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Abstract: Pressure vessels (PV) are designed to hold liquids, gases, or vapors at high pressures in
various industries, but a ruptured pressure vessel can be incredibly dangerous if cracks are not
detected in the early stage. This paper proposes a robust crack identification technique for pressure
vessels using genetic algorithm (GA)-based feature selection and a deep neural network (DNN)
in an acoustic emission (AE) examination. First, hybrid features are extracted from multiple AE
sensors that represent diverse symptoms of pressure vessel faults. These features stem from various
signal processing domains, such as the time domain, frequency domain, and time-frequency domain.
Heterogenous features from various channels ensure a robust feature extraction process but are
high-dimensional, so may contain irrelevant and redundant features. This can cause a degraded
classification performance. Therefore, we use GA with a new objective function to select the most
discriminant features that are highly effective for the DNN classifier when identifying crack types.
The potency of the proposed method (GA + DNN) is demonstrated using AE data obtained from a
self-designed pressure vessel. The experimental results indicate that the proposed method is highly
effective at selecting discriminant features. These features are used as the input of the DNN classifier,
achieving a 94.67% classification accuracy.

Keywords: fatigue crack detection; feature extraction; genetic algorithm; deep learning; pressure
vessel; petrochemical industries; acoustic emission examination; nondestructive testing

1. Introduction

Pressure vessels (PV) have widespread application in fields such as the petrochemical industry
and nuclear energy [1–4]. Due to harsh operating conditions, pressure vessels can be dangerous and
cause fatal accidents during their operation. Pressure vessel failures can happen due to corrosion,
creep, fatigue cracking, and stress, of which fatigue cracking is the leading cause of the frequent failing
of pressure vessels [5–7]. Therefore, it is evident that pressure vessel crack identification is an urgent
task to prevent catastrophic accidents, as well as financial and environmental damage. The essence of
a reliable crack identification scheme of a pressure vessel is composed of the following steps: fault
feature calculation, discriminative fault feature analysis, and fault classification.

Pressure vessel cracks identification can be performed by collecting data (i.e., ultrasonic signals,
eddy-current signals, thermal images, and acoustic emission signals), which has been an important
aspect of studies conducted over the last couple of decades [1,8–10]. These fault identification studies
prove that diagnosis of the pressure vessel can reduce maintenance expenses by enhancing the
reliability of equipment. In the field of pressure vessel crack identification, ultrasonic signals and
eddy currents have been widely exploited [4,10]. Alternatively, acoustic emission (AE) monitoring
has gained significant attention recently in the field of pressure vessel monitoring since AE signals
can capture intrinsic information from low-energy signals, even when the crack size is very small
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or structural deformation or cracks are not visible on the pressure vessel surface [11]. This makes
AE techniques more suitable for early-stage crack detection [9,12]. Therefore, this study employs an
AE-based crack classification approach for pressure in data-driven diagnostics.

Existing studies on pressure vessel monitoring systems are mostly based on crack detection in
the form of spectrum visualization, but no classifier is used to identify crack types [13–16]. PV
cracks are considered as highly nonlinear and non-stationary faults, which have many impacts
on the signal. This makes it cumbersome to utilize conventional signal processing techniques,
for instance, time-domain and frequency-domain analysis based on Fourier transform (FT), since
they cannot correctly detect impulse phenomena in a non-stationary crack impact signal due to the
inherent constraints of these approaches. To realize a highly reliable crack classification technique,
it is essential to exploit discriminatory information from the measured data for complex industrial
processes, such as those that use pressure vessels. We apply several signal processing techniques
to detect intrinsic information about cracks from signals attained from the pressure vessel. These
techniques are comprised of calculating different features in either the time domain, frequency domain,
or time-frequency domain. A feature extraction process based on a single method may overlook the
discriminative properties of crack conditions [15,17,18]. One of the major contributions of this study is
constructing a heterogeneous feature pool consisting of three simultaneous feature extraction models:
the time domain, frequency domain, and time-frequency domain.

In addition to time and frequency domain features, time-frequency analysis (TFA)-based features
are also appropriate for pressure crack classification since TFA simultaneously analyzes a measured
signal concerning the crack in both the time and frequency domains where impulse information is
detectable [18,19]. One of the most widely used TFA methods for pressure vessel signal analysis is
called the wavelet transform. The obvious advantage of wavelet-based signal processing techniques
is that they have a good time-frequency localization, which allows for the detection of transients
that appear in the signals. Thus, we employ the wavelet pack transform (WPT), which is highly
effective at decomposing the signal into mid- and high-band frequency nodes (e.g., sub-bands) so that
crack information can be observable. For this reason, we extract energy information in the mid- and
high-band frequency nodes of WPT.

Thus, the fusion of the proposed heterogeneous feature models from multiple sensors is
significantly a high-dimensional feature vector involving as much information as possible about
the process conditions that ensure the availability of all necessary information concerning accurate
identification [20]. However, there is still an issue of selecting the most discriminant features that
contain essential information about the mechanical crack being investigated. In practice, however,
high-dimensional feature vectors involving a large number of features are either irrelevant or redundant
to the aforementioned predictive models (supervised and unsupervised classifiers). These irrelevant
or redundant features can be a reason for the degraded classification performance of a modern crack
identification technique. To alleviate this issue, discriminatory feature selection is an indispensable
part of the pressure vessel crack identification method, and the main goal of this feature selection
is to attain a refined subset of a discriminatory feature from the original high-dimensional feature
vectors. To achieve a highly efficient identification performance, quite a few PV crack identification
methods adopt feature selection. A global similarity scheme has been presented to select informative
features that could be helpful for identifying cracks for a spherical tank [21]. Researchers also validated
the efficacy of the feature selection technique that combines kernel feature selection and principal
component analysis (PCA) for pressure vessel applications [15,22,23].

Consequently, this paper proposes an intelligent pressure vessel crack classification method that
combines a genetic algorithm (GA) with heterogeneous feature models from several channels to select
the most discriminative feature, and this selected subset is then used with the deep neural network
(DNN) for classifying cracks. To allow GA to autonomously select a set of discriminant features, a new
fitness function that utilizes the ratio of the within-class distance (WCD) of the pressure vessel crack
classes and between-class distance (BCD) is introduced in this study. The quality of the GA results
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is strongly dependent on the designed fitness function. Thus, the proposed fitness function, BCD
WCD ,

calculates the distances between-classes and within-class to ensure maximum separability among
crack classes.

Although GA helps to select a discriminant features subset, real-world applications such as
pressure vessels may have various complexities in their feature distribution. Therefore, we employ
DNN for improving the classification performance. In contrast with traditional classifier techniques
such as the support vector machine [18] and k-nearest neighborhood [23], DNN can minimize the
dimensionality of data representation and recognize targets [24] effectively. Consequently, DNN can be
trained to learn useful feature information, even if the proposed GA generates a features subset with a
complex distribution. Therefore, the effectiveness of the proposed method (GA + DNN) is validated
using AE data collected from a pressure vessel.

The upcoming sections of the paper are structured as follows. Section 2 contains details of the
materials and methods, including the experimental setup, feature extraction, feature selection, and
crack classification techniques. Section 3 presents the acquired results, justifies the efficacy of the
proposed approach with the required graph, and matches its efficiency to the previously accepted
methods. Finally, Section 4 concludes the entire study by summarizing the paper.

2. Material and Methods

This study aims to classify pressure vessel cracks based on heterogeneous feature models from
multiple sensors and a deep neural network (DNN). As declared in the previous section, the method
we are presenting can be broken down into four discrete steps: AE data acquisition, hybrid feature
extraction, discriminant feature selection using GA with a new objective function, and a deep neural
network for classifying cracks. The block diagram of the proposed methodology is given in Figure 1.
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Figure 1. Flowchart of the proposed method for pressure vessel crack classification. In the figure, Ch:
Channel, I: Input layer, H: Hidden layer, and O: Output layer.

2.1. Pressure Vessel Experiment System and AE Data Acquisition

To verify the effectiveness of the proposed acoustic emission (AE)-based method, we conducted
experiments using a data acquisition system specified by engineering norm ASME BPVC.V-2015
(American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code (BPVC)), including
a recent study on pressure vessel fault diagnosis [25]. The pressure vessel test rig used included a
pressure vessel, AE sensors, channel information, the PCI system, and a computer system, as depicted
in Figure 2. To explain details about the experiment and data acquisition system, we created a pressure
vessel dataset in two conditions: normal and artificially induced cracks. To collect fault condition data,
a 3 mm crack was manually induced on the surface of the pressure vessel, as can be seen in Figure 3.
Four AE sensors were attached to the surface of the pressure vessel at different locations, based on
ASME BPVC.V-2015 experiment design guidelines. A pencil lead break (PLB) test was performed to
generate a guided wave through the pressure vessel surface [26]. Velocity acoustic emission signals
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were recorded using AE sensors. On the other hand, we collected normal condition data from a
healthy pressure vessel (e.g., no crack in the surface). The arrangement of channels (sensors) during
the experiment is shown in Figure 4. The AE signals were recorded at a 1 MHz sampling frequency.
Multiple samples were recorded, each for 0.1 s. The dataset is described in Table 1.
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2.2. Heterogeneous Feature Extraction

As explained in Section 1, most of the existing studies only focus on the crack detection problem,
and few studies have employed a traditional classifier (e.g., SVM) with a signal feature model to
identify fault types [18]. We, therefore, extracted heterogenous features from various signal processing
domains, namely the time domain, frequency domain, and WPT. The main idea of such diversity in
the feature extraction process is so that no information about the crack is missed. These features are
regarded as discriminative since there is a significant change in the magnitude of the signal when
impulses occur due to a crack in the pressure vessel. Therefore, the changes in signal behavior due
to a crack can be well-characterized by extracting time-domain statistical feature parameters, such
as the root mean square (RMS) (F1), kurtosis (F2), skewness (F3), and impulse indicator (F4). All the
time-domain features used provide statistical properties about the nature of data and were found to be
reasonably good features for PV cracks because they were sensitive to impulse faults [17,27].

Furthermore, the frequency-domain feature can also reveal some important information that
cannot be observed in the time domain [17]. Several studies [18,28] have revealed that the frequency
spectrum of the original signals obtained by fast Fourier transform (FFT) provides additional
information about the crack, which is helpful for classifying pressure vessel cracks. Thus, the
frequency-domain features extracted in this study are as follows: frequency root mean square (F5),
frequency standard deviation (F6), and mean frequency (F7). Seven extracted features in the time
domain and frequency domain are given in Table 2.

Table 2. Definition of the time-domain and frequency-domain statistical parameters (i.e., features) of
this study.

Features Equations Features Equations Features Equations Features Equations

Time-domain statistical features

F1

√
1
N

N
∑

i=1
x2(i) F2 1

N

N
∑

i=1

(
x(i)−x

σ

)4
F3 1

N

N
∑

i=1

(
x(i)−x

σ

)3
F4

max|x(n)|
1
N

N
∑

n=1
|x(n)|

Frequency-domain statistical features

F5

√
1
N

N
∑

i=1
f 2(i) F6

√
1
N

N
∑

i=1
( f (i)− f5)

2 F7 1
N

N
∑

i=1
f (i)

where x is an original AE signal in a time domain and f is the frequency domain signal of x.
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In addition to time-domain and frequency-domain features, we applied the wavelet pack
transform (WPT) pressure vessel signal for obtaining the time-frequency domain features. WPT is
highly effective at decomposing the signal into mid- and high-band frequency nodes (e.g., sub-bands)
in which crack information can be observable. For this reason, WPT is applied with a 0.1 s AE
signal to extract energy information in the mid- and high-band frequency sub-bands. According to
Kang et al. [19], the relative energy in the WPT (REWPE) sub-bands is highly effective for revealing
the disordered behavior of the signal due to a crack in the pressure vessel steel. To compute these
energy features, we applied a three-level WPT, and we had eight sub-bands, as shown in Figure 5.
Furthermore, the Daubechies 20 (or dB 20) mother wavelet function was used in this study during the
WPT decomposing operation. Therefore, REWPE can be designed for each node as follows:

REWPE(k) =

L
∑

i=1
w2

k,j

Ntnodes
∑

n=1

L
∑

i=1
w2

k,j

(1)

where Ntnodes is the total number of WPT nodes (e.g., Ntnodes = 8 in this study), L is the number of
wavelet coefficients for each node, and wk,j is the j-th wavelet coefficient of the k-th node.
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We calculated the REWPE value for each of the eight WPT sub-bands in the 3rd level, which
are denoted as features F7-F15. Therefore, we obtained 15 features, including four time-domain,
three frequency-domain, and eight REWPE values for each channel signal. As our main target is
to conduct multi-sensor feature fusion to ensure the availability of all information about a crack,
we obtained a total of sixty features for four channels that were used in the GA for selecting the most
discriminant feature.

2.3. Discriminant Feature Selection Using GA

The fusing of heterogeneous features from four channels can be redundant and irrelevant due to
large dimensionality [23,29], so selection of the most meaningful features that contain discriminant
information about pressure vessel cracks is inevitable. The optimal subset can be determined in three
ways, namely through complete, sequential, and heuristic searches [29]. Although a complete search
provides an optimal subset since it applies a brute-force search, the computational complexity of this
approach is high. In contrast, a sequential process is comparatively fast, but it does not guarantee
the best results. Heuristic approaches, including a genetic algorithm (GA), offer a good tradeoff
between the computational complex and the quality of the selected feature subset [23]. Therefore, this
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study deploys GA for selecting the discriminant feature subset that is highly effective for representing
pressure vessel cracks.

The GA is applied to generate a high-quality solution in optimization problems based on natural
selection, which is comprised of specific discrete steps, such as problem representation (encoding),
parent selection, crossover and mutation, and replacement. The best solution is produced in the form
of the chromosome, which is a combination of genes. This paper uses a generational GA: in every
generation, n offspring are created, and the low-quality chromosomes in the population are replaced
with those of the newly generated offspring. The flow diagram of GA is given in Figure 6.

In the proposed GA-based discriminant feature selection, we use binary encoding, roulette-wheel
parent selection, one-point mutation, and uniform crossover. Specifically, we created 300 initial
populations using the binary encoding technique, and the length of each chromosome is equal to the
number of features (e.g., 60 in this study). Each chromosome denotes a set of zeros and ones, where
ones are randomly assigned to feature components and zeros are assigned to not selected features.
For example, the chromosome view of 60 features is 01100000001 · · · · · · 00060, which means the 2nd
and 10th features are selected in the current solution. One-point mutation and uniform crossover are
utilized to reduce the chance of separating the closely located genes in the selected parent chromosome
during the recombination process.

In this paper, we use a total of 1000 generations, and for each generation, 50 offspring are created,
and 50 chromosomes with the worst fitness values in the population are replaced with those that are
newly generated. These parameters are defined experimentally based on a high system performance.
However, the quality of the GA results is strongly dependent on the designed fitness function. To define
a fitness function for GA, Kang et al. analyze the crack classes, including the average distance-based
feature evaluation metric, which does not consider the complexity of class and overlooks the overlap
in between class distances significantly [29]. In this study, we define an improved evaluation metric
as the ratio of the within-class compactness and between-classes separation, as determined by the
average Euclidean distance-based approach, is not always sufficient to fully describe the distribution
of samples of all classes [23]. In this study, we define an improved evaluation metric as the ratio of the
within-class distance (WCD) of crack classes to the between-class distance (BCD) that carefully analyzes
the distances between-class and within-class to ensure maximum separability among crack classes.
In the case of WCD and BCD calculations, we use the center median instead of the average-distance
for each class (i.e., crack category in this study) for perfect work on both Gaussian and non-Gaussian
feature distribution. The fitness function calculation for GA is depicted in Figure 6. Thus, WCD can be
calculated as follows:

1. Calculate distances between all samples within the class as follows:

Let d = d1, d2, d3, . . . , dn be a set of data points in a class, where n is the total number of data
points in the class. In addition, each data point in d corresponds to a vector involving a number of fault
features, such as F. Find the centroid of each class, such as Ci. Now, calculate the Euclidian distance all
datapoints associated with centroid, C, as follows:

Li =

√√√√ F

∑
j=1

(
Ci − dij

)
, i = 1, 2, . . . , n (2)

2. Find the maximum distance associated with the centroid, Dc, as follows:

Dc = arg max
i
{Li} (3)

3. Finally:

WCD =
1
N ∑ Dc (4)
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where N is the number of classes (e.g., two in this study).
BCD is a distance measure that first calculates the center median of all classes and then takes the

average distance of one to the rest of the class. BCD can be calculated as follows:

BCD =
1
N

N

∑
i=1,i 6=j

Ci,j (5)

where Ci,j measures the Euclidean distance from class i to class j where i 6= j.
Now that the WCD and BCD-based feature evaluation metrics are ready, we define a function in a

form, which utilizes WCD and BCD, to maximize the f itness function (as the ratio of the maximum
value of BCD and the minimum amount of WCD) as follows:

f itness =
BCD
WCD

(6)
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The defined fitness in Equation (6) is highly effective, and simultaneously tries to maximize the
distances between classes and minimize the distances within classes, as shown in Figure 7, which
ultimately results in a discriminant features subset with maximum separable distributions while this
fitness is used with a state-of-the-art optimization algorithm such as (GA).
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2.4. DNN for Classifying Cracks

Though GA provides a simple distribution of crack classes, we still considered a robust classifier
technique for classifying cracks since, for practical applications, pressure vessel crack classes may have
complex distributions. In this study, we applied a deep neural network (DNN) after GA selection
for classifying cracks. There are various types of neural network architectures, and one of the most
common is the Multi-Layer Perceptron (MLP) with multiple hidden layers [24,30].

DNN is a stacked layer model in which the layers are connected subsequently, and there are no
connections of nodes within the same layer [24]. DNN includes an input layer, an output layer, and a
few hidden layers placed between them in the model, as can be seen in Figure 8. The number of nodes
of an input layer is set corresponding to the dimensionality of the input data. Likewise, the number of
nodes of an output layer is defined corresponding to the dimensionality of the target data. The number
of nodes of every hidden neural layer is set by the network function, for which there are no required
strict regulations. Each node in the next layer is directly linked to all nodes in the previous layer.
Nodes of the first layer receive the input data and transmit them to other layers, while nodes of the
last layer output the targets. The nonlinear relationship between the DNN layers is indicated by the
following equations:

ol
j = ∑

i
yl−1

i wl
ij + bl

j, (7)

hW,b(y) = yl
j = f

(
ol

j

)
= f

(
∑

i
yl−1

i wl
ij + bl

j

)
, (8)

where yl
j is the activation value of neuron j in layer l; ol

j is a linear activation combination of neurons in

the previous layer; bl
j is the bias value of neuron j in layer l; wl

ij is the weight parameter between nodes
i in layer l − 1 and j in layer l; and f (·) is the activation function, which is usually chosen to be logit
and mostly used in DNN.

As the backpropagation (BP) algorithm is applied to train DNN, the gradients of the loss function
for all trainable weights in all layers are calculated during the backward operation of BP [30]. However,
it is essential to define an appropriate objective function. Thus, a squared-error loss function is applied
to address the objective function. Equation (9) defines the loss function after training a single sample,
such as i. The overall loss function can be calculated by summing the loss functions of each sample,
as defined below:

cost(w) =
1
2

m

∑
i=1

(
oi

l − tl
i

)2

, (9)
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where tl
i defines the target output value of the ith pattern.
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Suppose a point w to find the next weight point (w + 1) to find a minimizer. It starts from w and
moves by α ∂

∂w cost(w), as in Equation (7), where α is a positive scalar step size.

w := w− α
∂

∂w
cost(w) (10)

The weight update process in Equation (10) is called a stochastic gradient descent (SGD) algorithm.
Once the training operation of DNN is completed, the optimized parameters are used for verifying the
proposed pressure crack classification scheme.

3. Results and Discussion

The effects of two main components of the proposed pressure vessel crack identification scheme
(GA + DNN)—GA-based discriminant feature selection and the DNN classifier for improved diagnostic
performance— are analyzed and discussed in this section.

The proposed method is examined using pressure vessel AE data gathered from a self-designed
test rig (see Table 1). In this dataset, we have 90 samples of each crack category (i.e., two in this
study) for each channel (e.g., four in this study). The effectiveness of the data acquisition method



Sensors 2018, 18, 4379 11 of 16

can be seen in Figure 9, showing a time-domain signal of each channel and their corresponding
frequency-domain signal.
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3.1. Performance Evaluation of GA-Based Discriminant Feature Selection

One of the main contributions of the proposed method is the selection of essential features using
an appropriate fitness function for GA. To validate the performance of the proposed GA-based feature
selection, we compared the proposed GA with that of conventional principal component analysis
(PCA) [23]. Table 3 summarizes the result of the selected valuable feature of GA with a proposed
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fitness function. According to the results in Table 3, the proposed GA-based is highly able to refine
a high-dimensional feature vector into a smaller number of features from the original 60 feature
vectors. The effectiveness of the selected features can be verified in Figure 10 in 3D visualization for
the proposed GA and PCA. For component analysis, this study explores the effect of the principal
component in terms of classification accuracy since the first n component generates the highest
performance that is used in practice for PV crack classification.

Table 3. Summary of the discriminant feature subset attained by the proposed GA. In this Table, for
example, Ch1F1 means feature 1 (i.e., RMS) of Channel 1.

Methodology The Most Discriminant Feature Subset

GA with new fitness function {Ch1F1, Ch2F10, Ch1F15, Ch3F1, Ch2F8, Ch4F1, Ch1F8}
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3.2. Performance Evaluation of DNN for Improved Classification Accuracy

In this study, although GA helps us to obtain a discriminant features subset, real-world applications
such as pressure vessels may have various complexities in their feature distribution. Therefore, we
employed a DNN classifier for improving the classification performance that can effectively work on
minimizing the dimensionality of data representation and recognize targets correctly.

To authenticate the performance of the proposed method, it is essential to divide the dataset
into appropriate training and testing for DNN performance measurement. We randomly divided
our data into 33.33% for training, 16.67% for validation, and the remaining 49.995% for testing.
In terms of the number of samples, we had 30 samples for training, 15 samples for validation, and
the remaining 45 samples for testing. The test dataset was kept higher than that of training to
generalize the classification performance. Thus, to evaluate the usefulness of the proposed method
in classifying pressure vessel cracks and confirm the advantages of the GA-based feature selection
process, we compared our methodology with the state-of-the-art approaches that utilize PCA and
hybrid fault features for classifying faults using the k-NN classifier. This method is referred to as
PCA + k − NN [23]. Another comparison method extracts the proposed heterogeneous features
directly from the raw AE signal (referred to as All-Features). The classification performance is
calculated through the average classification accuracy (ACA) as follows:

ACA =
TP + TN

TS
(11)

where TP (true positive) defines the number that was correctly classified as the predicted class, TN
(true negative) defines the number of correct negative predictions, and TS defines the total number of
samples that were used in this experiment.
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Table 4 presents the experimental results for three models. According to the results in Table 3,
the proposed classification method (GA + DNN) outperforms the referenced methods regarding the
average ACA, with a value of 94.69% achieved over 20 experiments. According to the results shown
in Table 4, it is evident that the proposed (GA + DNN) method outperforms the two referenced
methods, yielding 12.28% and 3.32% performance improvements for All-Features and PCA + k − NN,
respectively. Further, we provide the results of 20 experiments for the proposed method in Figure 11.

Table 4. Average classification of the three different models.

Methodologies ACA (%)

All-Features 82.83
PCA + k − NN [23] 91.79

GA + DNN (Proposed) 94.67
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Figure 11. Classification accuracies of the proposed method achieved over 20 experiments.

Additionally, we provide the result of the confusion matrix for the proposed framework and
reference methods. The confusion matrix is a reliable way to judge any supervised learning algorithm
(e.g., DNN) because it provides a visual image where the actual labels and the predicted deviation
can be audited. Figure 12 shows the confusion matrix of our proposed method, which indicates
that the technique is capable of correctly identifying cracks with a negligible misclassification rate.
Figure 13 presents the receiver operating characteristic (ROC) curve to illustrate the tradeoff between
the sensitivity and specificity of our model. As we can see, the curves of all four classes follow the left
and top border of the ROC space, meaning the classifier result is highly accurate.
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Figure 13. AUC-ROC of the proposed DNN classifier.

For a detailed analysis of the DNN network for an improved classification performance, one
obvious observation is that the proposed DNN is highly effective at reaching a near optimum value of
SGD optimization from the epochs learning, which proves that the DNN-based approach can yield the
desired accuracy faster, as can be seen in Figure 14.
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Figure 14. Training performance of the proposed DNN classifier.

Overall, the proposed methodology is highly effective because of its two main conceptions:
GA-based feature selection with an appropriate fitness function and the further application selected
features subset in the DNN classifier with proper parameter setting.

4. Conclusions

This study developed a new method of crack identification of a pressure vessel, which is composed
of crack feature calculation, GA-based discriminative feature selection, and a deep neural network
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(DNN) for classifying cracks in an acoustic emission (AE) examination. The proposed method first
extracts heterogeneous features from multiple sensors that represent diverse symptoms of pressure
vessels faults. However, hybrid features from different channels are a significantly large dimension
that carries redundant and irrelevant features. This study selects the most discriminative features using
GA with a new objective function—the ratio of the within-class distance (WCD) and between-class
distance (BCD)—to improve the classification performance. Finally, DNN was used with selected
features for classifying pressure crack types. The potency of the proposed method (GA + DNN) was
validated using the AE data obtained from a self-designed pressure vessel test rig. The experimental
results demonstrated that the proposed method was highly effective at selecting discriminant features
that contribute to achieving a 94.67% identification performance, while the selected features are used
with a DNN classifier.
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