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Abstract: A new CS-based inverse synthetic aperture radar (ISAR) imaging framework is proposed to
enhance both the image performance and the robustness at a low SNR. An ISAR echo preprocessing
method for enhancing the ISAR imaging quality of compressed sensing (CS) based algorithms is
developed by implementing matched filtering, echo denoising and matrix optimization sequentially.
After the preprocessing, the two-dimensional (2D) SLO algorithm is applied to reconstruct an ISAR
image in the range and cross-range plane through a series of 2D matrices using the 2D CS theory,
rather than converting the 2D convex optimization problem to the one-dimensional (1D) problem in
the image reconstruction process. The proposed preprocessing framework is verified by simulations
and experiment. Simulations and experimental results show that the ISAR image obtained by the 2D
sparse recovery algorithm with our proposed method has a better performance.
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1. Introduction

In the synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR) imaging
systems, the range resolution is determined by the bandwidth of the transmitting signal. The larger
the bandwidth is, the better the resolution will be [1]. However, a large signal bandwidth requires a
massive amount of data and an expensive system. In addition, the cross-range resolution depends on
the total rotation angle of the target during the observation time [1]. However, the range cell migration,
which is usually caused by a wide rotation angle, greatly degrades the ISAR imaging quality. Hence, it
is hard to achieve a high-resolution ISAR imaging in practice because the imaging quality is limited by
a narrow bandwidth and a small aperture.

In the last decade, a new signal sampling theory called compressed sensing (CS) [2] has been
proposed to reduce the cost of data acquisition and storage and has been successfully applied to the
optics and microwave imaging system [3,4]. The CS-based algorithms can reconstruct the sparse
signals accurately from much less measurements than the ones mandated by Nyquist’s theorem,
through solving an optimization problem with high probability [2]. In the ISAR imaging applications,
the target of interest, such as aircrafts in the air or ships in the sea, can be proximately regarded
as a sum of responses from prominent scattering centers in an almost clean background. Then, the
number of strong scattering centers of the target is much less than that of the pixels in the image plane.
This means that the radar targets can be considered sparse or compressible. Consequently, the CS is
considered as a suitable method to deal with the ISAR image reconstruction from undersampled or
sparse-aperture data. Besides, it has been shown that a high-resolution ISAR image can be achieved
with a limited number of samples using the CS [5,6].
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The CS has been successfully used in the SAR/ISAR to reduce the acquired data size, compensate
for missing data and obtain high-resolution images, which cannot be achieved by using the traditional
Fourier transform (FT) reconstruction method. However, the CS theory generally solves the
one-dimensional (1D) problem. Although the two-dimensional (2D) ISAR data is usually respectively
processed by range dimension and cross-range dimension for traditional imaging methods, it must
be converted into a 1D vector for CS reconstruction. However, that increases the computational
cost and memory consumption enormously. With the aim to reduce the computational cost of the
conventional 1D CS-based algorithms, a few 2D sparse recovery algorithms based on the 2D CS, such
as the two-dimensional iterative adaptive algorithm (2D IAA) [7], the two-dimensional sparse learning
via iterative minimization (2D SLIM) [8], the two-dimensional fast iterative shrinkage-thresholding
algorithm (2D-FISTA) [9] and the two-dimensional smoothed [y norm algorithm (2D SLO) [10], were
proposed. The smoothed [y norm (SLO) approach was expanded into two dimensions, making the 2D
smoothed Iy norm algorithm able to deal with the sparse reconstruction of 2D signals on dictionaries
with separable atoms [10]. The high-resolution fully polarimetric ISAR images were obtained by using
the 2D SLO algorithm to solve the optimization problem constraint [5]. The 2D SLO algorithm was
applied directly to the 3D SAR based on the 2D signals [11]. The 2D SLO algorithm was also utilized in
passive ISAR imaging [12].

Most of the existing research about the performance improvement of CS in the ISAR was focused
on reducing the computational cost and memory consumption or improving the performance of the
CS-based algorithms by using complex constraint functions to describe the sparsity of signals in a
better way. Nevertheless, as Candeés et al. pointed out, the signal-to-noise ratio (SNR) and the mutual
coherence of the observation matrix are the two most important factors that affect the performance of
the CS-based methods [13,14]. In reference [15], it was shown that the performance of the CS-based
algorithms seriously depends on the input SNR and it cannot work well at a low input SNR in
the SAR imaging. The quality of an ISAR image reconstructed from a sparse aperture with limited
measurements was discussed in reference [16] regarding the SNR, and a CS-based model with a robust
performance with the decrease in the SNR was presented [16]. The CS-based ISAR imaging was
improved to overcome strong noise and clutter by combining the coherent projectors and weighting
with the CS optimization at low SNR [17]. The low-rank denoising operation was used to enhance the
robustness of the ISAR sparse imaging based on the CS at a low SNR [18].

In the literature mentioned above, the improvement of computational efficiency and robustness at
a low SNR was discussed in different paper. In this paper, a new CS-based ISAR imaging framework
is presented to improve both the performance and the robustness at a low SNR. First, an echo
preprocessing is implemented before the 2D CS recovery to improve the SNR of ISAR echo and
to reduce the mutual coherence of the observation matrix. Then, the 2D SLO algorithm is applied to
reconstruct the ISAR image in range and cross-range plane through a series of 2D matrices using 2D CS
theory, rather than converting the 2D convex optimization problem to the 1D problem in the process of
image reconstruction.

As the SNR and the mutual coherence of the observation matrix are the most important factors
of CS-based methods, for the first time two methods are combined to improve the SNR. The SNR
can be increased using the MF and echo denoising, but in that case, the mutual coherence of the
observation matrix worsens due to the increased size of the observation matrix. Therefore, we use
the observation matrix optimization method to improve the mutual coherence and to reduce the size
of observation and the computation load of CS-based methods. Finally, we use the 2D SLO as the
CS-based method to verify the proposed signal preprocessing framework. In this work, we focus
on the signal preprocessing framework which has not been used in other papers, and we use some
classical methods because we focus on the preprocessing, not the classical methods modification.

Notations used in this paper are as follows. Bold case letters are reserved for matrices. svd(A)
denotes the singular value decomposition of matrix A. ||Al|, and ||A||; are the [, norm and the
Frobenius norm of matrix A. (A)" denotes the conjugate transpose of matrix A. (A),, , represents
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an element in the mth row and the nth column of matrix A. rank(A) is the rank of matrix A. diag(A)
is a diagonal matrix having the same diagonal elements as matrix A. rand(m, n) is a function which
generates a matrix with the size of m X n containing random elements.

2. ISAR Model

Following the Born approximation, the received acquisition ISAR echo at the mth frequency and
the nth aspect angle can be expressed as:

. me n
Y(m,n) = jf U(x,y)e_]‘m(TJ’(?Tcy)dxdy + N(m,n) (1)
5

where o (x, y) denotes the backscattering coefficient of the point scatter located at (x, y), S is the imaging
area. ¢ and A, represent the wave velocity and wavelength, respectively. f,, is the mth signal frequency,
and 6, is the nth observation angle. N(m, n) is the noise with Gaussian distribution [19].

The grids of the imaging plane can be refined by choosing P > M for x dimension and Q > N for
y dimension. Then (1) can be expressed in a matrix form

Y =A,0A +N (2)

where Y is the acquisition echo matrix with the size of M X N, o is the interested ISAR image with
the size of P x Q, Ay with the size of M x P and Af with the size of Q x N denote the observation
matrices in the range and cross-range directions, respectively, and they are defined as

(M) =TI, (Al = e 0 )

We are supposing that K << min(P, Q), which means that only a few strong scattering centers
occupy the whole image plane, so the image of the target is sparse. The CS-based methods can
accurately reconstruct o from the limited measurements Y by solving an optimization problem with a
high probability.

The echo preprocessing can be used to improve the SNR and observation matrix property. As
we mentioned before, the SNR of the ISAR echo and the mutual coherence of the observation matrix
are the two key factors which have a significant influence on the imaging quality of the CS-based
methods. Therefore, we propose a novel CS-based ISAR imaging framework to enhance the SNR of
echo matrix and improve the property of the observation matrix. The proposed framework is based on
the following four steps.

3. Step 1: Matched Filtering

It is well known that the matched filtering (MF) is an optimal linear filter for maximizing the
SNR in the presence of additive stochastic noise. Therefore, the MF is used to maximize the SNR
of echo matrix Y. The MF used in this work represents the constructing of matching vectors. The
matching matrix is formed by all the matching vectors. The matching vectors are constructed using
the same grids as o. Thus, the matching matrix is the same as Ay and A,,. The matching process can be
represented by a matrix operation. The echo after the MF process can be written as

Y = AUYA, = A,0A, +N 4)

where Ax = AXHAX, ;&y = AfAy, and N = A?NAy.

Where A, with the size of P x P and Ay with the size of Q x Q denote the new observation matrix.
The size of the filtered echo matrix Y becomes P x Q, which is usually much larger than the size of the
raw echo matrix Y (M x N), which further means that the mutual coherence of the new observation
matrices A, and Ky will increase because the size of the new observation matrices is much larger
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compared with the size of Ay and A,. Besides, the noise cannot be eliminated by the MF completely.
The SNR of echo is usually improved obviously after the MF, but in some cases, it is still not high
enough to meet requirements for relative SNR of the CS-based ISAR imaging method. Therefore, the
low-rank denoising operation is used to further enhance the reliable performance of the CS-based
ISAR imaging method at a low SNR.

4. Step 2: Echo Denoising
To enhance the SNR of echo further, the low-rank property of echo matrix combined with echo
denoising algorithm given by (5) is proposed.
Y = Denoise(Y) ®)

As mnk(;&xc}i;) < min <mnk (Ax), rank(o), rank (Kf)), then it holds that mnk(:&xagf) <

rank(o). Due to rank(Y) < K << min(P, Q), matrix Y satisfies the low-rank property, and it can be
solved by the weighted constrained optimization problem [20]:

m_inZwi'yi(Y)s.t.HY—YHZ < (6)
Y ! F

where 7;(Y) is the ith singular value of matrix Y, and w; is the weight of the ith singular value.
The inexact augmented Lagrange multiplier method (inexact ALM) [21] is applied to solve the matrix
denoising problem as described in Algorithm 1.

Algorithm 1. Echo denoising via the inexact ALM method

Initialization:Y) = Y, Zy = Y/H?HZ, o >0,0>1,e>0,1=0
(1) (U,S, V) = sud (y,)
- 1
@AW = Ggisye
(3)(U,S,V) = sovd (Y T %)
@Y1 =USw[S]V
My

OV Za=Zi+m <\7 - Yz)

(6) i1 = pp

N I=1+1
Stop after several iterations or do until ||[Y; — Y, 4|y <e
Output: Y = Y,

Where S¢(x) is the soft-thresholding operator defined as:

ST(x):{x_T’ ifx>7 %

0, otherwise

We apply the denoising algorithm on Y instead of on Y because of the following two reasons: (1)
The denoising algorithm is sensitive to the low-rank property of the matrix to be recovered. The size of
Y is P x Q which is much larger than the size of Y, but both of their rank are rank (o). So, matrix Y has
better low-rank property than matrix Y. (2) The denoising algorithm cannot be applied at a very low
SNR and the SNR of matrix Y is much higher than that of matrix Y due to the operation of MF.

It should be noted that the denoising algorithm cannot suppress noise completely. Namely, it can
only remove a part of the noise which is independent of the echo signal.
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5. Step 3: Matrix Optimization

Taking into the consideration the above-mentioned responses, the mutual coherence of Ay and
Ay is larger than that of Ay and A,. Therefore, in order to decrease the coherence, the matrix
optimization algorithm combining the shrinkage-based algorithm [22] with the gradient-based
alternating minimization approach [23] is used, and it is given in Algorithm 2.

Algorithm 2. Matrix optimization

Initialization: ®, = rand(M’,P), (M’ < M < P),H = Ipyp,
¥>0,>0
forl =1toLdo
~ \H ~

1) G = <q>xAx) (cprx)
(2) H = (4/m)yarctan(G)

- ~H
(3) @y = @, — fBAL(G —H)A,
end
Output: @,

The same optimization operation is performed on ;‘;y. After optimization of A, and Ky, the echo
is given by
S - A ~H o
Y=&,Y0] =A0A, +N ®)

where, A, = <I>xA,I;IAx, and Ay = CDyA;IAy.

After matrix optimization, the size of the observation matrix is reduced, and the mutual coherence
is improved. Therefore, the imaging performance of the CS-based algorithm is improved, and the
computation cost of the CS-based algorithm is reduced by using a smaller size observation matrix.

6. Step 4: Imaging Using 2D SLO

The size of matrix after the preprocessing conducted to improve the SNR is still large, so the
computational cost and memory consumption will be enormous if the 1D CS algorithm is used to
recover the backscattering coefficient matrix o. Therefore, the 2D SLO algorithm is used to reconstruct
the ISAR image to reduce the computational cost [10]. Considering the noise, the interested 2D
backscattering coefficient matrix o can be obtained by solving (9)

. o A _aH)?
m&nHUHO st. [[Y—AyoA ||, <e )
The key point of the 2D SLO is that it uses a continuous Gaussian function to approximate the Iy

norm of the signal. Thus, ||o||, in (9) can be approximated as follows:

2

P Q o,
~ pAa
llolly =~ PQ — r;q;exp [— 252 1 whend — 0 (10)

where | o/, denotes the number of non-zero components in o, and ¢ is a small constant, which is
bounded by the noise level. Then, a projective steepest descent optimal approach can be used to find
the minimum value of || ||y, i.e., the sparsest solution of (10), which makes this algorithm have high
computational efficiency. The details of this algorithm can be found in reference [10].

7. Simulations Results and Discussion

To evaluate the performance of the proposed CS-based ISAR imaging method regarding the SNR
of an original echo, the following simulations were conducted. The simulations parameters were
shown as follows: A, =0.01m, f, =0~ 2GHz, 6, =0~5°, M =N =100, P = Q = 200, K = 10.
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The 2D SLO was chosen as the sparse recovery algorithm. The SNR was defined by (11), and Y, and Y,
denoted the echo matrices with and without the noise, respectively.

SNR = 20 x 1 Il 11
=20 x logy Yo=Y, I, (11)

The SNR of the echo after applying different preprocessing methods in the Monte Carlo simulation
for 200 times is presented in Figure 1. In Figure 1, it can be seen that the MF and the denoising algorithm
improved the SNR of the echo. But, as already mentioned, noise could not be suppressed completely.

The t-averaged mutual coherence [14] was used to measure the property of the observation matrix,
and the obtained result is shown in Table 1 (f = 0.1). The mutual coherence of A was larger than that of
A because of the increased matrix size. Also, the proposed matrix optimization algorithm reduced the
mutual coherence, which is in accordance with the above analysis.

Table 1. t-Averaged mutual coherence.

A A A
e (x) 03547 03601  0.2082
1t (y) 03321 03380  0.1923
o 30
=
=11}
k=
z 20p
2
2
)
= 10}
3
P
= -
-5 ok —8— With stepl
o —&— With stepl & step2
o —t— With stepl & step3
& 10 , —*— With stepl & step2 & step3
s 100 s 0 5 10 15
SNR of Y /dB

Figure 1. The SNR after applying different preprocessing methods to the original echo.

To measure the performance of the images recovered by different preprocessing methods, the
target-to-background ratio (TBR) defined by (12) was used.

TBR =10 x log;y| Y. ‘I(M)z’/( Y ol (12)

(pq)€RT p4)ERp

where I denotes the recovered ISAR image, and Rt and Rp are the target and background regions,
respectively. It should be noted that high TBR indicates a high ratio of target energy to noise energy in
the recovered image.

The TBR comparison of the ISAR imaging results obtained by different echo preprocessing
methods is presented in Figure 2. It can be observed that when the SNR increased, the TBR also
increased and gradually approached that without noise. Besides, each step of the proposed method
improved the performance. According to the obtained results, the proposed echo preprocessing
method achieved a much better TBR than the traditional imaging technique without preprocessing.
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Figure 2. The TBR of the recovered images against the echo SNR.

8. Experimental Results and Discussion

The quasi-real data of an airplane “B-727” provided by the U.S. Naval Research Laboratory, which
can be found on the website http://airborne.nrl.navy.mil/~vchen/tftsa.html, was used to test the
feasibility and performance of the proposed echo preprocessing method. The radar system model
parameters are given in Table 2. The number of points in the range domain was 64, and 32 pulses
were collected. The additive noise follows a complex white Gaussian distribution and the SNR was
5 dB. In the experiment, the 2D SLO was used for the ISAR imaging. The results obtained by different
processing methods are shown in Figure 3. It can be found that the resolution of the image obtained by
MF method in Figure 3a was low and along with the high sidelobes. On the other hand, the image
obtained by the CS-based method in Figure 3b,c had a higher resolution. However, the recovered result
obtained by the proposed preprocessing method in Figure 3c had better performance in the regions
marked by the red rectangles compared with the result obtained by the 2D SLO method without echo
preprocessing in Figure 3b, which reduced the false scattering points, and the loss of weak scattering
points could be seen clearly.

200 " " " 200
Bt Bt
g 150 g 150 1
= g =T L
= = - -
= = c o e =
= 100 = 100 AT
3 3 Rl
% % i
= 50 = 50 -
< «<
Bt Bt
50 100 150 200 50 100 150 200
cross range cell number cross range cell number
(a) (b)
200
o
g 150 .
£ i -z
= : e LO7
= =L e, =
= 100 S =
B TS L
Iy =
= 50 L=
]
o
50 100 150 200
cross range cell number

(©)

Figure 3. Imaging results. (a) Imaging result of the MF. (b) Imaging result of the 2D SL0O without echo
preprocessing. (c) Imaging result of the 2D SLO with the proposed echo preprocessing.
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Table 2. System model parameters for data “B-727".

Parameter Value

Carrier frequency 9 GHz
Bandwidth 150 MHz

Pulse repetition Interval (PRI) 32ms

9. Conclusions

The proposed preprocessing method improves the SNR of the ISAR echo by using the matched
filtering and echo denoising technique, and optimizes the property of the observation matrix by
reducing the mutual coherence of the observation matrix via matrix optimization. The 2D SL0 method
is utilized instead of the 1D CS-based ISAR imaging method to reduce the cost and computation burden.
The proposed preprocessing method was verified by the simulations and experiment. The simulations
and experimental results showed that the proposed method improved the ISAR imagery quality and
reduced the required SNR of the CS-based methods. Both of these improvements are helpful to radar
identification, recognition and classification.

Author Contributions: All authors contributed extensively to the work presented in this paper. Z.Y. and X.L.
designed the algorithm, performed the simulations, analyzed the data and wrote the paper. W.C. supervised its
analysis, edited the manuscript and provided his valuable suggestions to improve this study.

Funding: The work is supported by the General Program of National Natural Science Foundation of China under
Grant No. 41501364 and 61401140.

Conflicts of Interest: The authors declare no conflict of interest.

References

. Mensa, D.L. High Resolution Radar Imaging; Artech House: Norwood, MA, USA, 1981.

2. Candes, EJ.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203-4215. [CrossRef]

3. Duarte, M.E; Davenport, M.A.; Takhar, D.; Laska, ].N.; Sun, T.; Kelly, K.E; Baraniuk, R.G. Single-pixel
imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83-91. [CrossRef]

4. Ye, F; Liang, D.; Zhu, J. ISAR enhancement technology based on compressed sensing. Electron. Lett. 2011, 47,
620-621. [CrossRef]

5. Qiu, W,; Zhao, H.; Zhou, J.; Fu, Q. High-resolution fully polarimetric ISAR imaging based on compressive
sensing. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6119-6131. [CrossRef]

6. Zhang, L.; Qiao, Z.-].; Xing, M.-D.; Sheng, ] .-L.; Guo, R.; Bao, Z. High resolution ISAR imaging by exploiting
sparse apertures. IEEE Trans. Antennas Propag. 2012, 60, 997-1008. [CrossRef]

7. Jahromi, M.J.; Kahaei, M.H. Two-dimensional iterative adaptive approach for sparse matrix solution.
Electron. Lett. 2014, 50, 45-47. [CrossRef]

8.  Jabbarian-Jahromi, M.; Kahaei, M.H. Two-dimensional SLIM with application to pulse Doppler MIMO
radars. EURASIP . Adv. Signal Process. 2015, 2015, 69. [CrossRef]

9. Li, S.; Zhao, G.; Zhang, W.; Qiu, Q.; Sun, H. ISAR Imaging by two-dimensional convex optimization-based
compressive sensing. IEEE Sens. J. 2016, 16, 7088-7093. [CrossRef]

10. Ghaffari, A.; Babaie-Zadeh, M.; Jutten, C. Sparse decomposition of two dimensional signals. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19-24
April 2009; pp. 3157-3160.

11. Zhang, S.; Dong, G.; Kuang, G. Superresolution downward-looking linear array three-dimensional SAR
imaging based on two-dimensional compressive sensing. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2016,
9,2184-2196. [CrossRef]

12.  Qiu, W,; Giusti, E.; Bacci, A.; Martorella, M.; Berizzi, F.; Zhao, H.; Fu, Q. Compressive sensing-based
algorithm for passive bistatic ISAR with DVB-T signals. IEEE Trans. Aerosp. Electron. Syst. 2015, 51,
2166-2180. [CrossRef]

13. Candes, E.J.; Romberg, ] K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements.
Commun. Pure Appl. Math. 2006, 59, 1207-1223. [CrossRef]


http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1049/el.2011.0117
http://dx.doi.org/10.1109/TGRS.2013.2295162
http://dx.doi.org/10.1109/TAP.2011.2173130
http://dx.doi.org/10.1049/el.2013.2159
http://dx.doi.org/10.1186/s13634-015-0254-6
http://dx.doi.org/10.1109/JSEN.2016.2599540
http://dx.doi.org/10.1109/JSTARS.2016.2549548
http://dx.doi.org/10.1109/TAES.2015.130761
http://dx.doi.org/10.1002/cpa.20124

Sensors 2018, 18, 4409 90f9

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Elad, M. Optimized projections for compressed sensing. IEEE Trans. Signal Process. 2007, 55, 5695-5702.
[CrossRef]

Tian, J.; Sun, J.; Zhang, Y.; Ahmad, N.; Su, X. The effects of input signal-to-noise ratio on compressive sensing
SAR imaging. In Proceedings of the 2010 2nd International Conference on Signal Processing Systems, Dalian,
China, 5-7 July 2010.

Zhao, G.; Wang, Z.; Wang, Q.; Shi, G.; Shen, F. Robust ISAR imaging based on compressive sensing from
noisy measurements. Signal Process. 2012, 92, 120-129.

Zhang, L.; Xing, M.; Qiu, C.-W.; Li, ].; Sheng, ].; Li, Y.; Bao, Z. Resolution enhancement for inversed synthetic
aperture radar imaging under low SNR via improved compressive sensing. IEEE Trans. Geosci. Remote Sens.
2010, 48, 3824-3838. [CrossRef]

Xia, J.; Lu, X.; Chen, W. ISAR 2D imaging under low SNR based on improved compressive sensing. In
Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing
(WCSP), Nanjing, China, 11-13 October 2017; pp. 1-5.

Wang, X.; Zhang, M.; Zhao, ]J. Super-resolution ISAR imaging via 2D unitary ESPRIT. Electron. Lett. 2015, 51,
519-521. [CrossRef]

Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image
denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23-28 June 2014; pp. 2862-2869.

Lin, Z.; Chen, M.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted
Low-Rank Matrices. arXiv, 2010; arXiv:1009.5055.

Yan, W.; Wang, Q.; Shen, Y. Shrinkage-based alternating projection algorithm for efficient measurement
matrix construction in compressive sensing. IEEE Trans. Instrum. Meas. 2014, 63, 1073-1084. [CrossRef]
Abolghasemi, V.; Ferdowsi, S.; Sanei, S. A gradient-based alternating minimization approach for optimization
of the measurement matrix in compressive sensing. Signal Process. 2012, 92, 999-1009. [CrossRef]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TSP.2007.900760
http://dx.doi.org/10.1109/TGRS.2010.2048575
http://dx.doi.org/10.1049/el.2014.3518
http://dx.doi.org/10.1109/TIM.2014.2298271
http://dx.doi.org/10.1016/j.sigpro.2011.10.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	ISAR Model 
	Step 1: Matched Filtering 
	Step 2: Echo Denoising 
	Step 3: Matrix Optimization 
	Step 4: Imaging Using 2D SL0 
	Simulations Results and Discussion 
	Experimental Results and Discussion 
	Conclusions 
	References

