
sensors

Article

Interdomain I/O Optimization in Virtualized
Sensor Networks

Congfeng Jiang 1,2 , Tiantian Fan 1,2, Yeliang Qiu 1,2, Hongyuan Wu 1,2, Jilin Zhang 1,2,
Neal N. Xiong 3,4,* and Jian Wan 1,5

1 Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education,
Hangzhou 310037, China; cjiang@hdu.edu.cn (C.J.); ttfanx@gmail.com (T.F.); qiuyeliang@hdu.edu.cn (Y.Q.);
oudongyang1@gmail.com (H.W.); jilin.zhang@hdu.edu.cn (J.Z.); wanjian@zust.edu.cn (J.W.)

2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310037, China
3 College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
4 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah,

OK 74464, USA
5 School of Information and Electronic Engineering, Zhejiang University of Science and Technology,

Hangzhou 310023, China
* Correspondence: xiongnaixue@gmail.com; Tel.: +1-404-645-4067

Received: 29 October 2018; Accepted: 6 December 2018; Published: 12 December 2018
����������
�������

Abstract: In virtualized sensor networks, virtual machines (VMs) share the same hardware for
sensing service consolidation and saving power. For those VMs that reside in the same hardware,
frequent interdomain data transfers are invoked for data analytics, and sensor collaboration and
actuation. Traditional ways of interdomain communications are based on virtual network interfaces
of bilateral VMs for data sending and receiving. Since these network communications use TCP/IP
(Transmission Control Protocol/Internet Protocol) stacks, they result in lengthy communication paths
and frequent kernel interactions, which deteriorate the I/O (Input/Output) performance of involved
VMs. In this paper, we propose an optimized interdomain communication approach based on shared
memory to improve the interdomain communication performance of multiple VMs residing in the
same sensor hardware. In our approach, the sending data are shared in memory pages maintained by
the hypervisor, and the data are not transferred through the virtual network interface via a TCP/IP
stack. To avoid security trapping, the shared data are mapped in the user space of each VM involved
in the communication, therefore reducing tedious system calls and frequent kernel context switches.
In implementation, the shared memory is created by a customized shared-device kernel module that
has bidirectional event channels between both communicating VMs. For performance optimization,
we use state flags in a circular buffer to reduce wait-and-notify operations and system calls during
communications. Experimental results show that our proposed approach can provide five times
higher throughput and 2.5 times less latency than traditional TCP/IP communication via a virtual
network interface.

Keywords: interdomain communication; shared memory; circular buffer optimization; virtual
sensor networks

1. Introduction

In a virtualized system, physical resources are abstracted, partitioned, and sliced as virtual resources
to virtual machines (VMs). Virtualization provides management convenience and service consolidation,
builds a versatile and efficient computing environment to provide services, and achieves an elastic
computing architecture and efficient resource utilization. Virtualization essentially enables a system
to configure resources from a logical view rather than a physical view. Accordingly, virtualization

Sensors 2018, 18, 4395; doi:10.3390/s18124395 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3592-0328
https://orcid.org/0000-0002-0394-4635
http://dx.doi.org/10.3390/s18124395
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4395?type=check_update&version=2

Sensors 2018, 18, 4395 2 of 19

technology is widely adopted in various online data centers, multitenant cloud-computing platforms,
high-performance and -availability clusters, and even high-end desktops [1–3].

For sensor networks, virtualization is an important way for provisioning and easy deployment
[4–11]. Virtualization in sensor network environments makes it possible for multiple network interface
functions to run on a single physical resource for high resource utilization, low cost, and reduced
energy consumption for the sensors. In sensor networks, data communication performance has
significant impact on both energy consumption and communication latency [12–17]. In the emerging
edge computing paradigm [18,19], various sensors and edge devices are deployed in smart cities,
smart homes, autonomous vehicles, and other smart things. With more powerful computing, storage,
and communication capabilities, sensors are no longer constrained to sensing functions, but can
provide data storage and even data processing capabilities. These smart sensors are capable of
providing complex services with diverse requirements, including data aggregation and analytics.
For easier large-scale deployment, manageability, and maintenance, customized/tailored VMs or
lightweight containers run atop these smart sensors. Moreover, VMs and containers are easier for
sensor programming flexibility, system patching, and updating sensing functions. For example,
ad hoc and mission driven sensor networks are highly dynamic due to task reassignment, sensing
functions, and mission changes. Virtual machines enable the reprogrammability and flexibility of
sensor hardware and mask hardware heterogeneity. Also, processing data after they are sensed at the
sensor can yield shorter response times, more efficient processing, and less pressure on the network
bandwidth for data aggregation [18,19].

For these smart sensors with VM or container support, interdomain communications are
inevitable in many scenarios, including cross-domain data transfer and aggregation, and global data
analysis. Since sensors are usually constrained by energy provisioning, highly efficient interdomain
communications result in less energy consumption and a longer battery life. However, the scheduler in
a traditional VM Monitor (VMM), such as the Xen credit scheduler, is agnostic about the communication
behavior between guest operating systems (GuestOS). Experiments in virtualized consolidated
environments show that virtualization can significantly increase network communication latency
between multiple VMs. For example, CPU (Central Processing Unit) resource allocation methodology
has a critical impact on the network latency between collocated VMs when there are CPU and
I/O-intensive workloads running simultaneously [20–25].

In a virtualized system, I/O virtualization is implemented by abstracting the upper-layer
protocols from the physical connections. For network functions, I/O virtualization enables a physical
adapter card to appear as multiple virtual network interface cards (vNICs) and virtual host bus
adapters (vHBAs), such that vNICs and vHBAs function as conventional NICs and HBAs, and are
compatible with existing operating systems, hypervisors, and applications. In networking resources,
these virtual network interfaces appear as normal cards, in the same manner as the physical view.
In virtualized systems, I/O virtualization simplifies management, lowers operational costs, and
improves performance in virtualized environments [26–31]. However, I/O virtualization is usually the
performance bottleneck in virtualized systems [32–35].

Virtualization modifies the original hardware, which was deployed on different physical
platforms, such that it is integrated into a single physical machine; creating multiple VMs in a
single host. The communication between VMs on a single physical machine becomes very complex
and frequent. Currently, since communication performance between different VMs on a single
physical machine is affected by various aspects, the overhead can largely degrade communication
performance [36–38]. Memory virtualization is one of the most common virtualization technologies,
and the required user memory space may be much larger than the actual size of the machine’s memory.
By using memory virtualization technology, part of the hard disk can be virtualized into memory and
this is transparent to the user.

Although VM consolidation [39] has seen rapid adoption in practice for easier deployment, the
increasing degree of VM consolidation has serious negative effects on VM TCP performance. In a

Sensors 2018, 18, 4395 3 of 19

virtualized environment, as multiple VMs share a given CPU, scheduling latencies can substantially
deteriorate TCP throughput in the data center [40].

Traditionally, I/O devices are usually exclusively used by a single VM, and thus, become
the bottleneck of virtualization performance. To complete interdomain communication between
different VMs on the same physical device under the Xen virtualization environment, first a request
needs to be sent to the front driver; then, the front driver transfers the request to the corresponding
backend driver in Domain0 (the hypervisor domain) [41,42]. In this way, the transferring data first
need to be copied from the application to the kernel, then encapsulated by the TCP/IP protocol,
and transferred to the other domain through a complex flow control protocol. In addition, multiple
check operations, like the checksum and handshake mechanism, need to be done in the transmission
process to ensure correct transmission of the information. These result in multiple context switches,
and thus degrade communication performance. In addition, the page-flipping mechanism, used to
transfer a page between the VMs in the process, needs multiple hypercalls and flushes the page
table and TLB (Translation Lookaside Buffer). From the above introduction to the process of the
interdomain communication, we can see that traditional interdomain communication can largely
degrade communication performance.

This paper presents a model for optimizing interdomain communication between VMs in a single
physical machine in a virtualized sensor network environment. This model is based on shared memory
and the key idea consists of mapping pages of shared memory directly into the user space, thus getting
rid of useless system calls. It can achieve high performance by bypassing the TCP/IP protocol stack
and privileged domain, and provides a direct and high-performance communication path between
two VMs. The memory is shared via a customized shared device kernel module with a bidirectional
event channel residing in both communicating VMs. We use state flags in a circular buffer to reduce
wait and notify operations, and thus, system calls. Some evaluations are also presented to show that
the optimized model can significantly expand throughput, shorten latency, and improve the CPU
utilization of Domain0 compared to the normal interdomain communication method.

The rest of this paper is organized as follows. Section 2 describes related works and background.
Section 3 introduces the design and implementation of the optimized model. Section 4 presents the
performance evaluation of the optimized model. Finally, we conclude our work in Section 5.

2. Related Works

Depending on the different implementations and whether or not the guest operating system kernel
code is modified, virtualization technology can be divided into full virtualization, paravirtualization,
and hardware-assisted virtualization. Full virtualization depends on a binary instruction translation
mode, and no modification is needed to the system kernel code. Paravirtualization needs to modify
the guest operating system kernel so that it can efficiently run on a VM manager. Hardware-assisted
virtualization, with the help of special hardware instructions, makes the raw operating system run on
the VMM. Enterprises use virtualization technology to quickly create services and efficiently manage
their business, by achieving more flexible, efficient, and safe management and utilization of different
computing resources. Using virtualization technology to create appropriate services in different VMs
to achieve service consolidation can make management more convenient, resource utilization more
appropriate, and overhead much smaller.

Although Xen provides paravirtualized network architecture, the network performance overhead
is significantly heavy. Menon et al. [4] proposed Xenoprof, which is used for network detection
and tries to monitor network performance bottlenecks. Xenoprof monitors performance overhead
by detecting clock interruptions, cache, block table hits, and other hardware events. In order to
improve the Xen network communication performance, Menon et al. [5] also proposed techniques for
optimizing network performance in a Xen virtualized environment. First, their technique redefines
the virtual network interfaces of guest domains to incorporate high-level network offload features.
Second, it optimizes the implementation of the data-transfer path between DomU (the user domain)

Sensors 2018, 18, 4395 4 of 19

and Dom0. Last, it provides support for the guest systems to effectively use advanced virtual memory
features, such as superpages.

The grant table mechanism of Xen provides an interface to virtual domains to optimize
interdomain communication performance with a shared memory page. Inter-VM communication
method (IVCOM) [43] applies a direct communication channel between Dom0 and a hardware
virtualization-based VM (HV2M) and can greatly reduce VM entry/exit operations, which has
improved HV2M performance. Zhang et al. [44] pointed out that the virtual network Xen model has
huge overhead due to the inefficiency of interdomain communications and privileged instructions
(hypercall), and the network protocol stack. They also propose a fast interdomain communication
scheme XenSocket. XenSocket offers a new socket interface. Therefore, one only needs to perform
some modifications in the application layer. However, that is a one-way channel, which is different
from the traditional view of the socket. XWay [45] provides a two-way channel of communication
between domains, which is transparent to part of the upper application. It directly implements a new
transparent layer in the INET (Internet) and TCP layers, reduces the processing overhead of TCP/IP and
page mapping, and shortens the communication path. However, it only supports TCP communication,
and thus, the Linux kernel code needs to be modified. XenLoop [46] demonstrated a shared memory
interdomain communication scheme that does not need to modify the kernel, is completely transparent
to the upper application, and also supports dynamic migration of VMs. Compared with XWay,
which is not completely transparent to the upper application, XenLoop implements interception
to the upper message by using the netfilter function library, which is fully compatible with upper
network applications. Huang et al. [47] proposed IVC (Inter-VM Communication), an interdomain
communication scheme that is based on the message passing mechanism allowing a high-performance
computer program based on the MPI (Message Passing Interface) library to communicate by shared
memory. However, IVC differs from the previous XenSocket and XWay in that it provides migration
support and automatic domain discovery but needs to do some modifications in the kernel and
the upper application. AdaptIDC [48] is an interdomain communication system that implements
an adaptive shared memory. With the help of the IOIHMD (Immediate On-demand Increase and
Hysteretic Multiplicative Decrease) adjustment algorithm, the control ring, and the event channel
reuse mechanism, AdaptIDC achieves superior shared memory utilization and does not sacrifice
high-performance between domains.

These schemes, which are based on Xen’s grant table mechanism, are implemented by the
producers–consumers buffer. The user cannot directly access the shared memory space; they can only
read and write the shared memory through system calls, which lead to context switches and have an
impact on performance. Among these schemes, XenLoop’s performance is the worst, which is partly
because of the overhead of the netfilter function [49]. XWay, XenSocket, and IVC achieve better network
performance by directly placing the data into the shared memory, but, at the same time, they cannot
guarantee transparency of the upper application.

Compared to the above interdomain communication mode, based on shared memory [6,50–54],
Fido et al. [50] implemented interdomain communication by using full page mapping. Pages are
mapped to the other side, so the other side can directly read and write the corresponding page while
communicating. Zhang et al. [55] presented MemPipe, a dynamic shared-memory management
system for high-performance network I/O among VMs located on the same host. For big data and
latency-sensitive applications in virtualized systems, memory is increasingly becoming a bottleneck,
and memory efficiency is critical for the high-performance execution of VMs, especially for changing
workloads [7,56,57]. Modern complex embedded systems use memory partitioning to satisfy a
wide set of nonfunctional requirements, such as strong temporal and spatial isolation [8,58,59].
Oliveira et al. [58] presented TZ-VirtIO, an asynchronous standardized interpartition communication
(IPC) mechanism on top of a trust zone-assisted dual-OS hypervisor (LTZVisor) using a standard
VirtIO transport layer. Smith et al. [60] proposed a system for dynamically allocating memory amongst
virtual machines at runtime, and they evaluated six allocation policies implemented within the

Sensors 2018, 18, 4395 5 of 19

system. Zhang et al. [61] proposed iBalloon, a light-weight, accurate and transparent prediction based
mechanism to enable more customizable and efficient ballooning policies for rebalancing memory
resources among VMs.

In order to maximize the effectiveness of virtualization systems where resources are allocated
fairly and efficiently amongst VMs, Smith et al. [30] presented a system for dynamically allocating
memory among VMs at runtime. They also provided evaluations of six allocation policies implemented
within the system. In their system, they allowed guest VMs to expand and contract according to their
changing demands by uniquely improving and integrating mechanisms such as memory ballooning,
memory hotplug, and hypervisor paging.

Disk I/O performance is vital for virtualized systems like HPC clusters or commodity servers
[12,13,26,29,30,32,33,62,63]. Zeng et al. [62] proposed Raccoon, a network I/O allocation framework
for a workload-aware VM scheduling algorithm, to facilitate hybrid I/O workloads in virtual
environments. Raccoon combines the strengths of the paravirtualized I/O and SR-IOV techniques to
minimize network latency and optimize bandwidth utilization for workload-aware VM scheduling.
In the area of high-performance computing, DMA (Direct Memory Access)-capable interconnections
provide ultralow latency and high bandwidth in distributed storage and data-processing systems.
However, it is difficult to deploy such systems in virtualized data centers due to a lack of flexible
and high-performance virtualization solutions for RDMA (Remote Direct Memory Access) network
interfaces [64]. Hybrid virtualization (HyV) [28] was proposed to separate paths for control and data
operations available in RDMA. In such hybrid virtualization, RDMA control operations are virtualized
using hypervisor involvement, while data operations are set up to completely bypass the hypervisor.
In order to provide accurate and realtime decision for interdomain communication scheduling, system
monitoring is very important for resource utilization in both device level and VM level [65].

Deshpande et al. [34] proposed a traffic-sensitive live VM migration technique to reduce the
contention of migration traffic with the VM application traffic. It uses a combination of pre-copy and
post-copy techniques for the migration of colocated VMs (those located on the same source host),
instead of relying on any single predetermined technique for the migration of all VMs. Memory sharing
is used to provide a data transferring venue for data communication between multiple VMs [27,30,32].
Kocoloski et al. [31] present XEMEM, a shared memory system that can construct memory mappings
across enclave OSes (Operating Systems) to support composed workloads while allowing diverse
application components to execute in strictly isolated enclaves.

Levis et al. [9] presented Maté, a tiny communication-centric VM designed for sensor networks.
Maté’s high-level interface allows complex programs to be very short, reducing the energy cost of
transmitting new programs, and its code is broken up into small capsules of 24 instructions, which
can self-replicate through the network. Packet sending and reception in Maté capsules enable the
deployment of ad hoc routing and data aggregation algorithms.

However, even though the solutions above are efficient and very user friendly, they all require
system calls (and thus context switching) in order to achieve read-and-write operations, since the
user space cannot directly access the shared memory. In this paper, we present an interdomain
communication model based on shared memory under a Xen system. This optimized model directly
maps the shared page to the user space and reduces unnecessary system calls. Therefore, it substantially
increases communication bandwidth and throughput, and effectively improves the communication
performance between VMs. The implementation of this optimized model is divided into two parts.
The first part is a shared memory device kernel model, which provides a way to share memory
between the two domains. The second part is a shared memory interdomain channel interface library.
Its main role is to provide a tool that uses the shared memory as the optimized communication
channel, and optimizes the ring buffer. The proposed model in this paper is based on shared
memory and it can achieve high performance by bypassing TCP/IP protocol stacks and privileged
domains, providing a direct and high-performance communication path between two VMs. For easier
deployment and flexible management in edge computing environment, an edge device can run in a

Sensors 2018, 18, 4395 6 of 19

virtual machine or container. Therefore, the approach proposed in this paper can also be applied in
edge computing environment.

3. Interdomain I/O Optimization Based on Shared Memory

In this paper, we propose to optimize the interdomain communication between VMs in a single
physical machine in a virtualized sensor network environment. Our approach is based on shared
memory, and the key technique consists in mapping shared memory pages directly into the user space,
thus reducing useless system calls. It can achieve high performance by bypassing TCP/IP protocol
stacks and privileged domains, providing a direct and high-performance communication path between
two VMs. In our approach, the sending data are shared in the memory and not transferred via a
TCP/IP stack. The communication data are directly mapped into the user space of the VM, therefore
reducing useless system calls and context switches. Memory is shared via a customized shared device
kernel module with a bidirectional event channel residing in both communication VMs. We use state
flags in the circular buffer to reduce wait and notify operations, and thus, reduce the system calls.

The overall structure of the optimized model is shown in Figure 1. The model consists of two
main parts: the shared memory device kernel module and the interdomain communication channel
interface library. Dom0 is the host domain, and Dom1 and Dom2 are two guest VMs colocated on the
same hardware.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 20

3. Interdomain I/O Optimization Based on Shared Memory

In this paper, we propose to optimize the interdomain communication between VMs in a single
physical machine in a virtualized sensor network environment. Our approach is based on shared
memory, and the key technique consists in mapping shared memory pages directly into the user
space, thus reducing useless system calls. It can achieve high performance by bypassing TCP/IP
protocol stacks and privileged domains, providing a direct and high-performance communication
path between two VMs. In our approach, the sending data are shared in the memory and not
transferred via a TCP/IP stack. The communication data are directly mapped into the user space of
the VM, therefore reducing useless system calls and context switches. Memory is shared via a
customized shared device kernel module with a bidirectional event channel residing in both
communication VMs. We use state flags in the circular buffer to reduce wait and notify operations,
and thus, reduce the system calls.

The overall structure of the optimized model is shown in Figure 1. The model consists of two
main parts: the shared memory device kernel module and the interdomain communication channel
interface library. Dom0 is the host domain, and Dom1 and Dom2 are two guest VMs colocated on
the same hardware.

shared memory device kernel
module

shared memory device kernel
module

Application Application

Front driver Front driver

Dom1 Dom2Dom0

Back
driver

Back
driver

Event channel

Inter-domain communication
channel interface library

Inter-domain communication
channel interface library

Shared memory channel

Figure 1. Architecture of the proposed model for interdomain communication optimization.

The shared memory device kernel module is a Linux kernel module that defines a new device
driver. It provides a way to share memory between two user spaces of different VMs on the same
physical machine. It also uses a bidirectional event channel to provide notifications and responses
of messages.

An interdomain communication channel interface library is a user space library that is located
on the shared memory device kernel module. It not only provides a file-like interface for users to
transfer data using the shared memory device kernel module, but it also implements the
optimization of the circular buffer.

In our model, we used header pages to store control information during the memory sharing
process, such as the granted privileges index of shared pages, event channel ports, and the
communication status of both communicating sides. Once we grant the receiver access privilege to
the header pages, and call the hypercall to map the shared memory pages to the receiver’s address
space, the receiver can access all the granted pages via the index page. We used the following
structure to store the header pages:

Figure 1. Architecture of the proposed model for interdomain communication optimization.

The shared memory device kernel module is a Linux kernel module that defines a new device
driver. It provides a way to share memory between two user spaces of different VMs on the same
physical machine. It also uses a bidirectional event channel to provide notifications and responses
of messages.

An interdomain communication channel interface library is a user space library that is located on
the shared memory device kernel module. It not only provides a file-like interface for users to transfer
data using the shared memory device kernel module, but it also implements the optimization of the
circular buffer.

In our model, we used header pages to store control information during the memory sharing
process, such as the granted privileges index of shared pages, event channel ports, and the
communication status of both communicating sides. Once we grant the receiver access privilege
to the header pages, and call the hypercall to map the shared memory pages to the receiver’s address
space, the receiver can access all the granted pages via the index page. We used the following structure
to store the header pages:

Sensors 2018, 18, 4395 7 of 19

struct xen_shm_header {
uint8_t offer_state;
uint8_t receiver_state;
uint8_t pages_count;
evtchn_port_t offer_ec_port;
grant_ref_t grant_refs [XEN_SHM_ALLOC_ALIGNED_PAGES];
};

where:

offer_state and receiver_state stand for the status of the offer and receiver. Here, there are three statuses,
i.e., none, open, and closed;
pages_count stands for the number of shared pages;
evtchn_port_t stands for the allocated event channel port number of the offer side, and the port number
can be customized in virtualized system;
grant_refs stands for the index containing all the granted pages.

We also defined the instance to stand for communication parties, i.e., the offer side provides
shared memory pages, while the receiver side maps the shared memory pages into its own address
space. Such instance is defined via the structure xen_shm_instance_data as the following:

struct xen_shm_instance_data {
uint8_t pages_count;
unsigned long shared_memory;
domid_t local_domid;
domid_t distant_domid;
evtchn_port_t local_ec_port;
evtchn_port_t dist_ec_port;
grant_ref_t first_page_grant;
unsigned int offerer_alloc_order;
struct vm_struct *unmapped_area;
grant_handle_t grant_map_handles [XEN_SHM_ALLOC_PAGES];
};

where:

pages_count is the number of consecutive allocated pages;
shared_memory (only in offer side) is the allocated page address;
local_domid and distant_domid are the local and remote domain IDs, respectively;
local_ec_port and dist_ec_port are the allocated event channel port number of the local and remote
domains, respectively,
first_page_grant is the first granted index;
offerer_alloc_order (only on offer side) stores order value to calculate the page numbers;
unmapped_area (only for the receiver) is the allocated mapping address to receiver;
grant_map_handles is the returning value after calling the memory mapping function
HYPERVISOR_grant_table_op (). This return value is used to terminate memory mapping
when communication is terminated.

We describe the architecture proposed in Figure 1 in the following sections.

3.1. Shared Memory Device Kernel Module

The shared memory device kernel module in Figure 1 is a Linux kernel module that defines a
device driver. This kernel module not only provides a way of sharing memory, but also uses the
bidirectional event channel to provide notifications and response of messages.

Sensors 2018, 18, 4395 8 of 19

In a normal Xen platform, each virtual guest operating system has its own memory address space
that is mapped to nonoverlapping physical memory, providing ownership of the memory space to each
guest operating system. However, a Xen hypervisor can also remap the memory of the guest system
to the address space of the other guest system, which is implemented by the grant table mechanism
provided by Xen. Each virtual domain has its own grant table, which is a shared data structure in a
Xen system. The grant table keeps the shared grant information that is provided to other domains.
The grant table is a page-based mechanism, and these pages can be represented by an integer that is
called the grant reference. The grant reference points to a certain entry of the grant tables. The process
of the grant access mechanism is as follows: First, guest operating system A must request that the
hypervisor grants the right of operating system B to use part of the physical memory of A. Then, the
hypervisor issues a ticket called a grant reference. B uses this ticket to map the memory of A to its own
address space.

In order to implement the shared memory, the memory first needs to be allocated to one of the
two guest operating systems, this is called the offer. As granting rights and mapping memory are based
on one of the guest operating systems, the other side is called the receiver.

Memory creation on the receiver’s side is listed in Algorithm 1. Similarly, memory creation on the
offer’s side is listed in Algorithm 2.

Algorithm 1 Mapping memory creation on the data receiver side

Input: data size
Output: mapped memory page in receiver side

1 : //allocate header pages f or shared memory
2 : alloc_vm_area(PAGE_SIZE ∗ XEN_SHM_ALLOC_ALIGNED_PAGES);
3 : //Set the GNTMAP_host_map type and map header pages
4 : gnttab_set_map_op(&map_op, addr, GNTMAP_host_map, f irst_page_grant, dis tan t_domid)
5 : HYPERVISOR_grant_table_op(GNTTABOP_map_grant_re f , &map_op, 1)
6 : //Map memory pages
7 : f or (page = 0; page < data− > pages_count; page ++) {
8 : gnttab_set_map_op(&map_op, addr + page ∗ PAGE_SIZE, GNTMAP_host_map,

f irst_page_grant, dis tan t_domid);
9 : HYPERVISOR_grant_table_op(GNTTABOP_map_grant_re f , &map_op, 1);
10 : //reclaim memory pages
11 : f ree_vm_area(data− > unmapped_area);

Algorithm 2 Mapping memory creation on the data offer side

Input: data size
Output: mapped memory page in offer side

1 : i f (!memoryOver f low)

2 : //allocation memory head page
3 : head_alloc¬_get_ f ree_pages(GFP_KERNEL)
4 : //shared pages memory allocation
5 : shared_alloc¬_get_ f ree_pages(GFP_KERNEL, order)
6 : end i f
7 : //grant access privileges to receiver
8 : i f (!granted)
9 : gnttab_grant_ f oreign_access(data− > dis tan t_domid, virt_to_m f n(header_p), 0);)
10 : //grant access privileges o f each memory pages to receiver
11 : f or (page = 0; page < data− > pages_count; page ++)

12 : header_p− > grant_re f s[page] = gnttab_grant_ f oreign_access(
data− > dis tan t_domid , virt_to_m f n(page_pointer), 0);

13 : // f ree header pages
14 : f ree_pages(data− > shared_memory, data− > o f f erer_alloc_order)

Sensors 2018, 18, 4395 9 of 19

Once the memory is created, it can be shared among different VMs. The communication flow on
the receiver’s side is described in Algorithm 1. On the receiver’s side, the receiver first calls the function
shmpipe_getdomain id (shmpipe_p pipe, uint32_t* receiver_domain id) to obtain the receiver’s domain ID
and send it to the offer. Then, it receives the offer’s domain ID, grant reference, and page_count. Finally,
the receiver calls the function shmpipe_connect (shmpipe_p pipe, uint8_t page_count, uint32_t offer_domain
id, uint32_t grant_ref) to connect with the offer.

On the offer’s side (Algorithm 2), the offer first receives the receiver’s domain ID, then obtains
its own domain ID and grant reference, and starts to share the memory by calling the function
shmpipe_offers (shmpipe_p pipe, uint8_t page_count, uint32_t receiver_domain id, uint32_t* offer_domain id,
uint32_t* grant_ref). Then, it sends the offer domain ID, grant ref, and page_count to the receiver. As a
back daemon, it waits for the receiver to connect.

3.1.1. Shared Memory Creation

In order to share memory, the offer asks the hypervisor to grant the right to map the memory using
the function gnttab_grant_foreign_access (). The hypervisor stores the corresponding pseudo-physical
address, the domain IDs of both ends, and the grant reference. With the domain ID of the offer and the
grant reference, the receiver can make another hypercall HYPERVISOR_grant_table_op () to map the
memory provided by the offer into its own address space. That is the process of sharing memory.

3.1.2. Instance Initialization

When a user opens the shared memory device, hypercalls are not immediately made to map the
memory, but private variables are initialized so that the instance can designate an offer or receiver.
To configure the virtual domain instance, specific ioctl operations need to be used, and these ioctl
operations return the value of the local domain ID and grant reference. Then, they share the values
so that the other process can call the appropriate ioctl operations and configure the virtual domain
instance on its side.

In the implementation process, the shared memory is composed of multiple pages, each page
having its own grant reference. If all grant references are transmitted through XenStore, there is a huge
performance overhead. So, in order to reduce the size of sharing information, our model uses the first
page as a header page. This page contains all necessary grant references, event channel information,
and state of the communication ends. Therefore, as long as the receiver maps the header page to its
own address space, it is able to obtain all of the grant references, and obtains all the information of the
shared pages.

3.1.3. Mapping Memory into the User Space

As our optimized model tries to limit kernel involvement as much as possible, the optimized
model directly maps the shared memory to the user space; therefore, direct read-and-write operations
can be done to reduce performance overheads.

On the offer side, memory mapping is not difficult to implement, as the kernel provides a range
of interface functions for the device driver. By calling standard device driver functions (such as open,
nmap, munmap, close), mapping or unmapping memory can be easily realized. In addition, the function
remap_pfn_range, used to implement simple remapping, makes remapping easy.

However, on the receiver side, memory mapping is not that simple. Xen API (Application
Progamming Interface) can be called with the space address and mapping memory and granting access
can be implemented. However, it somehow taints the kernel with page errors during unmapping.
So, the right way to work is on a lower level with page tables, and correctly invalidate mapping at an
early stage of the memory unmapping.

Sensors 2018, 18, 4395 10 of 19

3.1.4. Event Channel

Shared memory is essential for the communication system but making the system more efficient
with only shared memory is not enough. When there are no data to read, a reader must wait. Likewise,
when there is no more space, the writer must wait as well. On a single operating system, the kernel is
usually responsible for waiting and waking in the process. Mutexs is used to synchronize different
processes, but when it comes to different kernels using a shared memory, these mechanisms do
not work.

Therefore, in addition to the shared memory, this device module also uses the event channel
to provide notification and response to the messages. An event channel is a bidirectional pipe used
to transmit and handle virtual interrupts, using an asynchronous event notification mechanism to
implement the notification transfer from Xen to the domain. Creating an event channel is similar to
sharing memory. The offer opens an event channel, identified by the port number, and the receiver
connects to the event channel through port number and remote domain ID. When the offer process
initializes its own side, the event channel port number is written into the header page, so the receiver
can obtain the port number and connect to the event channel.

3.1.5. Sharing Memory Termination

Due to the nonsymmetrical model of memory sharing, some specific operations are still needed
before the model is completely cleaned. The offer has the ownership of the original physical memory
and then it allocates the memory, maps the memory into the receiver, and tells the location of the
memory to Xen. When closing the module, the offer needs to free the allocated memory or it causes
huge memory leakages. However, this optimized model uses direct mapping. If the receiver still has
active mapping, it can modify the physical memory. If the offer frees the memory with no special
check, this memory is likely to be reallocated, but if at this point the receiver has not been closed and
still has active mapping, then it modifies the physical memory, and unspecified errors are expected
from the resulting non-desired sharing. The Xen API provides a method to detect the amount of active
mapping for each grant. Therefore, the device module avoids memory errors by detecting existing
active mapping.

Kernels at both ends maintain a shared state in the header page, including whether the user is
using the opened instance. The shared state fields are monitored, and any waiting process receives an
EPIPE (broken PIPE) error once the communication state of the other side becomes closed.

3.2. Implementation of the Interdomain Communication Channel Interface Library

Two processes can implement efficient data transmission through sharing memory. Our optimized
model provides an optimized channel that not only has excellent performance, but also remains an
efficient resource. Thus, the interdomain communication channel interface library not only provides
a user-friendly interface for the shared memory device mentioned above, but also implements
optimization techniques that have better performance.

Here, we use a circular buffer structure, which offers interesting particularity in that it is wait-free
as long as it is neither empty nor full to store the data. The circular buffer is a FIFO (First In First Out)
ring buffer. There is a read pointer and a write pointer in the ring buffer, and they share their own
cursor position. The read pointer points to the read data in the ring buffer, and the write pointer points
to the write data. Reading and writing data in the buffer can be achieved by moving the read and
write pointers.

The peers of the communication channel are called reader and writer. One pipe, using an instance
of shared memory, needs exactly one writer and one reader, but those roles have no relationship with
the underlying offer and receiver roles. Offer and receiver refer to the owner of the physical memory.
In the initialization of the communication channel, you need to specify the mode (read or write) and
conventions (writer offer or writer receiver).

Sensors 2018, 18, 4395 11 of 19

3.2.1. Circular Buffer Optimization

In this optimized model, we used words instead of bytes to copy data. Since the test system used
a 64-bit processor, we used 64 aligned buffers to read and write.

When the circular buffer is full, the writer must wait. Similarly, when the circular buffer is empty,
the reader also needs to wait. When the data or space become available, one process needs to notify
another process using the notify operation. However, the operations of wait and notify both require a
system call. Thus, performance can be optimized by reducing the number of their calls.

First, in order to reduce the number of unnecessary notification calls, we used a sleeping flag to
indicate if the process was in a waiting state. Process checks the sleeping flag per read or write call and
sends a signal if the sleeping flag of the other peer is set. On the other hand, the sleeping flag is set
before the process calls the wait ioctl, and it is unset after wake-up.

Then, in order to reduce the number of unnecessary wait calls, a process can loop until data or
space are available when the process is alone in the machine. Otherwise, the process would not be
scheduled by the kernel scheduler if there are a lot of running processes, which would significantly
reduce performance. So, we used an active flag to indicate if the process was active. After setting the
active flag, the other process loops until data or space are available, instead of calling the wait ioctl.

3.2.2. Deadlock Avoidance

Deadlock is a situation that happens when a process is in a waiting state because the source the
process requested is held by another waiting process. If a process cannot change its state because the
resource requested by it is being used by another waiting process, then the system is said to be in
a deadlock.

Putting a process casually into sleep may cause some problems, because the other process may be
waiting. So, we used a flag, waiting, to indicate that a process is waiting for data or space. A process
sets the flag whenever it starts waiting for data or space, and unsets it at the end. A process is forbidden
from sleeping when the other process sets the waiting flag. Because both processes should not be
waiting at the same time, a process should continue looping as long as there are no available data or
space. A process sets the waiting flag when it starts each loop, and then checks whether the looping
condition is true or not. Therefore, the process knows the other process is waiting, which prevents the
process from putting itself to sleep and avoids deadlocks.

3.2.3. Channel Closing

We used a closed flag to indicate a process closes the communication channel, so that the other
peer knows. After the closed flag is set, a write call fails to work, and a read call returns the end of file
as soon as there are no more available data.

If some process crashes, the system kernel closes the device file and modifies the shared state
maintained in the header page. By monitoring the shared state, the kernel sends a signal so that any
waiting process returns with the EPIPE error.

The flags and mechanisms we used in our paper can implement termination and also
avoid deadlocks.

3.3. Interdomain Communication Process

We depict the algorithm of interdomain communication of the proposed model in Algorithm 3.
First, the offer allocates memory, including the shared memory pages and the abovementioned

header page, which is used to store some essential control information. The header page is mainly used
to store all the grant references of the shared memory pages, the state information of the communication
ends, and the port number of the corresponding event channel. As long as the receiver maps the header
page to its own address space, it can obtain all of the grant references and all the information of the
shared pages. Then, the offer calls function gnttab_grant_foreign_access () to grant access to the header

Sensors 2018, 18, 4395 12 of 19

page. After that, the offer calls hypercall HYPERVISOR_event_channel_op () to assign an unbounded
event channel, and then binds the related handler function to the event channel.

As for the receiver end, it first allocates a virtual memory address to map the shared memory
pages. Then, by calling hypercall HYPERVISOR_grant_table_op (), the receiver maps the header page
to its own address space and obtains the grant references of the other shared memory pages in the
header page. After that, the receiver maps the other shared memory pages on its own address space in
the same way. After page mapping, the receiver obtains the port number of the event channel from the
header page and binds the corresponding port number. Finally, it binds related handler function to the
event channel.

Algorithm 3 Interdomain communication process

Input: domain ID
Output: mapped memory address

1 : i f (role = receiver){
2 : //Allocate the shared memory pages and the header page
3 : //get receiver′s DomID to send it to o f f er;
4 : shmpipe_getdomain id(shmpipe_p pipe, uint32_t ∗ receiver_domain id)
5 : //Receive o f f er′s domain id, Grant re f and page_count to o f f er in grant table;
6 : //connect with the o f f er;
7 : shmpipe_connect(shmpipe_p pipe, uint8_t page_count, uint32_t o f f er_domain id, uint32_t grant_re f)
8 : //map the memory into receiver′s address space
9 : HYPERVISOR_grant_table_op();
10 :}
11 : elsei f (role = o f f er){
12 : //get mapping right
13 : gnttab_grant_ f oreign_access() ;
14 : //Receive receiver′s domain id
15 : //Get o f f er′s domain id and grant re f
16 : //share the memory
17 : shmpipe_o f f ers(shmpipe_p pipe, uint8_t page_count, uint32_t receiver_domain id,

uint32_t ∗ o f f er_domain id, uint32_t ∗ grant_re f)to ;
18 : //Send o f f er domain id, grant re f andpage_count to the receiver;
19 : //Wait f or the receiver to connect;
20 : wait();
21 :}

}

4. Experiment Results

Our evaluations aimed to compare the communication performance of the optimized model
with the traditional TCP/IP mode. The evaluations verified that our optimized model has better
communication performance than the traditional TCP/IP mode in tests of throughput, communication
delay, CPU utilization, and number of hypercalls.

Evaluations used an Intel Core i5-2400 4-core processor, CPU frequency was 3.1 GHz, memory
capacity was 4 GB, and we installed Xen 4.2.1. All physical machines and VMs were running CentOS
6.2 with Kernel 3.5.7.

Dom0 and DomU were installed with CentOS Linux, Dom0 was configured with two CPU cores
and 2 GB RAM, and each of the two DomUs were configured to use a virtual CPU (VCPU) and 1 GB
memory. The testing environment configuration is shown in Table 1.

Sensors 2018, 18, 4395 13 of 19

Table 1. Testing environment configuration.

Domain CPU Memory

Domain0 Intel Core i5-2400 3.1 GHz 4 GB
DomainU 1 VCPU 1 GB

All interdomain communication experiments were conducted ten times, and the results shown in
the following sections are the average values of the ten runs.

4.1. Throughput of Interdomain Communications

Throughput capacity is an important performance index for measuring the communication
between different guest VMs on the same physical machine. In this evaluation, we first used iperf to
test throughput capacity between the different guest virtual domains under the original Xen network
virtualization infrastructure, TCP/IP. We implemented a test function that could change the buffer
size, and one process sends a bunk of messages to a remote domain where another process waits to
receive data. Since a TCP/IP-based approach is the main solution for interdomain communication
among multiple VMs, we tested the throughput capacity of the optimized model according to this test
program compared with the TCP/IP-based performance. We changed the buffer size to investigate the
performance limit of our proposed approach. The test results are shown in Figure 2.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 20

communication performance than the traditional TCP/IP mode in tests of throughput,
communication delay, CPU utilization, and number of hypercalls.

Evaluations used an Intel Core i5-2400 4-core processor, CPU frequency was 3.1 GHz, memory
capacity was 4 GB, and we installed Xen 4.2.1. All physical machines and VMs were running
CentOS 6.2 with Kernel 3.5.7.

Dom0 and DomU were installed with CentOS Linux, Dom0 was configured with two CPU
cores and 2 GB RAM, and each of the two DomUs were configured to use a virtual CPU (VCPU) and
1 GB memory. The testing environment configuration is shown in Table 1.

Table 1. Testing environment configuration.

Domain CPU Memory
Domain0 Intel Core i5-2400 3.1 GHz 4 GB
DomainU 1 VCPU 1 GB

All interdomain communication experiments were conducted ten times, and the results shown
in the following sections are the average values of the ten runs.

4.1. Throughput of Interdomain Communications

Throughput capacity is an important performance index for measuring the communication
between different guest VMs on the same physical machine. In this evaluation, we first used iperf to
test throughput capacity between the different guest virtual domains under the original Xen
network virtualization infrastructure, TCP/IP. We implemented a test function that could change the
buffer size, and one process sends a bunk of messages to a remote domain where another process
waits to receive data. Since a TCP/IP-based approach is the main solution for interdomain
communication among multiple VMs, we tested the throughput capacity of the optimized model
according to this test program compared with the TCP/IP-based performance. We changed the
buffer size to investigate the performance limit of our proposed approach. The test results are shown
in Figure 2.

Figure 2. Throughput of the TCP/IP-based (black-solid line) and our optimized (red-dashed line)
interdomain communication models.

0

5

10

15

20

25

30

0 100 200 300 400

Th
ro

ug
hp

ut
(G

bp
s)

Buffer Size(KB)

Throughput

TCP/IP Our proposed model

Figure 2. Throughput of the TCP/IP-based (black-solid line) and our optimized (red-dashed line)
interdomain communication models.

Figure 2 shows the throughput comparison of the optimized model and traditional TCP/IP
communications. The experimental results show that, compared to the traditional TCP/IP communication,
our proposed optimized model had much higher throughput capacity for different buffer sizes.
Our optimized approach improves the throughput capacity up to 24 Gbps (the upper limit
of the data-access performance of underlying memory modules), which is increased by about
five times compared to a traditional TCP/IP-based solution. This means that our optimized
approach can exploit the hardware capacity of the underlying memory modules for interdomain
communications and it has better communication performance for use in applications that require
frequent communication. When buffer size increases, the throughput of both the TCP/IP-based

Sensors 2018, 18, 4395 14 of 19

solution and our proposed approach increase accordingly. However, our proposed approach always
outperforms the TCP/IP-based solution.

4.2. Latency of Interdomain Communications

Another important performance indicator of the communication between different guest VMs on
the same physical machine is delay. In order to prove that the optimized model is more efficient than a
traditional TCP/IP communication approach, the round-trip delay when two VMs send different sized
messages to each other (taking into account the impact of bandwidth, the value of the transmission
message size is much smaller) needs to be tested. Each experiment was implemented 100 times,
and then the average round-trip latency over all experiments was determined. The experimental
results are shown in Figure 3.

The experimental results show that, compared to a traditional TCP/IP mode, the optimized model
has higher performance. The average delay of the optimized system was 43 µs, while the average
delay of the TCP/IP communication mode was 151 µs. The round-trip delay of the optimized model
was reduced by approximately four times. We can also see from the figure that with the growth of
the size of the transmitted message, both the delay of the TCP/IP and the optimized model increased,
and the performances thus dropped. However, the performance decline of the optimized model was
not as prominent as that of the TCP/IP mode. This means that the size of the message had smaller
impact on the optimization model. The experiments show that the optimized model would be suitable
for applications that have limitations on round-trip delays of system communication. In summary,
our proposed shared memory-based approach can achieve much higher memory access bandwidth
for interdomain communications because it bypasses the lengthy communication path of TCP/IP
communications. Our performance is only restricted by the memory bandwidth of the underlying
DRAM, whose data-access bandwidth is much higher than that of the underlying NIC in the traditional
TCP/IP-based approach. Moreover, in a virtualized environment, NIC is prone to be a bottleneck for
packet processing due to the data contention of multiple colocated VMs.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 20

Figure 5 shows the throughput comparison of the optimized model and traditional TCP/IP
communications. The experimental results show that, compared to the traditional TCP/IP
communication, our proposed optimized model had much higher throughput capacity for different
buffer sizes. Our optimized approach improves the throughput capacity up to 24 Gbps (the upper
limit of the data-access performance of underlying memory modules), which is increased by about
five times compared to a traditional TCP/IP-based solution. This means that our optimized approach
can exploit the hardware capacity of the underlying memory modules for interdomain
communications and it has better communication performance for use in applications that require
frequent communication. When buffer size increases, the throughput of both the TCP/IP-based
solution and our proposed approach increase accordingly. However, our proposed approach always
outperforms the TCP/IP-based solution.

4.2. Latency of Interdomain Communications

Another important performance indicator of the communication between different guest VMs
on the same physical machine is delay. In order to prove that the optimized model is more efficient
than a traditional TCP/IP communication approach, the round-trip delay when two VMs send
different sized messages to each other (taking into account the impact of bandwidth, the value of the
transmission message size is much smaller) needs to be tested. Each experiment was implemented
100 times, and then the average round-trip latency over all experiments was determined. The
experimental results are shown in Figure 3.

The experimental results show that, compared to a traditional TCP/IP mode, the optimized
model has higher performance. The average delay of the optimized system was 43 µs, while the
average delay of the TCP/IP communication mode was 151 µs. The round-trip delay of the
optimized model was reduced by approximately four times. We can also see from the figure that
with the growth of the size of the transmitted message, both the delay of the TCP/IP and the
optimized model increased, and the performances thus dropped. However, the performance decline
of the optimized model was not as prominent as that of the TCP/IP mode. This means that the size of
the message had smaller impact on the optimization model. The experiments show that the
optimized model would be suitable for applications that have limitations on round-trip delays of
system communication. In summary, our proposed shared memory-based approach can achieve
much higher memory access bandwidth for interdomain communications because it bypasses the
lengthy communication path of TCP/IP communications. Our performance is only restricted by the
memory bandwidth of the underlying DRAM, whose data-access bandwidth is much higher than
that of the underlying NIC in the traditional TCP/IP-based approach. Moreover, in a virtualized
environment, NIC is prone to be a bottleneck for packet processing due to the data contention of
multiple colocated VMs.

0

50

100

150

200

250

2 4 6 8 10 12 14

La
te

nc
y(

us
)

Data size S (in log2S) (bytes) , 8 means 28=256 bytes

Round trip latency

TCP/IP

Figure 3. Round-trip latency at different transferring data sizes.

4.3. CPU Utilization of Colocated Domains

In order to prove that our optimized model is more efficient than the normal TCP/IP mode,
evaluations were also performed to test the CPU utilization of the domains. When data were
transferred, we collected the CPU utilization of Dom0 and DomU by using the xentop command.
The command is xentop -b 1 -i 200 | awk ‘BEGIN {print “name cpu%”}{ print $1“ ”$4}’. This command
evaluation sets the update time to 1 s and the number of iterations to 200, then it prints the collected

Sensors 2018, 18, 4395 15 of 19

CPU utilization data through awk. Finally, we calculated the average CPU utilization of each virtual
domain. The experimental results are shown in Figure 4.

Figure 4 demonstrates the comparison of the optimized model and the traditional TCP/IP
communication. Evaluation results show that the optimized model significantly reduces CPU
utilization in Dom0; the average CPU utilization in normal TCP/IP mode was 95%, and the average
in the optimized model was 10%. The reduction of CPU utilization in Dom0 means that Dom0
can schedule and manage more VMs to achieve an efficient use of server and resource integration.
Compared to a substantial reduction of CPU utilization in Dom0, CPU utilization in Dom1 and
Dom2 increased to a great degree, from 22 to 69%. This is because the optimized model is based on
shared memory, and data are transferred through shared memory to improve system throughput and
reduce I/O wait time. Therefore, the processing speed of data increases and results in the growth of
CPU utilization.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 20

4.3. CPU Utilization of Colocated Domains

In order to prove that our optimized model is more efficient than the normal TCP/IP mode,
evaluations were also performed to test the CPU utilization of the domains. When data were
transferred, we collected the CPU utilization of Dom0 and DomU by using the xentop command.
The command is xentop -b 1 -i 200 | awk ‘BEGIN {print “name cpu%”}{ print $1“ ”$4}’. This command
evaluation sets the update time to 1 s and the number of iterations to 200, then it prints the collected
CPU utilization data through awk. Finally, we calculated the average CPU utilization of each virtual
domain. The experimental results are shown in Figure 4.

Figure 4 demonstrates the comparison of the optimized model and the traditional TCP/IP
communication. Evaluation results show that the optimized model significantly reduces CPU
utilization in Dom0; the average CPU utilization in normal TCP/IP mode was 95%, and the average
in the optimized model was 10%. The reduction of CPU utilization in Dom0 means that Dom0 can
schedule and manage more VMs to achieve an efficient use of server and resource integration.
Compared to a substantial reduction of CPU utilization in Dom0, CPU utilization in Dom1 and
Dom2 increased to a great degree, from 22 to 69%. This is because the optimized model is based on
shared memory, and data are transferred through shared memory to improve system throughput
and reduce I/O wait time. Therefore, the processing speed of data increases and results in the growth
of CPU utilization.

Figure 4. CPU utilization of different virtual machine (VM) domains.

4.4. Hypercalls and Context Switches during Interdomain Communications

Another important performance indicator of the communication between different guest VMs
on the same physical machine is the number of hypercalls and context switches. In the evaluation,
we set the buffer size to 32 KB; then, VM1 sent a 1 GB message to VM2.

We used perfc to evaluate the number of hypercalls and context switches. Perfc is a
building-time option of the Xen hypervisor; we could set perfc = y to use the perfc tool. This is a
performance testing tool that tests Xen in a microcosmic way. By using the command

0%

20%

40%

60%

80%

100%

Dom0 Dom1 Dom2

CP
U

 U
til

iz
at

io
n(

%
)

Domains

CPU Utilization

TCP/IP

Our proposed model

Figure 4. CPU utilization of different virtual machine (VM) domains.

4.4. Hypercalls and Context Switches during Interdomain Communications

Another important performance indicator of the communication between different guest VMs on
the same physical machine is the number of hypercalls and context switches. In the evaluation, we set
the buffer size to 32 KB; then, VM1 sent a 1 GB message to VM2.

We used perfc to evaluate the number of hypercalls and context switches. Perfc is a building-time
option of the Xen hypervisor; we could set perfc = y to use the perfc tool. This is a performance testing
tool that tests Xen in a microcosmic way. By using the command xm debug-keys p, we could set a perf
counter and print the results. The evaluation results are shown in Table 2.

Table 2. Number of hypercalls and context switches.

Perfc Event TCP/IP-Based Our Model Improvement

Hypercalls 108,546,722 3,434,825 31.6 times better
Context switches 97,580,861 86,340 1130.2 times better

Sensors 2018, 18, 4395 16 of 19

As can be seen from Table 2, compared to the TCP/IP mode, the optimization model
has better performance. The number of hypercalls was reduced from 108,546,722 to 3,434,825,
which is an improvement of roughly 31.6 times. The number of context switches was reduced
from 97,580,861 to 86,340, which was a reduction of nearly 1130.2 times. This is because data
transmission was complemented by interdomain shared memory in the optimized model, bypassing
the device-driver domain, and significantly reducing the number of hypercalls and context switches in
the data-transfer process.

5. Conclusions

Currently in virtualization environments, communication between different VMs on the same
physical machine becomes more frequent. However, the performance of the communication between
different VMs on the same physical machine is affected in many aspects that have caused great
performance overhead and resulted in reduced communication performance.

This paper presents an interdomain communication model based on shared memory under the
Xen system. This optimized model directly maps a shared page to the user space, reduces unnecessary
system calls, substantially increases communication bandwidth and throughput, and effectively
improves the communication performance between VMs.

The evaluation results show that this optimized model significantly improves throughput between
different virtual domains, reduces communication delay, and has better communication performance.
However, this model does not guarantee communication security mechanisms and does not take
into account the safety of the shared memory, assuming that both ends are trusted domains, like in
a private cloud platform environment. Thus, the next step is to obtain a number of mechanisms to
improve security.

Author Contributions: C.J. conceived the idea and designed the algorithms. T.F., Y.Q., and H.W. implemented
the software modules. J.Z. and N.N.X. validated the modeling. J.W. provided the formal analysis. This paper was
significantly extended from its poster version in Reference [52].

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 61472109,
61672200, and 61572163). And the APC was funded by Zhejiang University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. García-Valls, M.; Cucinotta, T.; Lu, C. Challenges in real-time virtualization and predictable cloud computing.
J. Syst. Arch. 2014, 60, 726–740. [CrossRef]

2. Silakov, D.V. The use of hardware virtualization in the context of information security. Program. Comput.
Softw. 2012, 38, 276–280. [CrossRef]

3. Jiang, C.; Wang, Y.; Ou, D.; Li, Y.; Zhang, J.; Wan, J.; Luo, B.; Shi, W. Energy efficiency comparison of
hypervisors. Sustain. Comput. Inform. Syst. 2017. [CrossRef]

4. Menon, A.; Santos, J.R.; Turner, Y.; Janakiraman, G.J.; Zwaenepoel, W. Diagnosing performance overheads
in the Xen VM environment. In Proceedings of the ACM SIGOPS/SIGPLAN International Conference on
Virtual Execution Environments (VEE), Chicago, IL, USA, 11–12 June 2005; pp. 13–23.

5. Menon, A.; Cox, A.L.; Zwaenepoel, W. Optimizing network virtualization in Xen. In Proceedings of the
USENIX Annual Technical Conference (ATC), Boston, MA, USA, 30 May–3 June 2006.

6. Mann, Z.A. Resource Optimization across the Cloud Stack. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 169–182.
[CrossRef]

7. Xu, C.; Wang, H.; Shea, R.; Wang, F.; Liu, J. On Multiple Virtual NICs in Cloud Computing: Performance
Bottleneck and Enhancement. IEEE Syst. J. 2017, 12, 2417–2427. [CrossRef]

8. Pérez, H.; Gutiérrez, J. Enabling Data-Centric Distribution Technology for Partitioned Embedded Systems.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3186–3198. [CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2014.07.004
http://dx.doi.org/10.1134/S0361768812050064
http://dx.doi.org/10.1016/j.suscom.2017.09.005
http://dx.doi.org/10.1109/TPDS.2017.2744627
http://dx.doi.org/10.1109/JSYST.2017.2747603
http://dx.doi.org/10.1109/TPDS.2016.2531695

Sensors 2018, 18, 4395 17 of 19

9. Levis, P.; Culler, D. Maté: A tiny VM for sensor networks. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, CA,
USA, 5–9 October 2002; pp. 85–95.

10. Reijers, N.; Ellul, J.; Shih, C. Making sensor node VMs work for real-world applications. IEEE Embed.
Syst. Lett. 2018. [CrossRef]

11. Delgado, C.; Canales, M.; Ortín, J.; Gállego, J.R.; Redondi, A.; Bousnina, S.; Cesana, M. Joint Application
Admission Control and Network Slicing in Virtual Sensor Networks. IEEE Internet Things J. 2018, 5, 28–43.
[CrossRef]

12. Nkomo, M.; Hancke, G.P.; Abu-Mahfouz, A.M.; Sinha, S.; Onumanyi, A.J. Overlay Virtualized Wireless
Sensor Networks for Application in Industrial Internet of Things: A Review. Sensors 2018, 18, 3215. [CrossRef]

13. Leee, C.; Strazdins, P. An Energy-Efficient Asymmetric Multi-Processor for HPC Virtualization.
In Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Vancouver, BC, Canada, 21–25 May 2018.

14. Shao, C.; Tanaka, S.; Nakayama, T.; Hata, Y.; Muroyama, M. Electrical Design and Evaluation of
Asynchronous Serial Bus Communication Network of 48 Sensor Platform LSIs with Single-Ended I/O
for Integrated MEMS-LSI Sensors. Sensors 2018, 18, 231. [CrossRef]

15. Park, S.; Kim, C.H.; Rhee, J.; Won, J.; Han, T.; Xu, D. CAFE: A Virtualization-Based Approach to Protecting
Sensitive Cloud Application Logic Confidentiality. IEEE Trans. Dependable Secur. Comput. 2018. [CrossRef]

16. Rauniyar, A.; Engelstad, P.; Østerbø, O.N. RF Energy Harvesting and Information Transmission Based on
NOMA for Wireless Powered IoT Relay Systems. Sensors 2018, 18, 3254. [CrossRef] [PubMed]

17. Moon, J.; Jung, I.Y.; Yoo, J. Security Enhancement of Wireless Sensor Networks Using Signal Intervals. Sensors
2017, 17, 752. [CrossRef] [PubMed]

18. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

19. Taherizadeh, S.; Jones, A.C.; Taylor, I.; Zhao, Z.; Stankovski, V. Monitoring self-adaptive applications within
edge computing frameworks: A state-of-the-art review. J. Syst. Softw. 2018, 136, 19–38. [CrossRef]

20. Gamage, S.; Kompella, R.R.; Xu, D.; Kangarlou, A. Protocol Responsibility Offloading to Improve TCP
Throughput in Virtualized Environments. ACM Trans. Comput. Syst. 2013, 31, 7. [CrossRef]

21. Guan, B.; Wu, J.; Wang, Y.; Khan, S. CIVSched: A communication-aware inter-VM scheduling technique for
decreased network latency between co-located VMs. IEEE Trans. Cloud Comput. 2014, 2, 320–332. [CrossRef]

22. Oballe-Peinado, O.; Vidal-Verdú, F.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Hidalgo-López, J.A. Smart
Capture Modules for Direct Sensor-to-FPGA Interfaces. Sensors 2015, 15, 31762–31780. [CrossRef] [PubMed]

23. Xu, C.; Ma, X.; Shea, R.; Wang, H.; Liu, J. MemNet: Enhancing Throughput and Energy Efficiency for
Hybrid Workloads via Para-virtualized Memory Sharing. In Proceedings of the 2016 IEEE 9th International
Conference on Cloud Computing, San Francisco, CA, USA, 27 June–2 July 2016.

24. Wu, S.; Zhou, L.; Sun, H.; Jin, H.; Shi, X. Poris: A Scheduler for Parallel Soft Real-Time Applications in
Virtualized Environments. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 841–854. [CrossRef]

25. Min, D.; Lee, S.; Byeon, G.; Hong, J. Delay-based scheduling to enhance fairness in a VM environment.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016;
pp. 2185–2187.

26. Zhang, J.; Lu, X.; Arnold, M.; Panda, D.K. MVAPICH2 over OpenStack with SR-IOV: An Efficient Approach
to Build HPC Clouds. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015.

27. Li, S.; Zhang, Y.; Hoefler, T. Cache-oblivious MPI all-to-all communications based on Morton order.
IEEE Trans. Parallel Distrib. Syst. 2018, 29, 542–555. [CrossRef]

28. Pfefferle, J.; Stuedi, P.; Trivedi, A.; Metzler, B. A hybrid I/O virtualization framework for RDMA-capable
network interfaces. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Istanbul, Turkey, 14–15 March 2015; pp. 17–30.

29. Li, D.; Jin, H.; Liao, X.; Zhang, Y.; Zhou, B. Improving disk I/O performance in a virtualized system.
J. Comput. Syst. Sci. 2013, 79, 187–200. [CrossRef]

30. Li, D.; Dong, M.; Tang, Y.; Ota, K. A novel disk I/O scheduling framework of virtualized storage system.
Clust. Comput. 2018, 1–11. [CrossRef]

http://dx.doi.org/10.1109/LES.2018.2837685
http://dx.doi.org/10.1109/JIOT.2017.2769446
http://dx.doi.org/10.3390/s18103215
http://dx.doi.org/10.3390/s18010231
http://dx.doi.org/10.1109/TDSC.2018.2817545
http://dx.doi.org/10.3390/s18103254
http://www.ncbi.nlm.nih.gov/pubmed/30262773
http://dx.doi.org/10.3390/s17040752
http://www.ncbi.nlm.nih.gov/pubmed/28368341
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.jss.2017.10.033
http://dx.doi.org/10.1145/2518037.2491463
http://dx.doi.org/10.1109/TCC.2014.2328582
http://dx.doi.org/10.3390/s151229878
http://www.ncbi.nlm.nih.gov/pubmed/26694403
http://dx.doi.org/10.1109/TPDS.2015.2410280
http://dx.doi.org/10.1109/TPDS.2017.2768413
http://dx.doi.org/10.1016/j.jcss.2012.05.003
http://dx.doi.org/10.1007/s10586-017-1363-9

Sensors 2018, 18, 4395 18 of 19

31. Kocoloski, B.; Lange, J. XEMEM: Efficient Shared Memory for Composed Applications on Multi-OS/R
Exascale Systems. In Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, Portland, OR, USA, 15–19 June 2015; pp. 89–100.

32. Zhou, Z.; Yu, M.; Gligor, V.D. Dancing with Giants: Wimpy Kernels for On-Demand Isolated I/O.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014.

33. Zhang, J.; Lu, X.; Panda, D.K. High-Performance VM Migration Framework for MPI Applications on
SR-IOV Enabled InfiniBand Clusters. In Proceedings of the 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017.

34. Deshpande, U.; Keahey, K. Traffic-sensitive live migration of VMs. Future Gener. Comput. Syst. 2017, 72, 118–128.
[CrossRef]

35. Xi, S.; Li, C.; Lu, C.; Gill, C. Prioritizing local interdomain communication in Xen. In Proceedings of the
2013 IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), Montreal, QC, Canada,
3–4 June 2013.

36. Ram, K.K.; Santos, J.R.; Turner, Y. Redesigning Xen’s Memory Sharing Mechanism for Safe and Efficient IO
Virtualization. In Proceedings of the International Workshop on I/O Virtualization; USENIX Association: Berkeley,
CA, USA, 2010.

37. Nanos, A.; Koziris, N. Xen2MX: High-performance communication in virtualized environments. J. Syst.
Softw. 2014, 95, 217–230. [CrossRef]

38. Ren, Y.; Liu, L.; Zhang, Q.; Wu, Q.; Yu, J.; Kong, J.; Guan, J.; Dai, H. Residency-Aware VM Communication
Optimization Design Choices and Techniques. In Proceedings of the 2013 IEEE Sixth International Conference
on Cloud Computing, Santa Clara, CA, USA, 28 June–3 July 2013.

39. Han, G.; Que, W.; Jia, G.; Shu, L. An efficient virtual machine consolidation scheme for multimedia cloud
computing. Sensors 2016, 16, 246. [CrossRef] [PubMed]

40. Jiang, C.; Duan, L.; Liu, C.; Wan, J.; Zhou, L. VRAA: virtualized resource auction and allocation based on
incentive and penalty. Clust. Comput. 2013, 16, 639–650. [CrossRef]

41. Fremal, S.; Manneback, P. Optimizing Xen inter-domain data transfer. In Proceedings of the 2014 International
Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy, 21–25 July 2014.

42. Li, J.; Xue, S.; Zhang, W.; Ma, R.; Qi, Z.; Guan, H. When I/O Interrupt Becomes System Bottleneck: Efficiency
and Scalability Enhancement for SR-IOV Network Virtualization. IEEE Trans. Cloud Comput. 2018. [CrossRef]

43. Bai, Y.; Ma, Y.; Luo, C.; Lv, D.; Peng, Y. A high performance inter-domain communication approach for VMs.
J. Syst. Softw. 2013, 86, 367–376. [CrossRef]

44. Zhang, X.; McIntosh, S.; Rohatgi, P.; Griffin, J.L. XenSocket: A high-throughput interdomain transport for
VMs. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Middleware, Newport
Beach, CA, USA, 26–30 November 2007; pp. 184–203.

45. Kim, K.; Kim, C.; Jung, S.I.; Shin, H.S.; Kim, J.S. Inter-domain Socket Communications Supporting High
Performance and Full Binary Compatibility on Xen. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, Seattle, WA, USA, 5–7 March 2008; pp. 11–20.

46. Wang, J.; Wright, K.L.; Gopalan, K. XenLoop: A Transparent High Performance Inter-VM Network Loopback.
In Proceedings of the 17th International Symposium on High Performance Distributed Computing (HPDC),
Boston, MA, USA, 23–27 June 2008; pp. 109–118.

47. Huang, W.; Koop, M.J.; Gao, Q.; Panda, D.K. VM aware communication libraries for high performance
computing. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, Reno, NV, USA,
10–16 November 2007; pp. 185–196.

48. Liao, X.; Chen, K.; Jin, H. AdaptIDC: Adaptive inter-domain communication in virtualized environments.
Comput. Electr. Eng. 2013, 39, 2332–2341. [CrossRef]

49. Ren, Y.; Liu, L.; Liu, X.; Kong, J.; Dai, H.; Wu, Q.; Li, Y. A fast and transparent communication protocol
for co-resident VMs. In Proceedings of the 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), Pittsburgh, PA, USA, 14–17 October 2012;
pp. 70–79.

50. Burtsev, A.; Srinivasan, K.; Radhakrishnan, P.; Voruganti, K.; Goodson, G.R. Fido: Fast Inter-Virtual-Machine
Communication for Enterprise Appliances. In Proceedings of the 2009 USENIX Annual Technical Conference
(ATC), San Diego, CA, USA, 14–19 June 2009.

http://dx.doi.org/10.1016/j.future.2016.05.003
http://dx.doi.org/10.1016/j.jss.2014.04.036
http://dx.doi.org/10.3390/s16020246
http://www.ncbi.nlm.nih.gov/pubmed/26901201
http://dx.doi.org/10.1007/s10586-012-0235-6
http://dx.doi.org/10.1109/TCC.2017.2712686
http://dx.doi.org/10.1016/j.jss.2012.08.054
http://dx.doi.org/10.1016/j.compeleceng.2012.12.005

Sensors 2018, 18, 4395 19 of 19

51. Ning, F.; Weng, C.; Luo, Y. Virtualization I/O Optimization Based on Shared Memory. In Proceedings of the
2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013.

52. Jiang, C.; Wan, J.; Wu, H.; Zhang, W.; Zhang, J.; Ren, Z.; Ye, Z. Optimized Inter-domain Communications
Among Multiple VMs Based on Shared Memory. In Proceedings of the 2015 IEEE 17th International
Conference on High Performance Computing and Communications (HPCC), New York, NY, USA,
24–26 August 2015.

53. Ren, Y.; Liu, L.; Zhang, Q.; Wu, Q.; Guan, J.; Kong, J.; Dai, H.; Shao, L. Shared-Memory Optimizations for
Inter-Virtual-Machine Communication. ACM Comput. Surv. 2016, 48, 49. [CrossRef]

54. Zhang, Q.; Liu, L. Shared Memory Optimization in Virtualized Cloud. In Proceedings of the 2015 IEEE 8th
International Conference on Cloud Computing, New York, NY, USA, 27 June–2 July 2015; pp. 261–268.

55. Zhang, Q.; Liu, L. Workload Adaptive Shared Memory Management for High Performance Network I/O in
Virtualized Cloud. IEEE Trans. Comput. 2016, 65, 3480–3494. [CrossRef]

56. Zeng, L.; Wang, Y.; Kent, K.B.; Xiao, Z. Naplus: A software distributed shared memory for virtual clusters in
the cloud. Softw. Pract. Exp. 2017, 47, 1201–1220. [CrossRef]

57. Zhang, Q.; Liu, L.; Pu, C.; Cao, W.; Sahin, S. Efficient Shared Memory Orchestration towards Demand Driven
Memory Slicing. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing
Systems, Vienna, Austria, 2–6 July 2018.

58. Oliveira, A.; Martins, J.; Cabral, J.; Tavares, A.; Pinto, S. TZ- VirtIO: Enabling Standardized Inter-Partition
Communication in a Trustzone-Assisted Hypervisor. In Proceedings of the 2018 IEEE 27th International
Symposium on Industrial Electronics (ISIE), Cairns, Australia, 13–15 June 2018.

59. Garcia, P.; Gomes, T.; Monteiro, J.; Tavares, A.; Ekpanyapong, M. On-Chip Message Passing Sub-System for
Embedded Inter-Domain Communication. IEEE Comput. Arch. Lett. 2016, 15, 33–36. [CrossRef]

60. Smith, R.; Rixner, S. A policy-based system for dynamic scaling of VM memory reservations. In Proceedings
of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24–27 September 2017; pp. 282–294.

61. Zhang, Q.; Liu, L.; Ren, J.; Su, G.; Iyengar, A. iBalloon: Efficient VM Memory Balancing as a Service.
In Proceedings of the 2016 IEEE International Conference on Web Services (ICWS), San Francisco, CA, USA,
27 June–2 July 2016.

62. Zeng, L.; Wang, Y.; Fan, X.; Xu, C. Raccoon: A Novel Network I/O Allocation Framework for Workload-Aware
VM Scheduling in Virtual Environments. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 2651–2662. [CrossRef]

63. Zhang, Q.; Liu, L.; Ren, Y.; Lee, K.; Tang, Y.; Zhao, X.; Zhou, Y. Residency Aware Inter-VM Communication
in Virtualized Cloud: Performance Measurement and Analysis. In Proceedings of the 2013 IEEE Sixth
International Conference on Cloud Computing, Santa Clara, CA, USA, 28 June–3 July 2013.

64. Mouzakitis, A.; Pinto, C.; Nikolaev, N.; Rigo, A.; Raho, D.; Aronis, B.; Marazakis, M. Lightweight
and Generic RDMA Engine Para-Virtualization for the KVM Hypervisor. In Proceedings of the 2017
International Conference on High Performance Computing & Simulation (HPCS), Genoa, Italy, 17–21 July
2017; pp. 737–744.

65. Jiang, C.; Wan, J.; Xu, X.; Zhang, J.; You, X. Resource Allocation in Contending Virtualized Environments
through Stochastic Virtual Machine Performance Modeling and Feedback. J. Inf. Sci. Eng. 2013, 29, 299–327.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2847562
http://dx.doi.org/10.1109/TC.2016.2532865
http://dx.doi.org/10.1002/spe.2486
http://dx.doi.org/10.1109/LCA.2015.2419260
http://dx.doi.org/10.1109/TPDS.2017.2685386
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Interdomain I/O Optimization Based on Shared Memory
	Shared Memory Device Kernel Module
	Shared Memory Creation
	Instance Initialization
	Mapping Memory into the User Space
	Event Channel
	Sharing Memory Termination

	Implementation of the Interdomain Communication Channel Interface Library
	Circular Buffer Optimization
	Deadlock Avoidance
	Channel Closing

	Interdomain Communication Process

	Experiment Results
	Throughput of Interdomain Communications
	Latency of Interdomain Communications
	CPU Utilization of Colocated Domains
	Hypercalls and Context Switches during Interdomain Communications

	Conclusions
	References

