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Abstract: Channel rendezvous is an initial and important process for establishing communications
between secondary users (SUs) in distributed cognitive radio networks. Due to the drawbacks of the
common control channel (CCC) based rendezvous approach, channel hopping (CH) has attracted a
lot of research interests for achieving blind rendezvous. To ensure rendezvous within a finite time,
most of the existing CH-based rendezvous schemes generate their CH sequences based on the whole
global channel set in the network. However, due to the spatial and temporal variations in channel
availabilities as well as the limitation of SUs sensing capabilities, the local available channel set
(ACS) for each SU is usually a small subset of the global set. Therefore, following these global-based
generated CH sequences can result in extensively long time-to-rendezvous (TTR) especially when the
number of unavailable channels is large. In this paper, we propose two matrix-based CH rendezvous
schemes in which the CH sequences are generated based on the ACSs only. We prove the guaranteed
and full diversity rendezvous of the proposed schemes by deriving the theoretical upper bounds of
their maximum TTRs. Furthermore, extensive simulation comparisons with other existing works are
conducted which illustrate the superior performance of our schemes in terms of the TTR metrics.

Keywords: distributed cognitive radio networks; blind rendezvous; channel hopping

1. Introduction

Owing to the rapid and exponential growth of wireless devices, spectrum scarcity has become a
serious problem in affording the tremendous demand for wireless services. However, several statistical
studies and worldwide measurements indicate that most of the licensed spectrum bands are heavily
under-utilized (e.g., TV bands) [1]. Therefore, cognitive radio (CR) has emerged as a promising
technology for solving the spectrum scarcity and under-utilization problems. In cognitive radio
networks (CRNs), the unlicensed users, a.k.a. secondary users (SUs) which are equipped with CRs can
sense and opportunistically utilize the idle licensed spectrum bands without causing interference to
the bands licensed users, a.k.a. primary users (PUs) [2].

In distributed CRNs such as the CR-based self-organizing ad-hoc and sensor networks,
SUs interact directly with each other to establish their communication links without requiring a central
coordination entity as in the centralized counterparts [3]. According to its own local observation,
each SU is associated with an available channel set (ACS) which contains those channels that are

Sensors 2018, 18, 4360; doi:10.3390/s18124360 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8779-594X
https://orcid.org/0000-0002-1692-6516
https://orcid.org/0000-0001-9254-2023
http://dx.doi.org/10.3390/s18124360
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4360?type=check_update&version=2


Sensors 2018, 18, 4360 2 of 28

sensed idle from any PU activities during spectrum sensing. To start data transmissions between a
pair of SUs, they need to meet each other on a commonly available channel and exchange control
messages to setup their communication links. This process is called channel rendezvous, which is a
fundamental and vital process for initiating the SUs communications and for coordinating the critical
networking functionalities. However, implementing rendezvous on available channels is non-trivial
and challenging. The difficulty mainly comes from the fact that before rendezvous, SUs are oblivious
of each other’s information and even they might be unaware of each other existence. Accordingly,
SUs have no consensus about which common channel they have to switch into simultaneously for
achieving rendezvous.

A simple approach that is widely adopted in the literature for rendezvous is the common control
channel (CCC), e.g., [4–9]. In this approach, one channel which assumed to be globally available for all
SUs is dedicated for exchanging control messages. However, the CCC has several drawbacks that can
constitute the performance bottleneck such as its susceptibility to long-time blocking when re-occupied
by PUs, early saturation by SUs specially under dense environments, or jamming by attackers [10–12].
Furthermore, the existence of such a global CCC is practically infeasible in distributed CRNs due to the
spectrum heterogeneity among SUs which is caused by the spatial and temporal variations of channel
availabilities. Even though multiple CCCs have been used to slightly mitigate these problems [13,14],
they unfortunately need additional signaling overhead and long delay for establishing and maintaining
them. Moreover, they reduce the number of data channels which degrade the performance.

To overcome the aforementioned drawbacks, Channel hopping (CH) has emerged as an alternative
blind rendezvous approach which requires neither CCC nor prior knowledge of the other SUs’ ACSs.
In the CH approach, each SU generates its CH sequence independently and keeps hopping on the
channels according to the generated CH sequence for achieving rendezvous with its potential neighbors.
The rendezvous occurs between a pair of neighboring SUs when they hop simultaneously during the
same time slot on a channel that is a commonly available for them. However, several challenges need
to be considered while designing the CH scheme which are summarized as follows:

(i) Asynchronous clocks: Some existing CH schemes (e.g., [15,16]) require the presence of
time-synchronization between SUs where SUs are assumed to start their CH sequences
simultaneously in order to ensure rendezvous. However, in distributed CRNs, it is difficult
and unpractical to employ synchronization among spatially dispersed SUs. Moreover, SUs may
start their CH at different instants of time. Therefore, the CH-based rendezvous scheme must
support the asynchronous scenario.

(ii) Anonymous information: Some existing CH schemes (e.g., [17–19]) rely on the distinct IDs of SUs
for distinguishing their CH sequences in order to guarantee rendezvous. However, in a distributed
CRN, SUs are usually anonymous and they do not possess public IDs. Moreover, SUs can be easily
attacked once their IDs are exposed. Therefore, anonymous CH schemes without IDs are favorable.

(iii) Asymmetric ACSs: In the literature, two models are often considered to describe the channel
availability for neighboring SUs, the symmetric and asymmetric models. In the symmetric model,
SUs have identical ACSs. Meanwhile, SUs have diverse ACSs in the asymmetric mode, but
there must be at least one commonly available channel in order to ensure rendezvous. The
CH-based scheme is required to work under both models due to their importance in practice [20].
However, establishing rendezvous under the asymmetric model is more difficult due to the fewer
common channels.

(iv) Heterogeneous sensing capabilities: Most of the existing CH schemes are homogeneous where
they assume that all SUs can sense and access the whole global channel set (GCS). However, due
to the inherent limitation and heterogeneity of CR-sensing capabilities, SUs can only sense and
detect fractions of the GCS which are usually heterogeneous among SUs [21,22]. Accordingly, CH
schemes which design their CH sequence for heterogeneous CRs are more practical.

To evaluate the performance of the CH-based rendezvous scheme, the Maximum and Expected
Time-To-Rendezvous (MTTR and ETTR) as well as the Rendezvous Diversity (RD) are the most
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important performance metrics in the literature. The TTR is defined as the required time for a pair of
SUs to achieve channel rendezvous on at least one commonly available channel. However, due to the
randomness in the starting time of CH sequences by SUs, the TTR is usually in-equable and hence
(MTTR and ETTR) are considered to evaluate the TTR performance [23]. The MTTR indicates the worst
case TTR which is important to prove the deterministic rendezvous of the CH scheme. On the other
side, the RD is defined as the number of distinct channels at which the pair of SUs can rendezvous.

Obliviously, minimizing MTTR/ETTR will reduce the delay for exchanging the control messages
between SUs. Meanwhile, maximizing the RD will improve the scheme robustness against the
rendezvous failure on some common channels due to the PU re-appearance. However, designing CH
schemes that support all the fully distributed rendezvous criteria mentioned before (i.e., asynchronous,
anonymous, asymmetric, and heterogeneous) while improving the above metrics is very challenging.

In spite of the existing literature, the CH-based rendezvous schemes can be categorized according
to the SUs’ behavior into two different strategies: asymmetric-role and symmetric-role. In the
asymmetric-role strategy, SUs are assumed to have pre-assigned roles as either a sender or a receiver
before the start of the rendezvous process. Different roles of SUs follow different procedures to
generate the CH sequences. Meanwhile, the symmetric-role strategy have no pre-assigned roles and
SUs generate their CH sequences using the same procedure. While the former strategy is optimal in
minimizing the TTR, its role-based design limits its applications, for example, the SU can not work as
a forwarder during one CH period (i.e., receive packets from one SU and then forward it to another).

On the other hand, each of the above categories can be classified according to the channel
information utilized to generate the CH sequence into two classes: Global-Channel-based (GC) and
Local-Channel-based (LC) schemes [21,22]. The GC schemes utilize the whole GCS to generate their
CH sequences where SUs keep hopping on the available and unavailable channels for attempting
rendezvous. This prolongs the TTR of these schemes specially when the number of available
channels accounts for a small fraction of the GCS. Even though some of the GC schemes try to
enhance their performance by randomly replacing the unavailable channels in their CH sequence with
available ones. This replacement strategy is not effective and still results in relatively high MTTR [24].
Meanwhile, the LC schemes generate their CH sequences based on the ACSs which make them more
practical in distributed CRNs due to the spatial and temporal variations in channel availability as
well as the limitation and heterogeneity of SUs sensing capabilities [21,22,24]. However, the majority
of existing LC schemes failed to solve the issue efficiently, where they either rely on unfavorable
assumptions and unpractical restrictions to guide rendezvous or still produce long TTR due to the
inefficient mathematical tools utilized in their designs.

Therefore, in this paper, efficient LC-based and fully distributed CH schemes are proposed for
establishing rendezvous in distributed CRNs. Our main contributions are summarized as follows:

• We propose two matrix-based CH schemes, one asymmetric-role named as Quick and Slow
CH (QS-CH), and one symmetric-role called Interleaved Quick, Slow, and Fixed CH (IQSF-CH).
The proposed schemes utilize only the unrestricted local ACSs for generating their CH sequences
and can provide deterministic and fast rendezvous with full RD support.

• We prove the guaranteed rendezvous provided by our schemes through deriving the theoretical
upper-bound of their MTTRs under the symmetric and asymmetric channel availability models.
Also, we conduct extensive simulations to illustrate their superior performance as compared to
state-of-art CH rendezvous schemes.

The rest of this paper is organized as follows. Section 2 reviews the related works on rendezvous.
The system model and problem formulation are presented in Section 3. The design and theoretical
analysis of the proposed CH schemes are presented in Sections 4 and 5. Using simulations in Section 6,
we evaluate the performance of the proposed schemes and compare them with some existing CH-based
rendezvous works. Finally, we conclude the paper in Section 7.
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2. Related Work

In this section, a detailed review for the state-of-art asynchronous CH rendezvous schemes
is presented. As stated before, the existing schemes fall into two categories according to the
preassigned-role criteria: asymmetric versus symmetric. The schemes in each category can be further
classified based on the utilized channels to generate the CH sequence into GC versus LC schemes.

2.1. Asymmetric-Role Rendezvous Schemes

(i) GC schemes. The Asynchronous CH (ACH) [25] is a typical GC scheme which utilizes
array-based quorum systems to generate the CH sequences. The ACH sequences are generated
using an L× L array which is assigned with the L global channels in a column-wise manner by the
sender and in a span-wise manner by the receiver. The Asymmetric Asynchronous CH (ARCH)
scheme in [26] and the Full Diversity role-based CH (FDCH-RB) scheme [27] generate their sender
and receiver CH sequences based on the concept of opposite movement of SUs around a ring of
L channels (i.e., clockwise versus anticlockwise). However, different from ARCH, the receiver in
FDCH-RB remains at the last channel in the ring for one additional time slot before starting to jump
for the next round. Moreover, the FDCH-RB replaces the unavailable channels in its CH sequences
with available ones that are selected randomly. The Periodic CH (PCH) scheme [28] constructs each
round of its sender CH sequence by arranging the L global channels in an ascending order and then
in a descending order while repeating the first channel at the last. Meanwhile, the receiver sequence
is generated by staying for 2L− 1 time slots on each channel of the L channels. While PCH replaces
the unavailable channels in its sequences according to the round number, its efficiency is not high
specially under the asymmetric model. In [29], the Wait-For-Mommy (WFM) CH is proposed in which
the receiver plays the role of “mommy” which cycles through the L global channels periodically.
Meanwhile, the sender plays the role of “child” which stays at the same channel for L time slots to
be found by the receiver and then repeatedly hops to another unvisited channel. The FARCH [30] is
another GC scheme which follows similar procedures as the WFM for generating its CH sequences
when L is even. However, the FARCH receiver follows a different strategy when L is odd which
enhances the TTR performance. Although WFM and FARCH can reduce the MTTR when SUs have
identical ACSs, they consume unacceptably long TTR under the asymmetric model since they do not
adopt any strategy for replacing the unavailable channels. The Asymmetric Asynchronous (AAsync)
scheme [31] uses the primitive roots of a prime number calculated based on L to generate its CH
sequences. The largest primitive root is selected as the default sequence to generate the receiver CH
sequence while the primitive root that can obtain the maximum degree of overlapping with default
one is selected for generating the sender CH sequence. However, AAsync requires L + 1 to be prime.

(ii) LC schemes. The CSAC [24] is a representative LC scheme in which the sender CH sequence is
generated as a permutation of ps channels that is repeated periodically, where ps is the smallest prime
not smaller than the sender number of available channels ns. Meanwhile, the first round of the receiver
sequence could be any permutation of its nr available channels which is repeatedly left-shifted by 1
during each sub-sequence in the remaining rounds. However, the MTTR of CSAC is very long specially
when nr is not divisible by ps. In [32], the Dynamic Quorum-based CH (D-QCH) scheme uses quorum
system to generate its CH sequences. The receiver D-QCH sequence is generated using an nr × L
array which is assigned in a row-based manner with the receiver nr available channels. Meanwhile,
the D-QCH sender sequence is generated as a permutation of ns local available channels which is
repeated periodically during the whole CH period. The Sender-Jump Receiver-Wait (SJ-RW) [23,33] is
another LC scheme in which sender cycles through its ns available channels periodically according to
a randomly generated permutation. On the other hand, the receiver stays at each available channel
for L + 1 time slots and then repeatedly hops to another unvisited channel for another L + 1 slots.
Although D-QCH and SJ-RW can reduce the TTR significantly under the symmetric model, their
efficiency is not high under the asymmetric model. This is mainly due to the long stay periods by
which their receiver stays on each available channel.
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Table 1 compares the above mentioned asymmetric-role schemes as well as our proposed QS-CH
scheme in terms of the theoretical MTTR and the full RD support. As will be explained later, the MTTR
of QS-CH scheme is irrelevant to L and only depends on the number of available channels.

Table 1. Theoretical performance comparison for the asymmetric-role schemes.

Scheme MTTR Full Class
Symmetric Model Asymmetric Model RD

ACH [25] L2 − L + 1 L2 X GC

ARCH [26] 2L + 1 ? L2 ? X ? GC

CSAC [24] − (i) nr ps − G + 1, (when nr = kpS)
X LC

(ii) n2
r (ps − 1)− (G− 2)nr, (when nr 6= kpS)

FDCH-RB [27] (i) L †, (when L is even) (i) L2 + L, (when L is even)
X GC

(ii) L− 1 †, (when L is odd) (ii) L2 − 1, (when L is odd)

PCH [28] 2L− 1 L(2L− 1) X GC

WFM [29] L + 1 L2 X GC

D-QCH [32] 2L (nr − G + 1)L X LC

FARCH [30,34] (i) L + 1, (when L is even)
L2 X GC(ii) L, (when L is odd)

AAsync [31] − L2 ] X ] GC

SJ-RW [23,33] 2L− 1 L2 X LC

QS-CH 2ps − 1
(i) (nr − G + 1)pr, (when ps = pr)

X LC(ii) (nr − G)pr + (2ps − 1), (when ps < pr)
[This paper] (iii) (nr pr − Gpr + 1)ps, (when ps > pr)

Remarks: L is the number of global licensed channels; ns and nr are the number of available channels
for the sender and receiver SUs, respectively; ps and pr are the smallest primes not smaller than ns
and nr, respectively; G is the number of commonly available channels between SUs; ? denotes that
the results are valid when L is even (refer to [26] for further details); † denotes that this bound is
valid only when all channels are available; ] indicates that only when L + 1 is a prime; − indicates
that results are not given in the original papers.

2.2. Symmetric-Role Rendezvous Schemes

(i) GC schemes. The Jump-Stay (JS) [35] is a typical GC scheme in which each period includes
three frames of P time slots length, where P is the smallest prime not smaller than L. The first two
are jump frames in which the SU switch continuously on channels while the third one is a stay frame
where SU stay on a specific channel. The Enhanced Jump-Stay (EJS) scheme [20] is an improved
version of JS, in which the number of jump frames is extended to 3 in each period. EJS provides shorter
ETTR/MTTR than JS for the case when SUs own asymmetric ACSs. The Disjoint Relaxed Difference Set
based scheme (DRDS) [36] exposes P sets for generating its CH sequences which can provide full RD
but at the cost of high MTTR. The Enhanced Alternate Hop-and-Wait (E-AHW) scheme [18] generates
the CH sequence by adopting an alternate hop and wait approach to ensure rendezvous. However,
it exposes SUs’ IDs to construct its CH sequences which is not preferred for anonymous SUs with no
explicit IDs in the distributed CRNs. Furthermore, the length of exposed IDs are increased with the
increase in number of SUs in the network, which degrades the TTR performance. The Fast Rendezvous
CH (FRCH) [37] is another GC scheme in which each CH period is generated by arranging the L global
channels in an ascending order and then in a descending order with one extra parity channel at the last
slot. However, FRCH cannot guarantee rendezvous when L = (5+2α)r−1

2 (α is a positive integer and r
is an odd > 3). In the Short-sequence-based (SSB) scheme [38], the CH sequence whose period equals
2L− 1 slots is generated based on a folding line concept which hops in a down-up and top-down
manners. However, it fails to guarantee rendezvous when L = (3+2α)r+1

2 [39].
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In [40], two matrix-based rendezvous schemes (T-CH and D-CH) are proposed where the former
is non ID-Based and the latter is ID-Based. The T-CH sequence is generated using a matrix which
contains 2L + d L

2 e jump and stay columns. However, the T-CH requires L to be a prime and it does
not adopts any replacement strategy to replace the unavailable channels which prolong its TTR. On
the other hand, the D-CH sequence is generated by concatenating rows in a matrix which contains λ

jump and stay columns as well as one running-column (λ is the length of SU’ ID). Even though the
D-CH scheme alleviates some drawbacks of the T-CH. It generates CH sequence with the aid of SUs’
IDs similar to E-AHW. The Symmetric-role Quorum-based CH (S-QCH) [32] is another GC scheme in
which the CH sequence is generated using an L(2L + 1) matrix that contains h-sub and w-sub columns.
Each h-sub-column is filled with a permutation of L after replacing the unavailable channels while
each w-sub-column is filled by an available channel. A major drawback of S-QCH that degrades its
MTTR performance is the big size of its constructed matrix specially when L is large.

Table 2. Theoretical performance comparison for the symmetric-role schemes.

Scheme MTTR No Full Class
Symmetric Model Asymmetric Model ID RD

JS [35] 3P 3LP(P− G) + 3P X X GC

EJS [20] 4P 4P(P− G + 1) X X GC

S-ACH [17] 6λL2 6λL2 X X GC

E-AHW [18] 3λP 3(λ + 1)P(L− G + 1) X X GC

DRDS [36] 3P 3P2 + 2P X X GC

FRCH [37] 2L + 1 L(2L + 1) ? X X GC

SSB [38] 2L− 2 (L− 1)(2L + 1) ? X X GC

SARCH [26] 4L + 2 † 8L2 + 8L † X X GC

HH [41] − 2P2 + 2P X X LC

T-CH [40] − 2L2 + b L
2 c × L ‡ X X GC

D-CH [40] − (λ + 1)(L2 + L) X X GC

CBH [19] − 2lp ×max{pi, pj}2 X X LC

PDP [42] − L(2L + 1) X X GC

L-PDP [42] − TiTj −min{Ti, Tj}G + 1 ∗ X X LC

MTP [21,43] 2n2
i × 32(loglogL + 1) 2(max{ni, nj})2 × 32(loglogL + 1) X X LC

ZOS [44] − (12dlog2Le+ 2)(pj pj + max{pi, pj}) X X LC

SSS [22] 6pi
♦ (i) 6p2

i
♦, (when pi = pj or pi > 2pj) X X ♦ LC

(ii) 6p2
i pj, (when pj < pi < 2pj)

S-QCH [32] L(2L + 1) (nj − G + 1)L(2L + 1) X X GC

IQSF-CH
(2dlog2Le+ 3)(2pi − 1)

(i) (2dlog2Le+ 3)× (max{ni, nj} − G + 1)pj

X X LC(when pi = pj)
This paper (ii) max{(nj − G)pj + 2pi, (ni pi − Gpi)pj}

×(2dlog2Le+ 3), (when pi 6= pj)

Remarks: P is the smallest prime > L; ni and nj are the number of available channels for the pair
of SUs (SUi and SUj), respectively; pi and pj are the smallest primes not smaller than ni and nj,
respectively; λ denotes the unique λ-bit ID; lp is a constant determined by SUs’ IDs (refer to [19] for
details); Ti and Tj are the periods of the L-PDP CH sequences for SUi and SUj; ∗ denotes that the
results are only valid when the great common divisor gcd(Ti, Tj)=1; ?: denotes that the conclusion is
only valid for some values of L (refer to [37] and [39] for further details); † denotes when 2L + 1 is a
prime and all channels are available. ‡ denotes when L is prime; ♦ denotes that results are not valid
under some scenarios (refer to [45] for details)
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(ii) LC schemes. The Heterogeneous Hopping (HH) [41] and Interlocking CH (ICH) [46] are
two pioneering LC schemes. Nevertheless, both of them assumed that each SU can observe a
range of consecutive channels, which imposes strict limitation to their applications. The Advanced
Heterogeneous CH (A-HCH) [47] and Conversion Based Hopping (CBH) [19] schemes relax this
assumption where the SUs’ ID are extended into longer cyclically unique IDs by the former or
converted into different bit sequences by the latter to distinguish the CH sequences of SUs. Although
A-HCH and CBH can maximize the RD and provides shorter ETTR than ICH, they rely on IDs to ensure
rendezvous which is unfavorable in distributed CRNs. The local Padded-Dyck-Path-based scheme
(L-PDP) [42] adopts dyck paths in a roundabout manner to generate CH. Nevertheless, it requires
the periods of sequences to be co-prime which imposes restrictions on its practicality. The Moving
Traversing Pointer (MTP) [21,43] is a complete heterogeneous scheme, in which the CH sequence
is constructed based on two pointers (a slow-moving and a fast-moving) that move back and forth
to attempt rendezvous. However, the efficiency of MTP is not high, specially for the case when
the spectrum is fully available. The ZOS [44] is another heterogeneous scheme in which each SU
constructs a seed sequence of length 6dlogLe+ 1 to combine different types of CH sequences. However,
it still produces long TTR due to its large seed and inefficient designed sequences. The Single-radio
Sunflower-Set (SSS) scheme [22] generates its CH sequence by utilizing the combinatorial features of
the sunflower lemma. In this scheme, an approximation algorithm is developed to construct pi disjoint
sunflower sets where pi is the smallest prime > ni. These sunflower sets are then used for mapping
the ni local available channels into the time slots of the CH sequence. However, SSS cannot guarantee
rendezvous when it is expected in the dynamic phase of the CH sequences while the pair of SUs hop in
the same direction with the same hopping steps [45]. The failure of SSS when (pi = pj) is verified when
we simulate it even when SUs have identical ACSs; which imposes strict limitations to its applications.

The performance comparisons of the state-of-the-art symmetric-role CH rendezvous schemes as
well as our proposed IQSF-CH scheme are summarized in Table 2.

3. System Model and Problem Definition

3.1. System Model

We consider a distributed CRN consisting of K SUs that coexist with several PUs in the same
geographical area. The licensed spectrum which is owned by PUs is divided into L non-overlapping
channels, and hence the global channel set in the network is denoted as C = {0, 1, 2, . . . , L− 1}. Each SU
is equipped with a half-duplex cognitive radio transceiver that is capable of sensing the spectrum
channels and accessing the idle ones opportunistically. It is assumed that each SU can correctly identify
its local available channel sets (ACS) after performing any spectrum sensing method [48,49]. A channel
is considered available to the SU if its idle from any PU transmissions (i.e., temporally unoccupied by
the co-located PUs). The licensed spectrum is assumed to be slow varying where the channel status
is slowly time-varying, e.g., the TV spectrum where the PUs (broadcasting stations) utilize their TV
channels only at specific times of the day regularly [22]. Hence, the channel availabilities is assumed
to remain unchanged during the rendezvous process.

A time-slotted communication is considered in the network where time is divided into discrete slots
that have fixed and equal duration. The slot duration t is assumed to be in tens of milliseconds which is
sufficient for handshaking and link establishment (e.g., t = 10 ms according to IEEE 802.22 [50]).
However, to cope with slot boundary misalignment that happen when SUs local clocks are
asynchronous, the slot time is prolonged to 2t. In this way, an overlap of t is ensured despite any
boundary misalignment [32].

In this paper, we mainly focus on the pairwise channel rendezvous between any pair of SUs
(say SUi and SUj) in the CRN. Let ni and nj be the numbers of available channels of SUi and SUj,

respectively. LetAi = {A1
i , A2

i , . . . , Ani
i } ⊆ C andAj = {A1

j , A2
j , . . . , A

nj
j } ⊆ C be the two local ACSs of

SU i and SUi, respectively. In heterogeneous CRNs, each SU may have distinct ACS. Let Â = Ai ∩Aj
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denotes the set of commonly available channels between SUs and let G = |Â|. The pair of SUs can
rendezvous with each other only if Â 6= Φ (i.e., G ≥ 1).

3.2. Rendezvous Problem Formulation

The pairwise channel rendezvous problem is defined as follows: For any two neighbor SUs
(SUi and SUj), we need to generate a CH sequence for each SU according to its own local ACS
in order to achieve channel rendezvous between these two SUs within a bounded and short
time despite any difference of their CH start times (i.e., asynchronous local clocks). Formally, let

Si = {S1
i , S2

i , S3
i , · · · , STi

i } and Sj = {S1
j , S2

j , S3
j , · · · , S

Tj
j } denote the CH sequences for SUi and SUj,

respectively. Also let δ denote the clock drift between SUi and SUj in the asynchronous scenario. The
channel rendezvous problem can be formulated as:

If ∀δ, ∀Ai,Aj, ∃c∗ ∈ Ai ∩ Aj, s.t.(St
i = S(t+δ)

j = c∗) and c∗ is available at time slot t, then the
channel rendezvous is achieved between SUi and SUj.

The main goal of this paper is to design deterministic pairwise CH scheme for tackling this
channel rendezvous problem.

4. Quick and Slow Channel Hopping (QS-CH) Scheme

In this section, we present the design for the asymmetric-role CH scheme which is called Quick
and Slow Channel Hopping (QS-CH) scheme as well as the analysis of its theoretical performance.

4.1. Scheme Design

In this scheme, the pair of SUs attempting to rendezvous are assumed to have different
pre-assigned roles which are determined before the start of the rendezvous process. The terms
sender and receiver are used in order to differentiate the role of each SU. The basic idea of the QS-CH
scheme is to let the sender and receiver hop sequentially on their available channels with different
speeds and stay for different time slots on each channel. In particular, the sender will hop on its
available channel in a quick manner while the receiver hops on its available channels in a slow manner.
However, the period by which the sender hops on all of its available channels and the period by which
the receiver stays on each channel of its available channels are designed to be primes. This in order to
guarantee their rendezvous when they have different number of available channels.

Algorithms 1 and 2 are used by the sender and receiver, respectively to construct their CH
sequences. The generating steps of the QS-CH sequences are as follows.

4.1.1. Sender Sequence in QS-CH

When an SU has data to transmit, it serves as a sender and hence generates a quick hopping
sequence (Q-CH) as follows. First, randomly select a hopping offset (h-offset) ∈ [1, ns] which is a
coprime with ns (i.e., gcd (h-offset, ns) = 1) and then invokes Algorithm 1 with the available channels set
As = {A1

s , A2
s , . . . , Ans

s } and h-offset. In Algorithm 1, the sender find ps as the smallest prime number
which is not smaller than ns; this means that if ns is a prime, then ns = ps. However, if ns is not
prime, then ps is the closest prime number that is larger than ns. After that, construct an ns × ps matrix,
called the Sending Matrix (SM) where its columns are filled with the channels in As according to their
corresponding indexes that are determined by the hopping offset. Specifically, the kth column of the
matrix when (k 6 ns) is filled with the channel Aindex

s where index is determined by multiplying the
h-offset with the column index (i.e., (k− 1)) mod ns) + 1). This indicates that the first ns columns in
SM are filled with all the available channels based on a permutation that is determined by h-offset.
Meanwhile, if (k > ns) which happens when ns 6= ps, the kth column of SM is filled with the channel
that is assigned to the earlier (k− ns)th column. In other words, the last (ps − ns) columns in SM are
filled with the same channels that are assigned to the first (ps − ns) columns. Finally, generate the
Q-CH sequence which has a length equals ns ps slots by concatenating the matrix rows, row by row.
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To this end, we get a Q-CH sequence in which the sender stays for only a single slot on each
available channel and then hops to the next one. Thus, each frame of ps slots in the Q-CH sequence
contains all the ns available channels. The sender will keep hopping on its available channels according
to this sequence until it achieves channel rendezvous with its intended receiver.

Algorithm 1: Sender CH generation algorithm (Q-CH).

Input: Available channels As = {A1
s , A2

s , . . . , Ans
s }, h-offset.

Output: Ss, the Q-CH sequence for the sender SUs.
1: Find ps as the smallest prime that is not smaller than ns.
2: Define a Sending Matrix (SM) as an empty matrix of nS rows and ps columns.
3: for k = 1 : ps do

4: if (k 6 ns) then

5: index = ((h-offset × (k− 1)) mod ns) + 1.
6: else

7: index = ((h-offset × (k− ns − 1)) mod ns) + 1.
8: end if
9: SM[1 : ns][k] = Aindex

s {Fill the kth column with Aindex
s }

10: end for
11: Generate Ss as the concatenation of the matrix rows

Ss = SM[1][1 : ps] ‖ SM[2][1 : ps] ‖ . . . ‖ SM[ns][1 : ps]
12: return Ss.

4.1.2. Receiver Sequence in QS-CH

If an SU has nothing to transmit, it serves as a receiver and generates a slow hopping sequence
(S-CH) as follows. Firstly, select randomly a number ∈ [1, nr] which must be a coprime with
nr as the hopping offset (h-offset). Then invokes Algorithm 2 with the available channels set
Ar = {A1

r , A2
r , . . . , Anr

r } and h-offset. As illustrated in Algorithm 2, the SU find pr as the smallest
even number which is not smaller than nr. After that, construct an nr × pr matrix, called Receiving
Matrix (RM) in which the kth row is filled with the channel Aindex

r where index is determined by h-offset.
Finally, generate the S-CH sequence which has a length equals nr pr slots by concatenating the matrix
rows, row by row. Accordingly, we get a slow channel hopping sequence where the receiver stays for
pr slots on each available channel before it hops to the next channel.

Algorithm 2: Receiver CH generation algorithm (S-CH).

Input: Ar = {A1
r , A2

r , . . . , Anr
r }, h-offset.

Output: Sr, the S-CH sequence for the receiver SUr.
1: Find pr as the smallest prime number that is not smaller than nr.
2: Define a Receiving Matrix (RM) as an empty matrix of nr rows and pr columns.
3: for k = 1 : nr do

4: index = ((h-offset × (k− 1)) mod nr) + 1.
5: RM[k][1 : pr] = Aindex

r {Fill the kth row with Aindex
r }

6: end for
7: Generate Sr as the concatenation of the matrix rows

Sr = RM[1][1 : pr] ‖ RM[2][1 : pr] ‖ . . . ‖ RM[nr][1 : pr]
8: return Sr

Consider the example in Figure 1 which illustrate the generation of the QS-CH sequences for the
sender (SUV) and the receiver (SUZ) as well as the rendezvous between them. In Figure 1a, since the
number of channels nv = 5 for the sender SUV is already prime, hence pv = nv and the sending matrix
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SM is constructed as an 5× 5 matrix. Then, the sender assign its available channels into the columns
of the SM according to the selected h-offsetv which is 2. Finally, the sender Q-CH sequence is generated
by concatenating the SM rows sequentially which results in a Q-CH with a length of 25 slots. On the
other hand, as nz = 4 is not prime, the receiver SUZ in Figure 1b obtains pz = 5 as the smallest prime
which is bigger than nz. Hence, the RM is constructed as an 5× 4 matrix where its rows are filled with
the SUZ available channels according to the selected h-offsetv which is 1. Finally, the CH sequence is
generated by concatenating the RM rows one by one which results in a S-CH with a length of 20 slots.

As shown by Figure 1c, during each frame of pv = 5 consecutive time slots in its Q-CH sequence,
the sender hops on all of its 5 available channels. Meanwhile, the receiver SUz stays for a frame of
pz = 5 consecutive time slots on each channel of its 4 available channels and then switch to the next
channel. Thus, for this example, since pv = pz, the rendezvous is guaranteed to occur between SUs on
their commonly available channel which is 4 despite any drifts of their time clocks.

(a) SM for sender SUV . (b) RM for receiver SUZ .

(c) Channel rendezvous between SUs on the common channel 4
when SUz start its CH with k ∈ [0, pz − 1] slots later than SUv.

Figure 1. An example of QS-CH sequences constructions and rendezvous for a pair of SUs. (a) Sender
SUV has Av = {1, 3, 4, 6, 9} and h-offsetv= 2. (b) Receiver SUZ has Az = {2, 4, 5, 7} and h-offsetz= 1.

4.2. Scheme Analysis

In this subsection, we study the theoretical performance of the QS-CH under the symmetric and
asymmetric channel availability models. Specifically, we prove the guaranteed rendezvous between
any arbitrary two SUs performing the QS-CH by deriving the MTTR upper-bound required for
achieving a successful channel rendezvous.

Theorem 1. The MTTR of QS-CH under the symmetric channel availability model is upper-bounded by (2ps− 1).

Proof of Theorem 1. Under the symmetric channel availability model, the sender and receiver SUs
always have the same available channels (i.e., As ≡ Ar and ns ≡ nr = G). In Figure 2, we present the
two possible cases of rendezvous under this model. These cases happen according to the two SUs
starting times (i.e., asynchronous scenario).

Case 1: Figure 2a. In this sub-case, the sender SUs starts its CH sequence with δ ∈ [0, ns ps] time
slots earlier than the start of the receiver SUr. This means that in each S-CH period of SUr, the Q-CH
sequence of SUs is rotate( Q-CHs, −δ). As shown by Figure 2a, while the receiver SUr stays for a frame
of pr slots on its first channel, the ps consecutive slots of the sender sequence from the start point of
SUr contains all the sender available channels. According to that and since As = Ar, the rendezvous
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can happen within the first receiver frame. However, since pr = ps, we can say that the sender SU can
achieve rendezvous with its receiver SU no later than ps slots from the start point of the receiver.

Case 2: Figure 2b. In this sub-case, the sender SUs starts CH with δ ∈ [0, nr pr] time slots later
than the start of the receiver SUr which means that in each Q-CH period of SUs, the S-CH sequence
of SUr is rotate( S-CHr, δ). In Figure 2b, it is indicated that the sender SUs does not have enough
time slots to hop on all of its available channels before the receiver SUr transfer to the next channel.
So, the rendezvous is only guaranteed during the next frame after the receiver SUr transfers to the
next available channel. Hence, for any value of the misalignment δ, the TTR is guaranteed to occur no
later than (2ps − 1) time slots from the start point of the sender SUs.

(a) TTR ≤ ps. (b) TTR ≤ 2× ps − 1.

Figure 2. Rendezvous cases for QS-CH under the symmetric channel availability model.

To sum up, we approved that under the symmetric channel availability model, the MTTR for
rendezvous between any two asymmetric-role SUs (a sender and receiver) which are performing
QS-CH is upper bound by 2ps − 1.

Theorem 2. Under the asymmetric channel availability model, the MTTR of the QS-CH scheme is given by:

MTTR ≤


((nr − G)pr) + 2ps − 1 if ps < pr

(nr − G + 1)pr if ps = pr

(nr pr − G + 1)ps if ps > pr

(1)

Proof of Theorem 2. Under the asymmetric channel availability model, the sender and receiver SUs
do not have the same ACSs (i.e., As 6= Ar). However, the numbers of their available channels (ns and
nr) may be equal or different. Hence, According to (ns and nr) and the corresponding prime numbers
(ps and pr) obtained by the SUs for generating their CH sequences, we consider the following cases for
deriving the theoretical MTTR upper-bound of the QS-CH scheme.

Case 1: ps ≤ pr. This case indicates that the frame of the sender QS-CH sequence is smaller
or equal to the frame of the receiver SS-CH sequence. In Figure 3, the four possible sub-cases
of rendezvous under the asymmetric channel availability model are presented. These four cases
happen according to whether ps < pr or ps = pr, as well as according to the two SUs starting times
(i.e., asynchronous scenario). In particular, the first three figures (Figure 3a–c) occur when ps < pr

while the last figure (Figure 3d) occurs when ps = pr.
Case 1.1: (Figure 3a). In the figure, k1 indicates the clock difference between the SUs start times

while k2 denotes the remaining time slots of the receiver first frame except k1 (i.e., k2 = pr − k1 ).
For this sub-case, k2 ≥ ps implies that when the sender SUs starts, it can hop on all of its available
channels before pr (i.e., before the receiver SUr transfers to the next available channel). Hence, the first
potential rendezvous can be achieved before pr. However, if the channel where the receiver stays is
not commonly available between the SUs, the next potential rendezvous can be achieved in the next
frame of the receiver SUr (i.e., from pr + 1 to 2pr time slots). This is because only at the beginning of
this frame, the receiver SUr will transfer to its next available channel and stay on it. The worst case
happens when all the first nr − G potential rendezvous times fails because the corresponding receiver
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stay channels are not commonly available to the sender. After that, starting from the (nr − G)pr time
slot, the receiver SUr will definitely hop and stays on a channel that is commonly available and hence
the rendezvous occurs within ps time slots. Thus, for this case, MTTR ≤ (nr − G)pr + ps.

(a) TTR ≤ (nr − G)pr + ps. (b) TTR ≤ (nr − G)pr + (2ps − 1).

(c) TTR ≤ (nr − G)pr + ps. (d) TTR ≤ (nr − G + 1)pr .

Figure 3. Rendezvous cases for QS-CH under the asymmetric channel availability model when ps 6 pr.

Case 1.2: In this sub-case (Figure 3b), k2 < ps implies that the sender SUs does not have
enough time slots to hop on its whole available channels before the receiver SUr transfer to its next
available channel. Accordingly, The first potential rendezvous can be achieved only during the
next frame after the receiver SUr transfers to the next channel. Thereafter, by following a similar
analysis of the worst-case as in the previous sub-case, the rendezvous is guaranteed to occur on a
common-channel after the failure of at most (nr − G) potential rendezvous times. So, in this sub-case,
MTTR ≤ k2 + (nr − G)pr + ps which is less than or equal to (nr − G)pr + (2ps − 1), since k2 ≤ ps− 1.

Case 1.3: In this sub-case (Figure 3c), SUs starts earlier which indicates that the first potential
rendezvous can occur within ps time slots from the starting time of SUr. By following the worst-case
analysis similar to the above sub-cases, it can be found that MTTR ≤ (nr − G)pr + ps.

Case 1.4: In this sub-case (Figure 3d), ps = pr and the sender SUs starts earlier. As shown
by Figure 3d, while the first frame of the receiver sequence contains its first stay channel, the
frame of the sender sequence from the start point of SUr contains all the sender available channels.
Accordingly, the first potential rendezvous can occur within ps time slots from the starting time of
SUr. The worst case happens when all the first (nr − G) potential rendezvous times fails due to the
non-availability of receiver stays channels to the sender. However, during the next pr frame, receiver
will stay on a commonly available channel and hance a successful rendezvous occurs. So, MTTR
≤ (nr − G)× pr + ps. However, since ps = pr, the TTR upper-bound can be represented as MTTR
≤ (nr − G)pr + pr = (nr − G + 1)pr.

Above all, it is proved that the MTTR is upper-bound by (nr − G)pr + (2ps − 1) (when ps < pr)
as in Case 1.2 since it is the worst case. Meanwhile it is upper-bound by (nr −G + 1)pr (when ps = pr).

Case 2: ps > pr. This case indicates that the frame of ps slots in the sender Q-CH sequence is
bigger than the frame of pr slots in the receiver S-CH sequence. Hence, the analysis procedure used in
the previous case can not be followed here since the length of each stay frame of the receiver is not
large enough to cover one quick frame of the sender.

For this case, since ps and pr are co-primes and ps > nr, it can be easily verified that ps and prnr

are also co-primes. For example, suppose that the number of available channels for sender and receiver
are ns = 7 and nr = 4. This results in ps = 7 and pr = 5 which are co-primes. Therefore, ps = 7 and
prnr = 4× 5 = 20 are also co-primes. According to that and with the help of the Chinese Reminder
Theorem [51], it can be proven that within a period of ps(prnr) time slots, all the psnr available channel
pairs will be visited for exactly pr times. In other words, let the set which contains all the pairs of
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available channels for both SUs be As ×Ar = {(Ai
s, Aj

r), i ∈ [1, 2, · · · , ps], j ∈ [1, 2, · · · , nr]}, where ×
here indicates the Cartesian product of the two SUs channel sets. If the SUs hops according to their
CH sequences for a period of T = ps(prnr) slots, then every pair of two channels in As ×Ar will
appear for exactly pr times. Thus, the MTTR upper-bound could be represented as ps(prnr) for this
case. However, this upper-bound is loosely (i.e., not tight) since it is sufficient for the rendezvous
guarantee if each pair of two equal channels in As ×Ar appears for one time only. Thus, it is clear that
the MTTR upper-bound can be much less than ps(prnr).

Generally, the MTTR depends on the number of common channels G as well as on (ps mod nr pr)
which reflects the deviation amount on the receiver sequence during each repeated frame of the sender
sequence. As ps and nr pr are co-primes, the deviation amount (ps mod nr pr) 6= 0 and is not multiple of
pr. Hence, deriving the tight theoretical MTTR upper-bound of this case is quit difficult since it requires
the consideration for all the possible values of the deviation amount [0 < (ps mod nr pr) < nr pr].
However, we present in (Appendix A), the sub-cases for deriving the MTTR upper-bound under the
majority of these values when there is only one commonly channel (i.e., G = 1). These sub-cases verify
that the MTTR theoretical upper-bound is much less than ps(prnr) even when G = 1. However, due to
the difference in formulas of these sub-cases, the MTTR upper-bound for this case (i.e., when ps > pr)
is represented for simplicity and unifying purposes as (nr pr − Gpr + 1)ps.

Summarizing the discussion above, it is approved that under the asymmetric channel availability
model, the MTTR upper bound for rendezvous between any two asymmetric-role SUs (a sender and
receiver) which are performing QS-CH is represented by the formulas in Equation (1).

Theorem 3. The QS-CH scheme can achieve a full rendezvous diversity (RD) which means that any pair of
neighboring SUs which performs QS-CH can rendezvous on all of their commonly available channels.

Proof of Theorem 3. Recall the proof of Theorem 2, it is verified that the first successful rendezvous
on a commonly available channel can be achieved within a period given by Equation (1). However,
for achieving rendezvous over all the G commonly available channel, the MTTR upper-bound after
eliminating G in Equation (1) can be represented as in the following Equation:

MTTR ≤


nr pr + 2ps − 1 if ps < pr

(nr + 1)pr if ps = pr

(nr pr − pr + 1)ps if ps > pr

(2)

5. Interleaved Quick, Slow, and Fixed Channel Hopping (IQSF-CH) Scheme

In the previous section, the QS-CH scheme was designed using the asymmetric-role approach
which requires that each SU has a pre-assigned role (i.e., either a sender or a receiver). In this section,
we present the proposed IQSF-CH scheme which is symmetric (i.e., no pre-assigned role assumption).

5.1. Scheme Design

In the symmetric-role IQSF-CH scheme, every SU generates its CH sequence with the help of
a binary bit sequence called a seed. This seed is generated based on the binary representation of a
channel that is selected randomly from the SU ACS. The CH sequence is constructed as an interleaved
sequence of several Q-CH and S-CH sequences as well as a fixed stay sequence through a two-step
approach. Firstly, based on a certain bit design, each SU transforms the binary representation of the
randomly selected available channel into a seed sequence. The resulted seed is composed of several
1’s and 0’s as well as one special bit denoted as “F” (short of Fixed). Secondly, each SU replaces
any bit of “1” (or “0”) in its seed sequence with a column of Q-based (or S-based) CH sequence.
Meanwhile, the SU replaces the last bit of its seed sequence which is denoted as “F” with a column
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filled with its seed channel. To cope with the asynchronous scenario, the seed generation method is
designed in such away which ensure that the resulted seed sequences are cyclic rotationally distinct
one to the other.

To this end, each SU will construct a matrix of several columns that are filled with quick and
slow CH sequences as well as one last column that is filled with the randomly selected seed channel.
Accordingly, if the selected seed channels of the two SUs are the same, they generate the same seed
which allow them to achieve rendezvous on this channel since they stay on it (i.e., the F-type column).
Meanwhile, if the seed channels are different which results in generating distinct seeds, the cyclic
uniqueness property will guarantee the existence of some time instances where the two SUs are playing
different roles. Hence, the channel rendezvous is achieved when one SU is hopping according to its
Q-CH sequence while the other SU is hopping based on its S-CH sequence, and visa-versa.

It is worthy mentioning here that IQSF-CH is anonymous rendezvous scheme since it does not
rely on the SU’s ID to interleave its sequences such as the works in [17,52]. This makes it more practical
for distributed CRNs where SUs do not possess public IDs. Although most of the ID-based works
usually adopt different extension methods to transform the SU’s IDs into another cyclic unique IDs for
breaking the symmetry, these methods designs are not suitable to generate the seeds in our IQSF-CH
due to the existence of F-type bits. Therefore, we propose a new and novel method for generating
efficient seed sequences that are suitable to interleave the three types of CH sequences in IQSF-CH.

5.1.1. Generating the Seeds

In this subsection, the method for constructing the seed sequence is presented. For a network of L
channels, the binary representation for any channel will have a length of m = d log2Le. For example,
when the number of channels in the network is L = 5, the binary representation for each channel is
m = d log25e = 3-bits length. Meanwhile, when L = 10, m = d log210e = 4.

In the seed generating method, the m-bit binary representation of the seed channel is transformed
to a seed sequence by appending it with (m + 3) additional bits at the end. The following lemma will
illustrate the generation method and its correctness for providing cyclic rotationally distinct seeds.

Lemma 1. Given any two m-bit binary representations α = {α1, · · · , αm} and β = {β1, · · · , βm}. Let a and
b be the two 2m + 3-bit expanded seeds generated from α and β as follows:

a
def
= α‖0‖α‖1‖F and b

def
= β‖0‖β‖1‖F.

The ‖ symbol here indicates the concatenation process. The 0 indicates a bit of zero and 1 indicate a bit of one
while F indicate the special type bit. Then a and b are cyclic rotationally distinct to each other which means that

a 6= rotate(b, k), ∀k ∈ (0, 2m + 2].

Proof of Lemma 1. To prove the above lemma, all the possible cases that may happen when sequence
b is rotated with (k ∈ (0, 2m + 2]) is considered. In each case, it will be shown that bits in sequence a
and another bits in sequence b′ = rotate(b, k) have different values even though these bits are in the
same positions. Considering the three cases in Figure 4 is sufficient to prove that a and b′ = rotate(b, k)
are cyclic rotationally distinct one to the other.

Case 1: k ∈ (0, m]. As shown by the two red arrows in Figure 4, it holds that am−k+1 is equivalent
to a2m−k+2 while the same position bits in b′ have different values ( i.e., b′m−k+1 = 0 and b′2m−k+2 = 1).
Hence, if am−k+1 ≡ a2m−k+2 = 1, it implies that am−k+1 is different than b′m−k+1. However, if am−k+1 ≡
a2m−k+2 = 0, it implies that a2m−k+2 is different than b′2m−k+2. Therefore, in this case, it is proved that
there must be at least a single bit that is different in a and b′.

Case 2.1: k = m + 1. As indicated by the red arrow in Figure 4, it holds that am+1 = 0 and
b′m+1 = 1.

Case 2.2: k = m + 2. As indicated by the red arrow in Figure 4, it holds that a2m+2 = 1 and
b′2m+2 = 0.
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Figure 4. Illustration of the five cases in the proof of Lemma 1.

Case 3: k ∈ [2m, 2m + 2]. As indicated by the two red arrows in Figure 4, it holds that am+1 = 0
and a2m+2 = 1. Meanwhile the same position bits in b′ have similar values ( i.e., b′m+1 ≡ b′2m+2).
Hence, if b′m+1 ≡ b′2m+2 = 1, it implies that am+1 is different than b′m+1. However, if b′m+1 ≡ b′2m+2 = 0,
it implies that a2m+2 is different than b′2m+2. Thus, it is approved that in this case there must be at least
a single bit that is different in a and b′.

According to these possible cases, we conclude that a 6= rotate(b, k), ∀k ∈ (0, 2m + 1].

Figure 5 illustrates an example for two binary representations of original lengths m = 3 and which
are transformed based on the proposed method to generated seeds with length (2m + 3) = 9 bits.
The figure illustrate the cyclic uniqueness property between the expanded seeds for all the possible
rotation cases (i.e., ∀k ∈ [1, 8]). It is worthy noting that this cyclic uniqueness property holds even
when the seed sequences are the same.

Figure 5. An illustrative example for the correctness of our cyclic unique seeds method when m = 3.
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5.1.2. Generating the Interleaved CH Sequence

This subsection explains how to generate the symmetric IQSF-CH sequence for any SU, say SUi.
Suppose the number of channels for SUi is ni and the available channel setAi = {A1

i , A2
i , . . . , Ani

i } ⊆ L.
Let α be the m-bits binary representation of the selected seed channel Aseed

i in Ai, which is transformed
based on the above seed generation method into (2m + 3)-bits seed sequence a def

= α‖0‖α‖1‖F. The
generating steps for the IQSF-CH sequence of SUi are as follows:

i Find the hopping offset set which contains the numbers in [1, ni] that are co-primes with ni.
ii Find pi as the smallest prime which is not smaller than ni.
iii Define an empty matrix Mi which has 2m + 3 columns and ni × pi rows.
iv Fill Mi by mapping each bit in the seed a to a certain column as described below:

1: for c = 1 : (2m + 3) do

2: Select an h-offset randomly from the offset set.
3: if (ac == 1) then

4: Invoke (Algorithm 1) in Section 4.1 with Ai and h-offset to generate an Q-CH sequence

ωc.
5: Map the cth column of the matrix Mi with ωc.
6: else

7: if (ac == 0) then

8: Invoke (Algorithm 2) in Section 4.1 with Ai and h-offset to generate an S-CH sequence

γc.
9: Map the cth column of the matrix Mi with γc.

10: else {(ac == F).}

11: Fill the cth column of matrix Mi with Aseed
i .

12: end if
13: end if
14: end for

v Generate the IQSF-CH sequence by concatenating the matrix rows. The SUi keep hopping
according to this generated sequence and repeat it to rendezvous with its intended partner.

For example, Figure 6a illustrates the IQSF-CH sequence construction matrix for SUX which
has the channel set AX = {1, 2, 4} that are available among the L = 5 channels in the network.
Without loss of generality, suppose that SUX selects randomly the last channel in its ACS as its seed
channel (i.e., Aseed

X = 4). Hence, the binary representation of the selected channel (i.e., channel 4)
is α = [100] which has a length of m = 3-bits since dlog25e = 3. This binary representation is
then expanded to generate the seed a = [10001001F] for the SUX. The constructed IQSF matrix
MX has n× p = (3× 3) = 9 rows and 2m + 3 = 9 columns. The SU fills its matrix columns with
Q-CH or S-CH based on the corresponding bits of the seed sequence. On the other hand, suppose
there is another SU (SUY) which has identical ACS as SUX and which select similar seed channel
(i.e., Aseed

X = Aseed
X = 4). The SUY constructs its IQSF-CH matrix MY in the same way as SUX as

illustrated in Figure 6b. However, the order of channels in each column sequence is determined
based on the randomly selected hopping offsets. For instance, SUX fill the first column in its IQSF
matrix MX with a Q-CH sequence that is generated by invoking (Algorithm 1) with AX and h-offset=1.
Meanwhile, SUY invokes (Algorithm 1) with AY and h-offset=2 to generates the Q-CH sequence
assigned to its matrix first column. Under the asynchronous scenario, Figure 6c,d illustrates the shifted
IQSF-CH matrix for SUY when it starts its channel hopping earlier than SUX with 36 and 44 time slots,
respectively. As can be seen, the rendezvous between the constructed IQSF-CH sequences of SUX and
SUY under these asynchronous misalignment cases is still achieved as indicated by the green entries at
MY in Figure 6c,d.
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(a) IQSF matrix
MX for SUX .

(b) IQSF matrix
MY for SUY .

(c) M(Y,36), δC =

0 and δR = 4.
(d) M(Y,35), δC =

8 and δR = 3.

Figure 6. The constructed IQSF-CH matrices MX for SUX and MY for SUY and their rendezvous under the
synchronous case as well as under the asynchronous case when MY is circularly rotated with (c) δ = (2dlog25e+
3)× 4 + 0 = 36 time slots. (d) δ = (2dlog25e+ 3)× 3 + 8 = 35 slots.

5.2. Scheme Analysis

In this subsection, the theoretical performance of IQSF-CH is studied where the upper-bounds of
MTTR under both channel availability models are derived.

Theorem 4. Under the symmetric channel availability model, the MTTR of IQSF-CH scheme is upper-bounded
by (2dlog2Le+ 3)(2pi − 1).

Proof of Theorem 4. To prove that IQSF-CH has MTTR ≤ (2dlog2Le + 3)(2pi − 1), it is sufficient
to prove that any arbitrary pair of IQSF-CH sequences, e.g., IQSFi and IQSFj, can achieve a
successful channel rendezvous within (2dlog2Le + 3)(2pi − 1) time slots. Let IQSFi and IQSFj be
the corresponding IQSF-CH sequences of IQSF matrices Mi and Mj (i.e., IQSFi and IQSFj are generated
by concatenating the rows of matrices Mi and Mj, respectively). Without loss of generality, assume
that SUj starts its CH sequence δ time slots earlier than the start of SUi. This mean that in each CH
period of SUi, the CH sequence of SUj is rotate( IQSFj, δ). Clearly, the rendezvous between this pair
of IQSF-CH sequences is the same as the rendezvous of their matrices Mi and M(j,δ). The matrices
rendezvous is achieved when the same position entries in both matrices (Mi and M(j,δ)) have the same
channel index. Without loss of generality, Suppose that the time slot shift δ = (2dlog2Le+ 3)× δR + δC,
where δR ∈ [0, nj pj − 1] denotes the shift of row and δC ∈ [0, (2dlog2Le + 2)] denotes the shift of
column. Below, we consider the two different cases for rendezvous between IQSFi and IQSFj.

Case 1: δC = 0. This case implies that there is no column shift and only the row shift δR is exist.
In the following, we consider the two sub-cases which happen according to whether the randomly
selected seed channels by SUi and SUj are similar or different.

Case 1.1: Aseed
i ≡ Aseed

j : This case implies that the selected seed channels by SUi and SUj are
the same which results in generating a similar seed sequence. In addition, the last columns in both
matrices (i.e., F-type) are filled entirely with the same channel (i.e., Aseed

i ). So, for any value of the row
shift δR, Mi and M(j,δ) are guaranteed to rendezvous no later than (2dlog2Le+ 3) (at the first entry of
last columns). For instance, refer to the previous example in Figure 6 which show the rendezvous of
MX and MY. Under the synchronous case (i.e., when δ = 0), the first channel rendezvous occurs in the
first slot which is indicated by the green entry in MY (Figure 6b). However, Figure 6c shows the IQSF
matrix of SUY when it is shifted with row shift δR = 4. This means that δ = (2dlog25e+ 3)× 4+ 0 = 36.
The rendezvous between MX and M(Y,36) is achieved at their last columns.

Case 1.2: Aseed
i 6≡ Aseed

j : This case implies that the seed sequences generated by the SUs are
different and the F-type column in each matrix is filled with a different channel. For this sub-case, As
recall that the columns types of the matrices are assigned based on these distinct seeds. Then, for any
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value of δR, it is guaranteed that there must exist at least a single common column d in both matrices
which is a Q-column in one matrix and a S-column in the other matrix, or visa-versa. In other words,
the dth column of Mi (i.e., ad) contains a Q-CH sequence (reps., S-CH) while the same index dth column
in M(j,δ) (i.e., bd) contains a S-CH (reps., Q-CH). By Theorem 1, it is known that the when SUi hops on
its channels according to a Q-CH (reps., S-CH) sequence and SUj hops on its channels according to
a S-CH (reps., Q-CH) sequence, they must rendezvous on a commonly available channel within at
most 2pi − 1 slots. However, since the elements of any specific column of each matrix appear in the
corresponding IQSF-CH sequence every (2dlog2Le+ 3) slots, 2pi − 1 is multiplied by (2dlog2Le+ 3).

Case 2: δC 6= 0. This case implies that there is a column shift δC ∈ [1, (2dlog2Le+ 2)] between the
matrices. Let a and b be the the generated seed sequences of SUi and SUj, respectively. By Lemma 1,
it is approved that a and b are cyclic rotationally distinct one to the other regardless of the similarity
or difference between Aseed

i and Aseed
j . Thus, for any column shift δC ∈ [1, 2dlog2Le+ 2] of matrix Mj,

there must exist a column d in matrix Mi which has different type than the same index dth column in
the shifted matrix M(j,δ). Accordingly, the rendezvous is guaranteed to occur at the dth columns in the
matrices, despite any values of δR and δC. Hence, the MTTR upper-bound for this case is similar as the
MTTR for the sub-case (1.2). For example, Figure 6d shows the shifted IQSF matrix of SUY when the
column shift δC = 8 and the row shift δR = 3, which results in δ = (2dlog25e+ 3)× 3 + 8 = 35 slots.
The first rendezvous between MX in Figure 6a and M(Y,35) in Figure 6d is achieved at time slot 14 since
the fifth column of MX is a Q-type while the fifth column of M(Y,35) is S-type.

Above all, it is approved that the MTTR of IQSF-CH under the symmetric channel availability
model is upper-bounded by (2dlog2Le+ 3)(2pi − 1).

Theorem 5. Under the asymmetric channel availability model, the MTTR between a pair of SUs (SUi and SUj)
performing the IQSF-CH scheme is upper-bounded by (2dlog2Le+ 3)× F(pi, pj) where F(pi, pj) is given by:

F(pi, pj) =


max{(nj − G)pj + 2pi − 1, (ni pi − Gpi + 1)pj} if pi < pj

(max{ni, nj} − G + 1)pj if pi = pj

max{(ni − G)pi + 2pj − 1, (nj pj − Gpj + 1)pi} if pi > pj

(3)

Proof of Theorem 5. Similar to the analysis procedure of the symmetric model, the guaranteed
rendezvous between any arbitrary pair of IQSF-CH sequences (IQSFi and IQSFj) under the asymmetric
channel availability model can be approved by proving the deterministic rendezvous of their IQSF
matrices despite any misalignment of their start times. Specifically, the rendezvous between Mi and
M(j,δ) is proved to be deterministic within a bounded time despite any shift δ ∈ (2dlog2Le+ 3)×
δR + δC in M(j,δ). However, as the ACSs (Ai and Aj) in this model are diverse, we analyze the cases
which consider the different relations of pi and pj as well as the channels used for seeds generation in
deriving the MTTR upper-bound of this model.

Case 1: δC = 0. This case implies that there is no column shift. So, The MTTR upper-bound is
derived by considering the similarity or difference between the randomly selected seed channels.

Case 1.1: Aseed
i ≡ Aseed

j : This sub-case implies that the generated seed sequences and the F-type
columns for both SUs are similar. Therefore, for this sub-case, it can be easily approved in a similar way
as the proof of sub-case 1.1 in Theorem 4 that within the upper-bound (2dlog2Le+ 3), Mi and M(j,δ)
can rendezvous despite any values of δR.

Case 1.2: Aseed
i 6≡ Aseed

j . This case implies that the F-type columns and the seed sequences are
distinct. According to that and sine the column types of the matrices are assigned based on distinct
seeds, it is guaranteed that there must exist at least a single common column d in both matrices which
is a Q-column in one matrix and a S-column in the other matrix, and visa-versa, despite any value of
δR. Recall the proof of Theorem 2; it was approved that when SUs hop on their channels according
to the different asymmetric-role CH sequences (Q-CH versus S-CH ), they must rendezvous on a
commonly available channel within a bounded MTTR. The MTTR upper-bound which is given by
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Equation (1) depends on the number of available channels and the corresponding prime numbers
( i.e., ni, nj, pi, pj) as well as on G. However, as the elements of any column in each matrix appear
in the corresponding IQSF-CH sequence every (2dlog2Le+ 3) slots, the MTTR upper-bound of the
asymmetric-role approach in Equation (1) is multiplied by (2dlog2Le+ 3). In particular, suppose that
ad = 1 and bd = 0 which indicates that the dth column in Mi contains a Q-CH sequence while the
dth column in M(j,δ) contains a S-CH sequence. Accordingly, the rendezvous happen when the same
position entries in these dth columns contain the same channel and the MTTR upper-bound is given by:

MTTR ≤


(2dlog2Le+ 3)× (nj − G)pj + 2pi − 1 if pi < pj

(2dlog2Le+ 3)× (nj − G + 1)pj if pi = pj

(2dlog2Le+ 3)× (nj pj − Gpj + 1)pi if pi > pj

(4)

On the other hand, when ad = 0 and bd = 1 which indicates that the dth columns in Mi and M(j,δ)
contain S-CH and Q-CH sequences, respectively, the MTTR upper-bound is given by:

MTTR ≤


(2dlog2Le+ 3)× (ni pi − Gpi + 1)pj if pi < pj

(2dlog2Le+ 3)× (ni − G + 1)pi if pi = pj

(2dlog2Le+ 3)× (ni − G)pi + 2pj − 1 if pi > pj

(5)

By generalization the similar terms in Equations (4) and (5) to obtain unified formulas for them,
the MTTR upper-bound can be represented as:

MTTR ≤


(2dlog2Le+ 3)×max{(nj − G)pj + 2pi − 1, (ni pi − Gpi + 1)pj} if pi < pj

(2dlog2Le+ 3)× (max{ni, nj} − G + 1)pj if pi = pj

(2dlog2Le+ 3)×max{(ni − G)pi + 2pj − 1, (nj pj − Gpj + 1)pi} if pi > pj

(6)

So, for this sub-case, it is approved that Mi and M(j,δ) are guaranteed to rendezvous at their dth
columns despite any row shift δR value within a period of (2dlog2Le+ 3)× F(pi, pj) time slots where
F(pi, pj) depends on the relation between pi and pj as shown in Equation (3). It is worthy noting that
when (pi 6= pj), the matrices rendezvous can also be achieved even when ad =bd = 1 which indicates
that both the dth columns in Mi and M(j,δ) contain Q-CH sequences. This is because pi and pj are
co-prime if they are not equal. Hence, it can be proved easily with the help of Chinese Reminder
theorem that matrices will rendezvous not later than (2dlog2Le+ 3)× pi pj.

To illustrate the guaranteed rendezvous of IQSF-CH when SUs has distinct ACSs, consider
the previous example of the two asymmetric-role SUs (sender SUV and receiver SUZ) in Figure 1
at Section 4. Suppose that there is L = 10 global channels in the network. Figure 7 shows their
constructed IQSF matrices when they perform CH without the assumption of the pre-assigned role
(i.e., symmetric approach). As the SUs have different number of available channels, their IQSF
constructed matrices have different sizes. The matrix MV for SUV has (2dlog210e+ 3) = 11 columns
and nv pv = (5× 5) = 25 rows while MZ for SUZ has 11 columns and nv × 4v = (5× 5) = 20 rows.
As shown in the figure, rendezvous of MV and MZ for the synchronous case (i.e., when δ = 0) occurs
between the ninth columns of MV and MZ which is indicated by the green entry in MZ.

Case 2: δC 6= 0. In this case, it holds that there is a column shift in M(j,δ). Similar to the proof of
Case 2 in Theorem 4, it can be easily verified based on Lemma 1 that the seed sequences a and b are
cyclic rotationally distinct one to the other despite any column shift. This cyclic uniqueness feature holds
even when the seeds are similar. Accordingly, the existence of different type columns in matrices is
guaranteed at least once which consequently results in a guaranteed rendezvous despite any value
of the row shift δR. The MTTR upper-bound for this case is similar as the bound in Equation (6).
For example, Figure 7c shows the shifted IQSF matrix of SUZ when the column shift δC = 7 and
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the row shift δR = 3, which results in δ = (2dlog210e+ 3)× 3) + 7 = 40 slots. The first rendezvous
between MV in Figure 7a and M(Z,40) in Figure 7c is achieved between their tenth columns.

To sum up, it is proved that the MTTR upper bound when SUs have diverse ACSs depends
mainly on pi and pj as shown by F(pi, pj) in Equation (3) while impacted by (2dlog2Le+ 3).

(a) IQSF matrix MV

for SUV .
(b) IQSF matrix MZ

for SUZ .
(c) M(Z,40), δC = 7
and δR = 3.

Figure 7. The constructed IQSF matrices for SUV and SUZ when L = 10 and their rendezvous.
(a) SUV selects Aseed

V = 1, hence, αV = [0001] and the seed of SUV is aV = [0001000011F]. (b) SUZ

selects Aseed
Z = 2, hence, βZ = [0100] and the seed of SUZ is bZ = [0010000101F]. (c) the IQSF matrix

MZ for SUZ when it is circularly rotated with δ = (2dlog210e+ 3)× 3 + 7 = 40 slots.

Theorem 6. The IQSF-CH scheme can provide a full RD.

Proof of Theorem 6. The proof is given in Appendix B.

6. Performance Evaluation

This section presents the performance evaluation of the developed QS-CH and IQSF-CH schemes
as compared with some extant blind CH rendezvous schemes. The proposed QS-CH scheme is
compared with six representative asymmetric-role schemes (four GC schemes, FDCH-RP [27], PCH [28],
AAsync [31], and FARCH [30,34] as well as two LC schemes named as D-QCH in [32] and SJRW [23]).
On the other side, the proposed IQSF-CH scheme is compared with six representative symmetric-role
CH schemes (four GC schemes, EJS [20], T-CH [40], D-CH [40], and S-QCH in [32] as well as two LC
schemes named as ZOS [44] and MTP [21,43]).
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These CH schemes are selected for comparison due to their deterministic and extant performance
in providing asynchronous blind pairwise rendezvous in CRNs. Furthermore, all of the symmetric-role
compared schemes do not relay on any unfavorable assumption such as the utilizing of SU’s IDs
to guide rendezvous. As an exception, the ID-based D-CH scheme in [40] is selected due to its
matrix-based design which makes it suitable for the comparison with our IQSF-CH scheme. It is worth
noting that even though SSS [22] is a recent LC-based scheme, it is not included in the simulation since
it does not guarantee rendezvous under some scenarios as explained in Section 2.2.

6.1. Simulation Setup

Extensive simulations using MATLAB have been conducted to compute the ETTR and MTTR
required by the compared schemes to achieve rendezvous between a pair of SUs (a sender SUi and a
receiver SUj). The simulations are performed under asynchronous environments in which the clock
drift δ between SUs is selected randomly in each run. The schemes are simulated under the asymmetric
channel availability model in which SUs have different ACSs, but there exist some commonly available
channels in order to realize rendezvous. The G number of common channels is determined based on
the following conditions: (1 ≤ G ≤ min{ni, nj}) and (ni + nj −G ≤ L). In the simulation, a parameter
σ(0 < σ ≤ 1) is introduced to adjust the ratio of the number of local available channels to that of
global channels (i.e., σi =

ni
L and σj =

nj
L ). The ni = σiL and nj = σjL available channels of the SUs are

selected randomly from the GCS in the different runs. As the D-CH scheme rely on the SU’s IDs, it is
simulated when each SU has 7-bit ID sequence. The schemes are simulated under various settings of
the (L, ni, nj and G) parameters as described in Table 3. These settings are as follows: (i) Vary the value
of L and fix the ratios of SUs available channels (σi, σj) as well as the number of commonly available
channels G; (ii) Fix the values of L and (σi, σj) while varying the value of G; (iii) Fix the values of L and
G while varying the values of (σi, σj).

For each value of the simulation parameters, the results are obtained as the expected and
maximum values of TTR for more than 105 independent runs.

Table 3. Simulation parameters.

Parameter Value

Setting I Setting II Setting III

Number of global licensed channels (L) (10− 60) 50 30
Number of local available channels for SUi (ni) 0.2L 10 0.4L
Number of local available channels for SUj (nj) 0.3L 15 (0.3L, 0.4L, 0.6L)
Number of commonly available channels (G) 0.1L (1− 10) 3

6.2. Influence of the Number of Licensed Channels (L)

In this simulation, the value of L is varied from 10 to 60 with steps of 5 while the values of σi, σj,
and G are set as (σi = 0.2, σj = 0.3 and G = 0.1). However, since the AAsync and T-CH schemes
require L and L + 1, respectively to be primes, we simulate them under the closest values to L which
satisfy their restrictions for fairness. Furthermore, it is found through simulations that the primitive
roots which are valid to construct the default and elementary sequences in AAsync can not be obtained
for some primes. Hence, the AAsync scheme was simulated only under the valid L values.

Figures 8 and 9 show the comparisons results under such parameters for the asymmetric-role and
symmetric-role schemes, respectively. They are evident that our schemes can achieve faster rendezvous.
The figures also show that the TTR results of all schemes increase relatively with the increase of L.
However, due to the efficient LC-based design of our schemes where CH-sequences are generated
based on the unrestricted ACSs only, the increase in their TTR results are slower than others.

Figure 8 illustrates the superior performance of the proposed QS-CH as compared to the other
asymmetric-role schemes where it can achieve up to 68% and 36% improvement in MTTR and ETTR,
respectively. Although D-QCH and SJRW are LC schemes, Figure 8 shows that they consume long
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MTTR and ETTR. This is mainly due to the long periods by which their receiver stay on each available
channel which prolongs their TTRs specially when the receiver first stay channels are not common
with its sender. On the other hand, the MTTRs of the other GC schemes (i.e., FDCH-RP, AAsync, PCH,
and FARCH) are long since their CH sequences are constructed based on the whole GCS which enlarge
their CH periods. However, since FARCH does not adopt any strategy for replacing the unavailable
channels and due to the large sequences of the PCH, they produces much longer TTR results than
others where some of the values are not displayed in the figures. It is also noticed that while FDCH-RP
consumes long MTTR (Figure 8a), it shows its superiority in the sense that its ETTR is shorter than
D-QCH, SJRW, and AAsync (Figure 8b). The reason is that FDCH-RP randomly replace the unavailable
channels in its CH sequence with available ones which boost its ETTR performance.

As for the symmetric-role schemes, Figure 9 shows that our IQSF-CH provides the best results
where it can reduce the MTTR and ETTR up to 73% and 50% as compared to the closest schemes.
Even though MTP and ZOS are LC-based schemes similar to IQSF-CH, they provide much longer TTR
results where some of the MTP values are not displayed. This is mainly due to their inefficient designs
where they generate very large LC-based CH sequences. On the other hand, the T-CH scheme produces
longer TTR results than EJS and D-CH although it has shorter CH period than them. The reason is
that T-CH attempts rendezvous on all the licensed channels (i.e., even those which are unavailable).
The MTTR of S-QCH is much longer others where some of its values are not displayed in the figures.
This is mainly due to its longer CH sequences which increase drastically with the increase of L.
However, its ETTR is much shorter than other schemes except our IQSF-CH and EJS, which indicates
that its worst case TTRs are happening rarely.
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Figure 8. Comparison results of the asymmetric-role schemes when (ni = 0.2, nj = 0.3, and G = 0.1).
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Figure 9. Comparison results of the symmetric-role schemes when (ni = 0.2, nj = 0.3, and G = 0.1).
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6.3. Influence of the Number of Common Channels (G)

In this simulation, the number of licensed channels is fixed as L = 50 and the available channel
ratios are set as (σi = 0.2 and σi = 0.3) which indicates that ni = 0.2× 50 = 10 and nj = 0.3× 50 = 15.
Meanwhile, G is varied from 1 to 10. Figures 10 and 11 show the comparisons results under such
parameters for the asymmetric-role and symmetric-role schemes, respectively. The figures show that
the TTR results of all schemes decrease with the increase of G. This is because SUs have more chances
to rendezvous when there is a large number of common channels between their ACSs.

As for the asymmetric-role schemes, Figure 10 illustrates the superior performance of the proposed
QS-CH as compared to the other schemes specially when G is small. It shows that QS-CH has at least
64% and 30% improvement in MTTR and ETTR, respectively when (G ≤ 4). The figure also shows
that when G > 5, the MTTR of FDCH-RP is shorter than those of (D-QCH and SJRW) and is getting
closer to the QS-CH’s MTTR. However, its MTTR is very long when G is smaller than 5. The results for
the PCH and FARCH are still much longer than others.
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Figure 10. Comparison results of the asymmetric-role schemes when (L = 50, ni = 10, nj = 15) under
different values of G.
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Figure 11. Comparison results of the symmetric-role schemes when (L = 50, ni = 10, nj = 15) under
different values of G.

As for the symmetric-role schemes, Figure 11 shows that the proposed IQSF-CH scheme can
achieve faster rendezvous than the other schemes. Figure 11a,b illustrates that IQSF-CH can provide
at least 59% and 43% reduction in MTTR and ETTR, respectively, when (G ≤ 5). Since the SUs in
the T-CH scheme are accessing all the channels even those which are unavailable, its MTTR is slowly
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decreasing with the increase of G. On the contrary, as EJS and D-CH replace the unavailable channels
in their CH sequences with available ones, their downward trend is faster than it is in the T-CH scheme.
The MTTR for the S-QCH and MTP are still much longer than others where some of their MTTR values
are not displayed in the figures. However, S-QCH ETTR is shorter than D-CH and ZOS when G > 3.

6.4. Influence of Large Number of Available Channels (ni, nj)

The simulation setting in this subsection is conducted to compare the schemes’ performance when
SUs have large number of available channels. In this simulation, the numbers of licensed and common
channels are fixed as L = 30 and G = 0.1× L = 3, respectively. Meanwhile, the SUs are simulated
under different combinations of their local available channels. In particular, σi is set to 0.4 while the
values of σj are {0.3, 0.4, 0.6}. Figures 12 and 13 depict the comparisons results under such parameters
for the asymmetric-role and symmetric-role schemes, respectively. The figures are evidence that our
schemes still out-perform the other ones significantly even when ni and nj are large.
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Figure 12. Comparison results of the asymmetric-role schemes under different combinations of [ni, nj]

when (L = 30 and G = 3) .
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Figure 13. Comparison results of the symmetric-role schemes when (L = 30 and G = 3) under different
combinations of [ni, nj].

In Figure 12, it is shown that the QS-CH scheme performance always out-performs the other
schemes under all combinations. Although the MTTRs of D-QCH and SJRW are the closest to the
QS-CH’s MTTR under the [0.4, 0.3] combination, QS-CH still outperforms them significantly in terms
of MTTR under the other combinations as well as in terms of ETTR.
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On the other side, Figure 13 depicts the comparison results for the symmetric-role schemes except
MTP which is omitted because of its extremely longer results. It is evident that IQSF-CH can obtain
the best performance under all the combinations of [ni, nj]. It also shown in (Figure 13a) that when
[σi = 0.4, σj = 0.6] which indicates that [ni, nj] = [12, 18], the MTTR of T-CH is better than EJS and
relatively close to IQSF-CH. However, the ETTR of T-CH is still very long as shown in (Figure 13b).

7. Conclusions

In this paper, we have proposed two matrix-based asymmetric and symmetric CH schemes,
named as QS-CH and IQSF-CH, for achieving blind rendezvous in distributed CRNs. The proposed
schemes only utilize the unrestricted local ACSs to generate their CH sequences without relaying on
any extra expenditure such as the SUs’s IDs, which is more favorable in heterogeneously distributed
environments. Theoretical analyses were carried out to prove the deterministic rendezvous of our
schemes. It was proven that they can provide rendezvous within a short MTTR whose upper-bound is
completely irrelevant of the number of global licensed channels L in the QS-CH scheme while it is only
impacted by an O(log2L) factor in the IQSF-CH scheme. Furthermore, extensive simulations have
been conducted to demonstrate the proposed schemes’ efficiency. The simulation results verify that
they significantly outperform the previous works in terms of MTTR and ETTR.
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Appendix A

Without loss of generality, suppose that the sender starts Q-CH later than its intended receiver
which has only one common channel with sender. In the following sub-cases, we derive the theoretical
MTTR upper-bound required for the sender to guarantee rendezvous starting from its first frame.

Case 2.1: (ps mod nr pr) < pr. This sub-case indicates that during each sender frame,
the receiver sequence is deviated clockwise with amount less than the length of its stay frame.

Accordingly, starting from its first frame, the sender needs to repeat its frame only for
⌈

pr(nr−1)
psmod nr pr

⌉
times in order to overlap with the whole elements in the receiver sequence. Hence, the rendezvous

for this sub-case is guaranteed to occur no later than
(⌈

pr(nr−1)
psmod nr pr

⌉
+ 1
)
× ps time slots. For example,

suppose that nr = pr = 3 and ps = 11, the MTTR is
(⌈

3×(3−1)
11 mod 9

⌉
+ 1
)
× 11 =

(⌈
6
2

⌉
+ 1
)
× 11 = 44

slots which is less than half of the loosely upper-bound (nr pr)ps = 99 slots. As (ps mod nr pr) is the
denominator in the upper-bound formula, it is obvious that when it is closer to pr, the MTTR is shorter.

Case 2.2: (ps mod nr pr) > pr(nr − 1). In this sub-case, the receiver sequence is deviated
clockwise with amount that is (nr− 1) times bigger than the length of its stay frame. However, since this
deviation is less than nr pr, it implies that the receiver sequence is deviated with prnr − (psmod nr pr)

in the anticlockwise orientation. So, the sender need to repeat its frame only for
⌈

pr(nr−1)
prnr−(psmod nr pr)

⌉
times in order to guarantee rendezvous with its receiver. Hence, the MTTR for this sub-case is

≤
(⌈

pr(nr−1)
prnr−(psmod nr pr)

⌉
+ 1
)
× ps. For example, if ps = 7 in the previous example, the MTTR is(⌈

6
9−(7 mod 9)

⌉
+ 1
)
× 7 = 28 slots.

Case 2.3: (ps mod nr pr) = d prnr−1
i e or prnr − d prnr−1

i e, i ∈ [2, pr − 1]. In this sub-case,
the receiver sequence is deviated with amount that is ≈ 1

i of its length. The deviation is in a clockwise
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orientation when (ps mod nr pr) = d prnr−1
i e or in anticlockwise when it equals to prnr − d prnr−1

i e.
Hence, the MTTR for SUs rendezvous ≤

[
(pr − i + 1)(nr − 1)

]
ps.

Case 2.4: (ps mod nr pr) = pr + i or pr(nr − 1)− i, i is even number ∈ [2, b pr
2 c]. In this sub-case,

MTTR ≤
[
(2pr − 2i)

]
ps.

Case 2.5: (ps mod nr pr) = prb pr
i c+ 1 or prnr − (prb pr

i c+ 1), i ∈ [2, b pr
2 c]. In this sub-case,

MTTR ≤ (pr + (i− 1))ps.
Case 2.6: (ps mod nr pr) = prb pr

i c − 1 or prnr − (prb pr
i c − 1), i ∈ [2, b pr

2 c]. In this sub-case,
MTTR ≤ (pr + d pr

i e)ps.
From the above sub-cases, it is obvious that the MTTR is much less than ps(prnr) even when

G = 1. However, due to the difference in these sub-cases formulas, the MTTR upper-bound can be
represented for simplicity and unifying purposes as (nr pr − Gpr + 1)ps. This upper-bound is obtained
from the worst-case formula in sub-case 2.1 when its dominator (ps mod nr pr) = 1.

Appendix B. Proof of Theorem 6

Recall the proof of Theorem 5 where it was verified that the first successful rendezvous can be
achieved within a period whose upper-bound is given by Equation (6). However, to rendezvous
over all the G common channels, the MTTR upper-bound can be represented after eliminating G in
(Equation (6)) as (2dlog2Le+ 3)× F(pi, pj) where F(pi, pj) is given by:

F(pi, pj) =


max{nj pj + 2pi − 1, (ni pi − pi)pj} if pi < pj

max{ni, nj}pj if pi = pj

max{ni pi + 2pj − 1, (nj pj − pj)pi} if pi > pj

(A1)
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