can increase the cost MEMS devices by as much as 300%. However, self-calibration may be able to
reduce this cost by reducing or eliminating the need for in-factory calibration; and since self-calibration
is repeatable and reliable, the method may lead to international standardization. Another beneficial
attribute of MEMS devices for IoT is their exceptional performance, where they can, for instance,
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achieve much higher quality factors than purely electrical systems. But performance depends on
structural design, which has been constrained by manufacturing limits. However, our results suggest
that such constraints may be bypassed by feedback performance control, where performances that
were previously intractable could be easily achieved by controlling the effective mass, damping, and
stiffness of the system. While these initial studies of self-calibration and performance control utilize
the comb drive sensor/actuator, further investigations are needed to extend these methods to the other
types of microtransducers. The ability of future microsensors to change their performance behaviors on
demand, or to accurately self-characterize themselves, are expected to greatly extend the applications
and utility of MEMS for IoT, as well as other areas.
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