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Abstract: Nanostructured Indium(III) oxide (In2O3) films deposited by low temperature pulsed
electron deposition (LPED) technique on customized alumina printed circuit boards have been
manufactured and characterized as gas sensing devices. Their electrical properties have monitored
directly during deposition to optimize their sensing performance. Experimental results with oxidizing
(NO2) as well as reducing (CO) gases in both air and inert gas carriers are discussed and modeled.

Keywords: metal oxide gas sensors; nano-structured device; pulsed electron deposition technique;
sensor modeling

1. Introduction

In recent years, Indium(III) oxide (In2O3) has shown a potential as a promising new material for
gas sensing applications, in particular suitable for the detection of low concentrations of oxidizing gases
like O3, NOx, and Cl2 [1–4]. On the other hand, it was also shown that In2O3-based gas sensors may
have sufficient sensitivity and good selectivity toward some reducing gases (such as CO or H2) [5,6],
this latter property strongly depending on the preparation route and surface stoichiometry. In fact,
it is known that sensing performance of a metal oxides sensor is mainly regulated by its microscopic
morphology and defect chemistry, material properties largely depending on the manufacturing process.
In this regard, performance of gas sensors has been shown to be really boosted by using nano-structured
materials [1–3,6].

In past, In2O3 nano-structured films have been manufactured by many different techniques such
as chemical vapor deposition, thermal oxidation of In films, spray pyrolysis, sol–gel, atomic layer
deposition, pulsed laser ablation, DC, and RF-sputtering [7]. These techniques generally require
a complex processing for precursors to be formed in the environment of the deposition chamber.
Furthermore, they require rather high temperatures of the substrate, and therefore generally do not
allow using substrates already equipped with screen printed circuitry, as in the case of gas sensing
devices, which will be damaged or even melted by high temperatures.

In particular, papers by Korotcenkov et al. (e.g., [8,9]), studied deeply the behavior of In2O3

sensors grown by spray pyrolysis, discussing thoroughly the influence of the sensor microstructure on
their performance.

In this work, we deposited nano-crystalline layers of In2O3 on dedicated printed circuit
boards (PCBs). We used a novel deposition method, the low temperature pulsed electron deposition
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(LPED) technique, where a pulsed high power electron beam, permitting the non-equilibrium
extraction of energetic particles, allows for depositing homogeneous films with the proper
stoichiometry of almost any kind of materials at ambient temperatures, so that direct deposition
on temperature-sensitive substrates as PCBs is made possible. In particular, for the sensors presented
in this paper the LPED technique was applied with the simultaneous measurement of the film resistance
during the growth, which is a specific and novel characteristic of our deposition procedure.

Based on previous works from Korotcenkov, we analyzed and modeled the behavior of our In2O3

nano-films deposited by LPED as NOx and CO sensors. Two models are compared to discuss the
behavior of our sensors, one where a ‘dense’ thin film is taken into account, and the other where ‘porous’
films are considered, this latter as already modeled in [10]. The comparison led to the conclusion that,
for film thicknesses which bring to reasonable values for the film resistance, the ‘dense’ thin film model
is the one that best fits the experimental results, which are in agreement with the ones reported by
Korotcenkov in [9]. In particular, reducing the film thickness and the grain size decreases the time
constants of the gas response of In2O3-based gas sensors, and increases the response to oxidizing gases
(thanks also to an increased gas permeability of the film).

2. Sensor Preparation and Characterization

2.1. Thin Film Deposition and Characterization

Thin films were deposited by low temperature pulsed electron deposition (LPED). This deposition
system [11–13] has been developed by Organic Spintronics, Bologna, Italy [14]. LPED is obtained by
means of a pulsed (100 ns), high power (500 MW/cm2), electron beam that penetrates approximately
1 µm into the target resulting in a rapid evaporation of target material, and its transformation in
plasma state. Material of the ablation cloud is used for deposition on the substrate. The non-equilibrium
extraction of the target material facilitates stoichiometric composition of the plasma. The formation of
a dense discharge plasma increases the energy of the ablated particles to several tens of eVs, higher
than during electron beam evaporation or sputtering. This makes it possible to deposit a dense
and almost homogeneous nano-crystalline film even at room temperature. In this way, growing of
adhering dense layers is made possible even on temperature-sensitive substrates with high energy
conversion efficiency. The LPED accelerates electrons using a hollow cathode connected to a dielectric
capillary [11–14]. High voltage is obtained by limiting the lateral expansion of charge carriers by
means of a thin dielectric tube for channel confinement, in such a way that breakdown voltage is
governed by the channel diameter while the length of the channel plays a minor role [15]. A transient
hollow cathode (THC) is connected to the dielectric acceleration tube, filled with gas at low pressure.
High voltage is applied to the THC. A photograph of the deposition chamber during growth of the
In2O3 film is shown in Figure 1; gas used is oxygen. Typical operational characteristics of the system
are a beam power density of about 500 MW/cm2, repetition rate around 20 Hz, energy efficiency about
30%, growth rate about 0.01 nm/s.
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Figure 1. Photograph of the system during deposition of the In2O3 film; gas used is oxygen. 

Target used to deposit the In2O3 films studied in this work is a commercial indium oxide pellet 
(Testbourne Ltd., Basingstoke, United Kingdom, I1-9002-D3). The X-ray diffraction pattern of In2O3 
target material is shown in Figure 2 and compared to reference pattern (PDF 06-0416). The pattern 
has been measured with angles 2θ ranging from 18° to 75°. Data, obtained using a D8 Advance 
Brucker powder diffractometer, CuKα1 radiation, show a low level of impurities. 

 
Figure 2. XRD analysis of the target as compared with the reference pattern PDF 06-0416. 

The quality of the deposited film, prior to preparing gas sensing devices, has been accurately 
analyzed on dedicated test samples. In2O3 thin films with thickness around 230 nm have been 
deposited on glass windows, and have been studied by means of optical transmission measurements, 
SEM analysis, microanalysis, and profilometry. Optical transmission measurements as a function of 
wavelength obtained with our film placed normally to the beam in a PerkinElmer spectrophotometer 
are shown in Figure 3. 

Figure 1. Photograph of the system during deposition of the In2O3 film; gas used is oxygen.

Target used to deposit the In2O3 films studied in this work is a commercial indium oxide pellet
(Testbourne Ltd., Basingstoke, United Kingdom, I1-9002-D3). The X-ray diffraction pattern of In2O3

target material is shown in Figure 2 and compared to reference pattern (PDF 06-0416). The pattern has
been measured with angles 2θ ranging from 18◦ to 75◦. Data, obtained using a D8 Advance Brucker
powder diffractometer, CuKα1 radiation, show a low level of impurities.
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Figure 2. XRD analysis of the target as compared with the reference pattern PDF 06-0416.

The quality of the deposited film, prior to preparing gas sensing devices, has been accurately
analyzed on dedicated test samples. In2O3 thin films with thickness around 230 nm have been
deposited on glass windows, and have been studied by means of optical transmission measurements,
SEM analysis, microanalysis, and profilometry. Optical transmission measurements as a function of
wavelength obtained with our film placed normally to the beam in a PerkinElmer spectrophotometer
are shown in Figure 3.
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Figure 3. Optical transmission of a In2O3 230 nm-thick film on glass substrate. 

From data shown in Figure 3, the absorption coefficient of the film as a function of the 
wavelength can be evaluated 𝛼 = ଵௗ  𝑙𝑛 ቀ ଵ଴଴்(%)ቁ, (1) 

where d = 230 nm is the thickness of the deposited film. For direct optically-allowed inter-band 
transitions, the following relationship holds [16] 𝛼 ∝ ଵఔ ඥℎ𝜈 − 𝐸௚ . So, energy gap Eg can be then 
estimated by fitting with a linear curve the function (αh υ)2 vs. hυ (see plot in inset), where υ is the 
wave frequency and h the Planck constant. The energy gap so obtained, Eg = 3.7 eV, is in agreement 
with what expected for pure In2O3 [17]. 

Profiles of the sample were measured to determine the thickness of the sample (Figure 4a). 
Roughness of the In2O3 film deposited on glass has been also inspected by performing different scans 
with a profilometer on 400 µm length paths. Roughness data for three measurements on three 
different positions of the film are shown in Figure 4b. A roughness of 1–2 nm was measured, showing 
that LPED deposition grows compact dense films closely adhering on the substrate. 

 

Figure 3. Optical transmission of a In2O3 230 nm-thick film on glass substrate.

From data shown in Figure 3, the absorption coefficient of the film as a function of the wavelength
can be evaluated

α =
1
d

ln
(

100
T(%)

)
(1)

where d = 230 nm is the thickness of the deposited film. For direct optically-allowed inter-band
transitions, the following relationship holds [16] α ∝ 1

ν

√
hν− Eg. So, energy gap Eg can be then

estimated by fitting with a linear curve the function (αh υ)2 vs. hυ (see plot in inset), where υ is the
wave frequency and h the Planck constant. The energy gap so obtained, Eg = 3.7 eV, is in agreement
with what expected for pure In2O3 [17].

Profiles of the sample were measured to determine the thickness of the sample (Figure 4a).
Roughness of the In2O3 film deposited on glass has been also inspected by performing different scans
with a profilometer on 400 µm length paths. Roughness data for three measurements on three different
positions of the film are shown in Figure 4b. A roughness of 1–2 nm was measured, showing that
LPED deposition grows compact dense films closely adhering on the substrate.
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SEM analyses performed with a Zeiss EVO MA15 Microscope support the profilometer 
measurements. As shown in Figure 5, the film appears dense and compact. Finally, microanalysis, 
performed in a volume with approximately 1 µm depth, with an Eds Oxford Inca 250, (see Table 1), 
confirms the presence of In2O3 in proper stoichiometry over the supporting glass window.  

 
Figure 5. SEM micrography of a 230 nm thick film grown on glass. 

Table 1. Micronalysis data concerning the average value of the region enclosed by the red box area 
with a depth of approximately 1 µm (partly in glass) 

Spectrum 1 Weight% O Weight% Si Weight% Ca Weight% In Weight% Total 
 31.20 20.66 2.27 45.87 100 
 Atomic% O Atomic% Si Atomic% Ca Atomic% In  
 62.07 23.41 1.80 12.72  

 

Figure 4. (a) Thickness profile (z direction) measured along a 900 µm path from the center of the In2O3

sample deposited on glass. (b) Thickness deviation from flat-film condition, estimated along three
different profiles, 400 µm-long, within the same In2O3 230 nm-thick film deposited on a glass substrate.
For each of them, roughness is calculated as the average value of absolute deviation data.

SEM analyses performed with a Zeiss EVO MA15 Microscope support the profilometer
measurements. As shown in Figure 5, the film appears dense and compact. Finally, microanalysis,
performed in a volume with approximately 1 µm depth, with an Eds Oxford Inca 250, (see Table 1),
confirms the presence of In2O3 in proper stoichiometry over the supporting glass window.
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Figure 5. SEM micrography of a 230 nm thick film grown on glass.

Table 1. Micronalysis data concerning the average value of the region enclosed by the red box area
with a depth of approximately 1 µm (partly in glass).

Spectrum 1 Weight% O Weight% Si Weight% Ca Weight% In Weight% Total

31.20 20.66 2.27 45.87 100

Atomic% O Atomic% Si Atomic% Ca Atomic% In

62.07 23.41 1.80 12.72
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2.2. Sensor Preparation and Characterization

Thin films were deposited by LPED on alumina substrates with the structure described in [18],
and shown in Figure 6. The substrates are equipped with screen printed heaters on the backside,
and with screen printed Pt based resistive temperature detectors (RTD, (a) in Figure 6) on the front.
By means of these devices, the temperature of the tested film can be set and controlled by a feedback
with an accuracy of few degrees in the range 120–400 ◦C [18]. The alumina used for the substrate
(96% alumina as-fired, grain ~2 µm, surface roughness Ra ~800 nm) has large roughness: this choice
grants a large surface area/volume ratio, which is fundamental for gas sensing applications.
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Figure 6. Alumina substrate.

The LPED system was opportunely modified in view to allow for the remote control in real-time
of the film resistance, sensor temperature, and heater supply. The temperature sensor, heater,
and gas-sensor electrodes have been connected to set and monitor directly the substrate temperature,
and to measure the In2O3 film resistance at different steps during deposition, with the aim of selecting a
proper resistance value at 200 ◦C in the range 100 kΩ–10 MΩ. Figure 7 shows the measured resistance
as a function of deposition time for one In2O3 film on an alumina substrate. During deposition,
the temperature of the film, measured in real-time, was in the range 40–60 ◦C. To measure the resistance
at 200 ◦C, the deposition was stopped for a few minutes, and the temperature of the film increased by
means of the internal heater of the gas-sensor. Figure 7 shows a sudden decrease of resistance from
almost infinite to a measurable value after about a 2 h deposition, when a first thin layer is settling
through electrodes. Afterwards, the resistance decreases not linearly during deposition: this indicates
that the substrate is not completely covered by the dense film, due to the high surface roughness of the
substrate, so during the process both the surface area and the thickness grow together.
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 Figure 7. Resistance of the thin film as measured during deposition at 200 ◦C. Film growth rate is
about 0.01 nm/s.

A sensor obtained with this technique is shown in Figure 8. Figure 9a,b show SEM micrographs
of the sensing layer grown between the electrodes. The film covers the alumina substrate uniformly to
mimic its high roughness, maintaining its large surface effective area.
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technique (a,b: different magnifications).

Like many other metal oxides used for gas sensing, In2O3 is a large band-gap (Eg = 3.55–3.75 eV)
semiconductor that, irrespective of the preparation method, behaves as a doped n-type semiconductor
due to favored bulk native point defects (oxygen vacancy donors), with an energy level in the band
gap at less than 0.1 eV from the bottom of the conduction band.

Sensor characterization was performed by the measurement system described in [18], which
allows for the accurate setting of the chemical environment in a test chamber both in terms of gas
composition and flow (up to 500 mL/min), of humidity, and, finally, of film temperature (from 120 ◦C
to 400 ◦C). In particular, a bench of digitally controlled flow-meters is used to properly mix the gases
coming from certified gas tanks in order to obtain the desired concentrations of the target gases.
The proposed sensors were tested in mixtures of dry air and CO or NO2. The experimental data were
obtained in a constant flow of 200 mL/min. The results in the next section were obtained by evaluating
the sensor response to a target gas as:

RESPONSE =
R− R0

R0
× 100 (2)

where R0 indicates the baseline resistance in the carrier gas at the selected temperature, whereas R
indicates the resistance of the film after a fixed time of exposure to the target mixture (4 min for all the
reported experimental results).

3. Experimental Results

The characterization results for sensors obtained after a deposition of 4 h (thickness around
150 nm) are summarized in Figure 10, where the response to CO and NO2 are shown. Moreover, in the
figure the baseline resistance values in the two carrier gases are plotted as a function of temperature.
As expected, the material behaves as an n-type semiconductor, and responds with an increased
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resistance to the oxidizing gases. The behavior in air and nitrogen is similar: oxygen seems to have
little influence on the response to NO2 at high temperatures. Due to the material properties discussed
in the introduction, the sensor shows a satisfactory response to NO2 (60% @ 6 ppm NO2 @ 320 ◦C in
dry air). The response to NO2 in the tested concentration interval is fairly linear, both in nitrogen and
in air. This behavior will be justified later by the proposed model. On the other hand, the sensor exhibits
a negligible response to CO, which shows an anomalous behavior as acceptor-like extrinsic surface
state (see Figure 10). This behavior, for the same temperature interval and in case of nano-grained thin
films (thickness < 200 nm), was already described and discussed in [8].
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Figure 10. Gas sensing properties of a In2O3 sensor (deposition time 4 h, named hereafter sensor A).
Leftmost plot—response as a function of temperature to CO and NO2. Rightmost plots: (a) baseline
resistance in air as a function of temperature; (b) response to NO2 as a function of NO2 concentration
at 300 ◦C.

In detail, it was found that CO always behaves as an acceptor like extrinsic surface state in N2

carrier gas, whereas in oxygen a reducing behavior is superimposed to the oxidizing behavior but only
at high temperature. In [19], the acceptor-like behavior of CO was explained through the presence of
humidity and oxygen in the environment. The experimental results seem only partially in agreement
with this hypothesis, in fact using the dry inert gas carrier this anomalous behavior is still observable.

The low sensitivity to CO and the small variation of the baseline resistance (see Figure 10) can
be both explained by the absence of the depleted region at the surface. Nevertheless, also a small
reactivity of the oxygen deficient surface with CO can be hypothesized. This last possible explanation
is supported by measurements performed with a quartz crystal microbalance (AT-cut 10 MHz) at room
temperature on whose gold electrodes a nano-layer (<100 nm thickness) of In2O3 was deposited with
the same technique [20]. This sensor has a very little response to CO (no measureable response up to
2000 ppm CO), whereas it senses 12 ppm NO2.
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B-deposition time 2 h). Leftmost plot: response as a function of temperature to NO2. Rightmost plots:
(a) Baseline resistance in air as a function of temperature. (b) Response to NO2 as a function of NO2

concentration at 300 ◦C.

The response of the sensors is highly dependent on the deposition time, i.e., on the layer geometry
and film aspect ratio (Figure 11). Both the response and the speed of the sensor are beneficiated by a
reduction of the sensor thickness; the drawback of reducing the deposition time is the reduction of the
surface area and the very large value of the resistance that is obtained with deposition times shorter
than 2 h.

In Figure 12 the transient responses to NO2 of two sensors obtained with different deposition
times are compared: it can be seen that reducing the deposition from 4 h time to 2 h (thickness about
70 nm), the response speed is highly improved, in fact the thinner sensor (sensor B) reaches the steady
state and completely recovers in 4 min at temperatures larger than 290 ◦C.
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Figure 12. Resistance of the chemical film as a function of time when pulses (4 min length) with
different concentration of NO2 are injected into the measurement chamber (24 ppm,12 ppm, 6 ppm).
The total flow is 200 mL/min, carrier gas is N2. The NO2 concentrations are shown in the figure.

4. Sensor Model for Oxidizing Gas

In general, in semiconductor metal oxides, gas sensing is mainly performed through three possible
mechanisms affecting the electrical resistance (R):

(a) Change of free charge carrier concentration (n), due to capture/release at adsorbed species on
surface, R ∝ 1/n.

(b) Change of potential barrier height (qVs) at the crystal domain (or grain) boundary, due
to the presence of ionized adsorbed species on the crystallites surface. Barrier is due to charge
carriers trapping at surface by acceptor surface states. The density of acceptor ionized surface
states is determined by the population of intrinsic surface defects and by the possible presence
of chemisorbed molecules. This gives rise to an exponential dependence of the electrical resistance
on the barrier height, which is approximately related to the square of the trapped charge surface
density: R ∝ exp(qVs/kT). The barrier height depends also on native acceptor surface defects (for n-type
semiconductors) and on the concentration of the surrounding gas (oxidizing gas favoring the barrier,
reducing gases likely suppressing it). On the contrary, if on the surface there are donor-like defects,
a carrier enriched surface layer exists and the dependence of R on the charge surface density is no
more exponential [20,21].

(c) Change of bulk electronic properties, such as the donor concentration (Nd) and bulk charge
carriers mobility (µn), in this latter case R ∝ 1/(Nd µn).

The first two mechanisms are pure surface phenomena driven by the adsorption/desorption of
the surrounding gas and by the ionization/neutralization of adsorbed species. Obviously, diffusion
toward the intergrain/boundary regions can also play a role in the kinetics.

The third process is a red/ox of the lattice, and takes into account possible diffusion of charged
species in the bulk. According to [5], in In2O3 this last phenomenon seems to be negligible at
temperatures lower than 350 ◦C.

Usually the most relevant phenomenon causing an exponential dependence of the resistance on
the surface density of chemisorbed molecules is the (b) one. Compared with other well-known metal
oxides (such as SnO2), In2O3 has a more complicated behavior as a gas sensor, due to the fact that the
surface oxygen stoichiometry (oxygen deficiency) is such that the native surface defects may have a
donor character. For this reason, it is possible that in reducing gases the surface is oxidized and no
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depleted region is formed at the surface of crystallites or grains, (on the contrary, there is a carrier
enriched surface even in the presence of air [21,22], whereas in oxidizing environments a depleted
region appears and the sensor behavior is the usual barrier height dependent one (b) [23]).

It is known, that when the grain/film size goes below a certain critical value the influence of
the grain/film geometry becomes important, and strongly influences the sensor response. In some
previous works, the case of a thick film porous film made up of nano-spheres was treated by the
authors and applied both to p-type and n-type materials [10,24]. The same model can be used also for
thin films when they consist of loosely bound grains (porous layer) as shown in Figure 13a. This model
could be used also for the thin nano-film described in this paper when short deposition times are used.
Nevertheless, to ensure a reasonable value for the film resistance, as discussed in the previous section,
the deposition has to be longer than 1.5 h. For long deposition time the film can become ‘dense’
(see Figure 13b). Assuming that no intrinsic acceptor like surface defect can be found at the grain
boundary, such that no potential barrier exists at the grain interface, a possible model for the film
is the compact thin-layer shown in Figure 13c. Moreover, Rombach in [23] showed that the vertical
domain boundaries in the textured films have no detectable influence on the sensing behavior. In this
case, the variation of resistance can be ascribed to the reduction of the current path cross section area,
related to the creation of a depleted region on the surface when an oxidizing gas is present.
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Figure 13. Sensor structure and model. (a) Porous layer. (b) Dense layer. (c) Compact layer.

Let us consider a thin film of homogeneous material exposed to a mixture of air and NO2

(oxidizing gas); at the surface the two following chemisorption reactions are expected.

2SO + O2 + 2e− ⇔ 2(SO −O)− (3a)

SNO2 + NO2 + e− ⇔ (SO − NO2)
− (3b)

where (X-Sx)− indicates an adsorbed and negatively ionized molecule of the species X at the adsorption
site Sx, and e− indicates a free electron at the surface.

As a whole, the amount of charge localized at the surface is due both to intrinsic ionized defects
and to the chemisorbed molecules with a total surface charge density −qNs, being q the electron charge
and Ns the total negatively charged species density that can be written as [1,25–27]

NS = ±Ni + [(SO −O)−] +
[(

SNO2 − NO2
)−] (4)

where Ni indicates the density of ionized intrinsic defects that can be either acceptors or donors
(actually, the surface of semiconductors tends always to be depleted [10]), and [X] indicates the surface
density of the species X. In this work, we consider to have only extrinsic acceptor surface states due
to the adsorption of both atomic oxygen and of the target gas NO2, a net negative charge, so that Ns

cannot usually assume a negative sign.
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Due to the trapped surface charge we expect that, when the equilibrium is reached, an electric
field establishes in the grain to counterbalance the diffusion of free carriers which reach the surface
from the bulk. We take into account an n-type semiconductor where the bulk free electron density
is Nd and the hole density is negligible. We consider a depleted surface—i.e., to have a net negative
charge trapped at the surface—so that−qNs, the charge density, is negative and uniform on the surface.
The positive charge density, ρ, in the film at the thermal equilibrium can be found by balancing the
diffusion current related to the charge density gradient and the free electron drift current caused by the
electric field. With reference to the geometry shown in Figure 14, being t << b and t << l, considering a
homogeneous thin film and a uniform charge density at the surface, all the quantities can be considered
to depend only on the of the z coordinate. Hence, the charge density can be found from the equation

Jtot(z) = σn(z)Ez(z)− qDn
∂n(z)

∂z
= 0 (5)

where Jtot(z) is the current density, Ez(z) the electrical field, σn = qn(z)µn is the conductivity (µn is the
free electron mobility), Dn is the diffusion coefficient of free electrons (Dn = µn kT/q), and n(z) is the
free electrons density in the bulk.

Sensors 2018, 18, x FOR PEER REVIEW  12 of 16 

 

charge trapped at the surface—so that −qNs, the charge density, is negative and uniform on the 
surface. The positive charge density, ρ, in the film at the thermal equilibrium can be found by 
balancing the diffusion current related to the charge density gradient and the free electron drift 
current caused by the electric field. With reference to the geometry shown in Figure 14, being t << b 
and t << l, considering a homogeneous thin film and a uniform charge density at the surface, all the 
quantities can be considered to depend only on the of the z coordinate. Hence, the charge density can 
be found from the equation 𝐽௧௢௧(𝑧) = 𝜎௡(𝑧)𝐸௭(𝑧) − 𝑞𝐷௡ 𝜕𝑛(𝑧)𝜕𝑧 = 0, (5) 

where Jtot (z) is the current density, Ez(z) the electrical field, σn = qn(z)μn is the conductivity (μn is the 
free electron mobility), Dn is the diffusion coefficient of free electrons (Dn = μn kT/q), and n(z) is the 
free electrons density in the bulk. 

 
Figure 14. Film geometry. 

Usually, the positive charge density in the depleted layer, ρ(z), is considered to be constant and 
equal to qNd (full depletion) so that in this layer no free electrons exist. Instead, we consider a spatial 
distribution of the charge that can be related to the free carrier density in this layer as 𝑛(𝑧) = 𝑁ௗ − 𝜌(𝑧)𝑞  (6) 

From Equation (6) the conductivity in the depleted layer can be written as 𝜎௡(𝑧) = 𝑛(𝑧)𝜇௡𝑞 = 𝜇௡𝑞 ቆ𝑁ௗ − 𝜌(𝑧)𝑞 ቇ ; (7) 

moreover 𝐸௭(𝑧)𝜀 = න 𝜌(𝑢)𝑑𝑢,௭
଴  (8) 

where ε is the electric permittivity. 
Replacing the expressions in Equations (6)–(8) in Equation (5) we obtain the following integral-

differential equation 𝜇௡൫𝑞𝑁ௗ − 𝜌(𝑧)൯ න 𝜌(𝑢)𝑑𝑢௭
଴ = 𝜀𝐷௡ 𝜕𝜌(𝑧)𝜕𝑧 , (9) 

where 0 ≤ ρ(z) ≤ qNd holds, and ρ(0) assumes a value granting the following electro-neutrality 
condition ׬ 𝜌(𝑢)𝑑𝑢௧଴ = 𝑞𝑁௦. (10) 

Equation (9) can be rewritten as 

Figure 14. Film geometry.

Usually, the positive charge density in the depleted layer, ρ(z), is considered to be constant and
equal to qNd (full depletion) so that in this layer no free electrons exist. Instead, we consider a spatial
distribution of the charge that can be related to the free carrier density in this layer as

n(z) = Nd −
ρ(z)

q
(6)

From Equation (6) the conductivity in the depleted layer can be written as

σn(z) = n(z)µnq = µnq
(

Nd −
ρ(z)

q

)
(7)

moreover
Ez(z)ε =

∫ z

0
ρ(u)du, (8)

where ε is the electric permittivity.
Replacing the expressions in Equations (6)–(8) in Equation (5) we obtain the following

integral-differential equation

µn(qNd − ρ(z))
∫ z

0
ρ(u)du = εDn

∂ρ(z)
∂z

(9)
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where 0 ≤ ρ(z) ≤ qNd holds, and ρ(0) assumes a value granting the following electro-neutrality
condition ∫ t

0
ρ(u)du = qNs (10)

Equation (9) can be rewritten as

ρ(z) +
εDn

µn
∫ z

0 ρ(u)du
∂ρ(z)

∂z
= qNd (11)

By numerically solving Equation (11) the charge density, the electrical field and the voltage
distribution in the layer can be found.

It could be noted that since ρ(z) is always an increasing function of z, its local slope is determined
by the length

λ(z) =
εDn

µn
∫ z

0 ρ(u)du
≥ kεT

q2Ndt
(12)

Therefore, it can be shown (see other works of the authors, e.g., [10,24]) that if the thickness of the
layer is not much larger than the minimum value of λ given by the rightmost term of the inequality
in Equation (12), ρ(z) slowly varies along z and its behavior is very far from the ‘fully depleted layer
approximation’. It is evident that this condition is exactly equivalent to the usual condition

t� λD (13)

with λD =
√

kεT
q2 Nd

being the Debye length.
When an external electrical field Eext is applied along the axis x, and considering it so small as not

to interfere with the equilibrium due to the chemisorption, the following relationship holds for the
drift current Jx(z)

Eext = σn(z)Jx(z) (14)

Hence the resistance of the layer can be found evaluating the following integral

1
R

= G =
b
l

∫ t

0
(qNd − ρ(u))µndu. (15)

Actually, being the electro-neutrality condition (Equation (10)) always true, this integral is simply
equal to

G =
b
l

qµn(Ndt− Ns) (16)

Hence, if G = G(Ns) is the conductance of the film in presence of the target gas, whereas G0 =
G(Ns0) is the conductance of the film in a reference condition, for instance in the carrier gas, we have

G− G0

G0
=

Ns0 − Ns

Ndt− Ns0
, (17)

and, for the sensor response as defined in Equation (2)

R− R0

R0
=

G0 − G
G

=
Ns − Ns0

Ndt− Ns
(18)

So for the dense compact film a linear relationship between the charged species density and
the conductance is expected. It can be seen that the sensor response depends on the film thickness
and on the bulk carrier density. The smaller are these quantities the larger the sensor response.
So, very thin pure films would provide, in principle, very good sensitivities. Obviously, both thickness
and bulk carrier density cannot be pushed to low values limitless because they determine the film
resistance value. A lower limit for both is set by the maximum measureable resistance and by
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the desired measurement range. In particular, very large resistances lead to heavy problems in
measurement system design, and limit the measurement accuracy. Moreover, a low Nd value and a
small thickness can bring to the depletion of the entire film and to response saturation.

In Figures 15 and 16, the outputs of the proposed model, obtained by numerically solving
Equation (11), are shown, and compared with those obtained with fully depleted model. The presented
results concern two different In2O3 materials, the first one (Figure 15) is a pure material with a very low
bulk carrier concentration (Nd = 1.2 × 1017 cm−3) whereas the second one (Figure 16) is characterized
by a much larger Nd value (3.6 × 1018 cm−3). In simulations, Ns0 is assumed to be negligible, so the
response is simply (R− R0)/R0 = Ns/(Ndt− Ns). A comparison of the simulated results with the
experimental data indicates that the obtained films behave similarly to those shown in Figure 15,
where the reduction of the film thickness from 144 nm to 72 nm provides a very large gain in terms of
response, indicating that Ndt is close to Ns.
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Figure 15. Distribution of the charge density ρ (plot (a)), and of the voltage (plot (b)) inside the film as
a function of z for different values of charged surface species density, Ns, and for two films thickness,
72 nm and 144 nm. Ns in the range 0.1 × 1011 cm−2–6.3 × 1011 cm−2. (c) Surface voltage barrier as
a function of the density of charged surface species. Solid lines: proposed model, dashed lines: fully
depleted model. (d) Sensor responses to the variation of surface charge density. Data for In2O3 are
taken from [28,29] Nd = 1.2 × 1017 cm−3.
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Figure 16. Distribution of the charge density, ρ (plot (a)) and of the voltage (plot (b)) inside the film
as a function of z for different values of charged surface species density, Ns, for two films thickness,
72 nm and 144 nm. Ns in the range (0.3 × 1012 cm−2–7.2 × 1012 cm−2). (c) Surface voltage barrier as
a function of the density of charged surface species. Solid lines: proposed model, dashed lines: fully
depleted model. (d) Sensor responses to variation of surface charge density. Data for In2O3 are taken
from [28,29] Nd = 3.6 × 1018 cm−3.

5. Conclusions

In this paper, the feasibility of gas sensors based an In2O3 nano-layer deposited on alumina
printed circuit substrates by means of low temperature pulsed electron deposition (LPED) technique
was explored. As a prime novelty, we have implemented our deposition system with a remote control
of the film electrical resistance directly during the growth process. This work shows a first proof of
principle of this specific new feature which, providing a more sophisticated tool to tailor in situ the
ultimate sensitivity of gas-sensors, opens the way to a new generation of devices with potentially
increased functionality. The sensing gas properties of the developed devices were assessed, through
experiments and exploiting a model taking into account the nano-structure of the sensing layer. It was
shown that the sensors have a linear response in a large range of gas concentration (chemisorbed
molecules density), a good sensitivity to NOx and very low sensitivity to CO. In detail, as far as
sensitivity to NO2 is concerned, the optimum temperature range is 280–300 ◦C. Moreover, the lower
the film thickness, the higher the sensitivity and the speed (but the higher also the film resistance):
at 300 ◦C the response to NO2 increases by a factor of ~3, in the range 0 ppm–25 ppm, if films
of 70 nm are used instead of 150 nm (and the baseline resistance increases as well between 1 and
2 orders of magnitude). The stability of the sensors was at present verified only by preliminary
encouraging tests. A more exhaustive measurement campaign to characterize both stability and
durability is ongoing.
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