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Abstract: The rolling element bearing is a significant component in rotating machinery. Suitable
bearing fault detection and diagnosis (FDD) is vital to maintaining machine operations in a safe and
healthy state. To address this issue, an extended observer-based FDD method is proposed, which
uses a variable structure feedback linearization observer (FLO). The traditional feedback linearization
observer is stable; however, this technique suffers from a lack of robustness. The proposed variable
structure technique was used to improve the robustness of the fault estimation while reducing
the uncertainties in the feedback linearization observer. The effectiveness of the proposed FLO
procedure for the identification of outer, inner, and ball faults was tested using the Case Western
University vibration dataset. The proposed model outperformed the variable structure observer
(VSO), traditional feedback linearization observer (TFLO), and proportional-integral observer (PIO)
by achieving average performance improvements of 5.5%, 8.5%, and 18.5%, respectively.

Keywords: bearing fault detection; feedback linearization observer; model-reference fault diagnosis;
variable structure observer; proportional integral observer

1. Introduction

The most common method to decrease the friction in rotating machinery is the use of rolling
element bearings (REBs) [1]. REBs have been used in many diverse applications, such as industrial
meters, aerospace, and engines [2]. Across industries, the reliability and lifespan of the rotating
machine are two critical factors for its safe and continued operation. However, various parameters can
reduce the bearing lifespan; such as improper installation, the presence of contaminants, and incorrect
handling [3]. Thus, the design and application of stable and reliable techniques for fault detection and
diagnosis (FDD) are critical for identifying various faults prior to complete machine failure.

The four main types of bearing failure are the inner, outer, ball, and cage faults [4]. When a
crack or spall exists in any of these raceways, the bearing will generate impulses, depending on
its dynamics. To analyze the bearing condition, different condition monitoring techniques based
on acoustic emissions, stator current, shaft voltage, bearing circuit analysis, vibration, and bearing
current have been studied [5]. Among these, the vibration and acoustic emission measurement
techniques have been the most widely used [5–10]. Various signature analysis methods of vibration
measurements have been explored to improve the performance and reliability of the condition
monitoring techniques [6–8]. Moreover, fault detection and diagnosis can be divided into four
major categories: (a) Signal-based [7,11–15], knowledge-based [16–21], model-based [22–24], and
hybrid-based fault diagnosis [12,25,26]. To improve these methods, wavelet analysis has been
introduced [15]. The drawback of this technique is that it reduces the frequency resolution at
high frequency and the time resolution at low frequency. The main challenge of signal-based FDD
is the reliability of the diagnosis in the presence of uncertainties and external disturbances [1,27].
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To address this issue, statistical features extracted from the signals and machine learning algorithms,
such as support vector machine (SVM) and proximal support vector machine [16], have been used
in the literature. Recently, several deep learning techniques such as deep autoencoders [17], artificial
neural networks (ANNs), and hierarchical convolution networks have been introduced by various
researchers for signal-based FDD [18–21]. Meanwhile, the diagnosis decision in the knowledge-based
approach is fully dependent on the data and on proper tuning, using the various hyper-parameters [28].
The model-based method, on the other hand, is relatively simple and can be easily applied if the
appropriate dynamics of the target system are available.

In this paper, therefore, a model-reference fault detection and diagnosis technique for the rolling
element bearing is proposed [1,18,29,30]. Various researchers have used observational techniques,
based on different algorithms. Examples include the proportional-integral (PI) technique [31,32],
proportional multiple-integral (PMI) method [33–35], descriptor technique [36,37], adaptive
methods [38–40], sliding mode techniques [41–44], and feedback linearization techniques [45,46].
Linear observer methods (e.g., PI and PMI) have been used in various applications for FDD,
but these techniques have challenges in the presence of uncertainties [47,48]. To solve the challenge
of linear observers, nonlinear observer techniques have been recommended [44–46]. One of the
well-known nonlinear observation techniques for FDD is the sliding mode observer [41–44]. Apart from
the numerous positive attributes of the sliding mode observer, such as stability and reliability,
this technique has the challenge of a chattering phenomenon [47], with solutions oscillating about
a local minimum. To avoid chattering, a proposed feedback linearization observer is recommended
in this research. Feedback linearization is a procedure for system linearization, but it is ultimately a
nonlinear control theory technique. This observer works based on the system behavior, and thus the
output performance can be excellent if the system’s dynamics are adequately known. The traditional
feedback linearization observer is stable; however, this technique suffers in its robustness. The variable
structure technique was used to improve the robustness with respect to fault estimation and the
uncertainties in the feedback linearization observer. The efficacy of the proposed feedback linearization
observer (PFLO) approach was validated using data collected from Case Western University rolling
element bearing tests [49]. The remainder of this paper is organized as follows. The research problem is
described in Section 2. The proposed feedback linearization observer is presented in Section 3. Results
and discussion are provided in Section 4. In Section 5, conclusions are presented.

2. Problem Statement and Diagnosis Objective

Based on references [39,42], the bearing model is presented as a five-degree-of-freedom nonlinear
and time-varying system. The energy formulation for REB is defined as in the following equation [42].

F(q) = (I(q) + ∆I(q))[
..
q] + (C(q) + ∆C(q))[

.
q] + (g(q) + ∆g(q))[q] + N + ψ (1)

The uncertainty is defined as in the following equation.

∆d = ∆I(q)[
..
q] + ∆C(q)[

.
q] + ∆g(q)[q] (2)

Based on Equations (1) and (2), the dynamic equation of the bearing is represented as follows:

F(q) = I(q)[
..
q] + C(q)[

.
q] + g(q)[q] + ∆d + N + ψ (3)

To model the above system equation, we have:

[
..
q] = I−1

(q)[F(q) − C(q)[
.
q]− g(q)[q]− ∆d − N − ψ] (4)
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If Ω = C(q)[
.
q] + g(q)[q] + N, and Γ = I−1

(q)[∆d + ψ], then Equation (4) is re-written as follows:

[
..
q] = I−1

(q)[F(q) −Ω(q,
.
q)]− Γ(q,

.
q,t) (5)

In a healthy condition, the bounded uncertainty is defined as follows:

i f (ψ = 0)→ ‖I−1
(q) × ∆d‖ ≤ σn (6)

In a faulty condition, Equation (6) can be re-written as follows:

i f (ψ 6= 0)→ ‖I−1
(q) × (ψ + ∆d)‖ > σn (7)

Based on the REB dynamic formulations, the system’s equation is very complicated and uncertain,
and the task of designing a reliable FDD technique is, therefore, a significant challenge. To solve these
challenges, this research proposes the use of a feedback linearization observer. The literature contains
different types of model-reference techniques that have been introduced for fault diagnosis in different
systems. Why then, does this research introduce a nonlinear technique?

To answer this question, we introduce two problems and solutions, as follows:
Problem: Obtaining a bearing fault diagnosis based on a linear observer.
Solution: The auto regressive with exogenous input (ARX)-Laguerre PI-observer is introduced to

perform fault diagnosis, based on the linear technique. This technique is introduced in Section 3.1, and
the results of this technique are explained in Section 4.2.

Problem: The accuracy of the ARX-Laguerre PI observer degrades in the presence of uncertainties
and highly nonlinear conditions associated with a fault.

Solution: To address this issue, a robust variable structure extended feedback linearization
observer is recommended. The proposed method designs the robust fault estimator function to
improve the performance of the linear ARX-Laguerre PI observer, a traditional feedback linearization
observer, and a conventional variable structure observer. This proposed method is introduced in
Section 3.2, and the results are described in Section 4.2. Figure 1 shows the fault diagnosis steps in this
research paper.
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3. Proposed Method

Based on references [47,50], the Case Western Reserve University (CWRU) bearing is modelled as
a 5-DOF (degrees of freedom) system. Let us consider Z1 = q and Z2 =

.
q. The Lagrange formulation

of the bearing in Equation (3) can be written in state space form as:
.
Z1 = Z2 =

.
q

.
Z2 =

..
q = f (Z1, Z2, u) + ∆d(Z1, Z2, t) + ψ

W = (C)TZ1

(8)
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where f (Z1, Z2, u) = I−1
(q)[F(q) − Ω(q,

.
q)] and ψ = ψb + ψi + ψo. To validate the proposed

method, we will compare this method with a state-of-the-art proportional-integral observation (PIO)
technique [32,47], the traditional feedback linearization observer (TFLO) in Equation (9), and a variable
structure observer (VSO) [47].

3.1. Proportional-Integral Observer (PIO)

In the first step, the proportional-integral observer (PIO) is recommended for the FDD of the
bearing. This technique is linear and models the fault based on the integral term. The formulation of
the PIO technique for FDD in the bearing is defined as follows [32]:

Ẑ(k) = [αẐ(k− 1) + βwŴ(k− 1) + βuu(k− 1)] + ∆̂d(k− 1)
+ψ̂(k− 1) + Kp[W(k− 1)− Ŵ(k− 1)]]
Ŵ(k) = (Cα)

T Ẑ(k)
(9)

Based on the ARX-Laguerre PI observer technique, the fault is modeled based on the linear
integral theorem, as follows:

ψ̂(k) = ψ̂(k− 1) + Ki[W(k− 1)− Ŵ(k− 1)] (10)

Based on reference [32], the coefficients (α, βw) and βu are calculated as follows:

α =

[
αw ONa ,Nb

ONb ,Na αu

]
(11)

The αw and αu coefficients can be written as [32,47]

αw =



ζa 0 . . . 0
1− ζa

2 . . . . . . 0
−ζa(1− ζa

2) . . . . . . 0
. . .
. . .

(−ζa)
Na−1(1− ζa

2)

. . .

. . .

. . .

. . .

. . .

. . .

0
0
ζa



αu =



ζb 0 . . . 0
1− ζb

2 . . . . . . 0
−ζb(1− ζb

2) . . . . . . 0
. . .
. . .

(−ζb)
Nb−1(1− ζb

2)

. . .

. . .

. . .

. . .

. . .

. . .

0
0
ζb



(12)

Based on the recursive nature of Equation (10) when inserted into Equation (9), it is clear that this
technique is prone to large fluctuations in uncertain and highly nonlinear conditions. To address this
issue, a nonlinear model-reference fault estimation algorithm is recommended.

3.2. Variable Structure Extended Feedback Linearization Observer (FLO)

The proposed methodology comprises five major parts: (a) feedback linearization observer,
(b) observer evaluator, (c) residual generator, (d) threshold process, and (e) residual bank and logic
decision. The traditional feedback linearization observer (TFLO) offers a nonlinear approach to find an
optimized estimation of the system and fault. This technique is stable, but it has some issues in the
presence of uncertainties. To evaluate the feedback linearization observer, a variable structure observer
is recommended. This technique is one of the highly robust fault detectors for uncertain and faulty
systems. Figure 2 illustrates the overall proposed mechanism for bearing fault diagnosis. The TFLO
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model adaptively improves the linearized model. The state space traditional feedback linearization
observer is defined in the following formulation:

.
Ẑ1 = Ẑ2 + Kp1 e1, (e1 = Z1 − Ẑ1).
Ẑ2 = f (Z1, Ẑ2, u) + Î−1(Kp2 e2) + ψ̂(k− 1), (e2 =

.
Ẑ1 − Ẑ2)

Ŵ = (Cα)
T Ẑ1

(13)

The fault is modelled based on the following definition:

ψ̂(k) = Î−1(ψ̂(k− 1) + Ki1(W(k− 1)− Ŵ(k− 1))) (14)

The traditional feedback linearization observer is stable; however, this technique suffers from a
lack of robustness. A variable structure observer (VSO) is one of the nonlinear and robust fault detectors
for uncertain and faulty systems. The state space formulation for the VSO is defined follows [47]:

.
Ẑ1 = Ẑ2 + γa.sgn(e1), (e1 = Z1 − Ẑ1).
Ẑ2 = f (Z1, Ẑ2, u) + γb.sgn(e2), (e2 =

.
Ẑ1 − Ẑ2)

Ŵ = (Cα)
T Ẑ1

(15)
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According to reference [47], the VSO suffers from a chattering phenomenon. To address the issues
of the traditional variable structure observer and feedback linearization observer, the robust variable
structure technique was applied to the feedback linearization observer. The fault estimate based on the
variable structure technique is defined as follows:{

Kz‖W(k− 1)− Ŵ(k− 1)‖0.5sgn(W(k− 1)− Ŵ(k− 1))− χ̂ = ∆̂d(Z1, Z2, t) + ψ̂
.̂
χ = −Kz0 × sgn(W(k− 1)− Ŵ(k− 1))

(16)

Based on Equations (15) and (16), the proposed variable structure extended feedback linearization
observer is defined as follows:

.
Ẑ1 = Ẑ2 + Kp1 e1, (e1 = Z1 − Ẑ1).
Ẑ2 = f (Z1, Ẑ2, u) + Î−1(Kp2 e2) + ∆̂d(Z1, Z2, t) + ψ̂, (e2 =

.
Ẑ1 − Ẑ2)

Ŵ = (Cα)
T Ẑ1

(17)
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The fault estimation formulation is defined as follows:{
ψ̂(k) = ψ̂(k− 1) + Ki1 (W(k− 1)− Ŵ(k− 1)) + Kz‖W(k− 1)− Ŵ(k− 1)‖0.5sgn(W(k− 1)− Ŵ(k− 1))− χ̂
.̂
χ = −Kz0 × sgn(W(k− 1)− Ŵ(k− 1))

(18)

Based on Equations (8) and (17), the residual signal is defined as follows:

r = W(k)− Ŵ(k) (19)

where W(k) and Ŵ(k) are calculated in Equations (8) and (17), respectively. After obtaining the stability,
the state space estimation of Ẑ1, Ẑ2 converges to Z1, Z2, and the estimation error converges to zero
and Kz‖W(k− 1)− Ŵ(k− 1)‖0.5sgn(W(k− 1)− Ŵ(k− 1)) = 0. More specifically, the convergence
conditions are specified by the following criteria:

∆̂d(Z1, Z2, t) + ψ̂− Kz‖W(k− 1)− Ŵ(k− 1)‖0.5sgn(W(k− 1)− Ŵ(k− 1))− χ̂ = 0→
Kz‖W(k− 1)− Ŵ(k− 1)‖0.5sgn(W(k− 1)− Ŵ(k− 1)) = 0→
∆̂d(Z1, Z2, t) + ψ̂ > σn

(20)

When the variable structure observer is applied to the feedback linearization observer, as in
Equation (18), the challenge of uncertainties and fault estimation can be solved in finite time. If the
states of the system are bounded as

∣∣ f (Z1, Ẑ2, u)
∣∣ < J+, to guarantee the stability and convergence,

the variable structure fault estimator gains Kz0 and Kz is calculated as follows:{
Kz0 = 1.1J+

Kz = 1.5
√

J+
(21)

Based on the Lyapunov theorem, the Lyapunov function of the proposed observer is defined by
the following equation.

V(x) = 2K
∣∣W(k− 1)− Ŵ(k− 1)

∣∣+ 1
2

χ̂2 +
1
2
(Kz
∣∣W(k− 1)− Ŵ(k− 1)

∣∣0.5sgn(W(k− 1)− Ŵ(k− 1))− χ̂)
2

(22)

Based on Equation (22), the Lyapunov derivative function is proposed in Equation (23).

.
V(x) =

1∣∣W(k− 1)− Ŵ(k− 1)
∣∣0.5

[
W(k− 1)− Ŵ(k− 1)0.5sgn(W(k− 1)− Ŵ(k− 1)) χ̂

]
Kz

2

[
Kz

2 −Kz

−Kz 1

][
(W(k− 1)− Ŵ(k− 1)0.5sgn((W(k− 1)− Ŵ(k− 1))

χ̂

]

+
∆d(Z1, Z2, t)− ∆̂d(Z1, Z2, t)∣∣(W(k− 1)− Ŵ(k− 1)

∣∣0.5

[
Kz

2

2
−Kz

2

][
(W(k− 1)− Ŵ(k− 1)0.5sgn((W(k− 1)− Ŵ(k− 1))

χ̂

] (23)

The uncertainty estimation accuracy band is defined by the following∣∣∆d(X1, X2, t)− ∆̂d(X1, X2, t)
∣∣ ≤ ϕ

∣∣W(k− 1)− Ŵ(k− 1)
∣∣0.5 (24)

Based on Equation (24) the Lyapunov derivative function is applied to Equation (24) and rewritten
in Equation (25).

.
V(x) ≤ −1∣∣W(k− 1)− Ŵ(k− 1)

∣∣0.5

[
(W(k− 1)− Ŵ(k− 1))0.5sgn(W(k− 1)− Ŵ(k− 1)) χ̂

]KZ
2[

KZ
2 − (KZ)∆d(X1, X2, t)− ∆̂d(X1, X2, t) −KZ

−(KZ + 2(∆d(X1, X2, t)− ∆̂d(X1, X2, t))) 1

][
W(k− 1)− Ŵ(k− 1)0.5sgn(W(k− 1)− Ŵ(k− 1))

χ̂

] (25)



Sensors 2018, 18, 4359 7 of 17

Based on reference [51], if KZ
2

[
KZ

2 − (KZ)∆d(X1, X2, t)− ∆̂d(X1, X2, t) −KZ
−(KZ + 2(∆d(X1, X2, t)− ∆̂d(X1, X2, t))) 1

]
> 0 thus,

.
V <

0. Thus, it can converge to zero in finite time. Based on Equation (20) and following the formulation
until the detection of a fault, σn is introduced as a normal threshold value.

i f (ψ̂ = 0)→ ∆̂d(Z1, Z2, t) ≤ σn

i f (ψ̂ 6= 0)→ ∆̂d(Z1, Z2, t) + ψ̂ > σn
(26)

The threshold values for various types of faults have been calculated by different techniques.
In this research, the variable structure technique is recommended, as follows [47]:

σ(n,b,i) = I(Ẑ1).Kzα sgn(λze + (
λz

2
)

2

∑ e) (27)

where e = (W(k− 1)− Ŵ(k− 1)). The following respective formulations are used for the ball, inner,
and outer fault identification.

i f : ψ̂ < σn, ψ̂ < σb, ψ̂ < σi → ψ̂ = 0
i f : ψ̂ > σn, ψ̂ < σb, ψ̂ < σi → ψ̂ = ψ̂b
i f : ψ̂ > σn, ψ̂ > σb, ψ̂ < σi → ψ̂ = ψ̂i
i f : ψ̂ > σn, ψ̂ > σb, ψ̂ > σi → ψ̂ = ψ̂o

(28)

According to Equation (28), the ball, inner, and outer faults are isolated whenever the residuals
(ψ̂b, ψ̂i, ψ̂o) overshoot their corresponding thresholds (σn, σb, σi), respectively. Figure 3 shows the
block diagram of the proposed feedback linearization observer. As presented in Figure 3, the fault
estimation and identification process were designed to estimate each faulty state (e.g., normal, inner
(IR), outer (OR), and ball in this study). In this design, the defective signal is highly sensitive to one of
the residual signals, and it is robust to the other faults and disturbances. The outline realization of
the extended variable structure feedback linearization observer method for the fault diagnosis of the
bearing is summarized in Algorithm 1.

Algorithm 1 Extended variable structure feedback linearization observer for fault diagnosis of the bearing

1: Bearing vibration modelling (8)
2: Run the feedback linearization observer (13), (14)
3: Run the observer evaluator based on the VSO method (16), (18)
4: Run the residual generator (19)
5: Run the threshold value based on variable structure technique (27)
6: Run the decision logic and residual bank for fault detection and diagnosis (28)
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fault diagnosis.

4. Results and Analysis

According to reference [47], the vibration bearing behavior was modeled using a 5-DOF
mathematical technique, and the parameters for this modeling are given in Table 1.

Table 1. Rolling element bearing (REB) modelling information [39].

Parameters Value

Number of balls 9
Stiffness of ball 5.96× 107(N

m

)
Mass of outer (Kg) 2.7(Kg)
Stiffness of outer 1.31× 105(N

m )
Mass of shaft (Kg) 1.36(Kg)
Stiffness of Shaft 23.3× 106(N

m )

Damping 654( NS
m

)
Ball diameter 7.940(mm)

Pitch diameter 39.04(mm)
Defect size 7(mm)

Defect depth 2(mm)

4.1. Bearing Data

The vibration data were collected from a 6205-2RS JEM SKF roller bearing installed in a rotary
motor. Based on Figure 4, a 2-horsepower (hp), three phase induction motor was connected to a torque
transducer and a dynamometer to apply different loads, ranging from 0 hp to 3 hp [2]. The vibration
sensor (accelerometers) was attached to the roller bearing for data collection. The vibration signals
were collected for normal and faulty conditions with a 12 kHz sampling rate. The rotation velocities of
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the induction motor also varied from 1730 rpm to 1790 rpm. Table 2 presents the details of the Case
Western University bearing dataset. Based on the work in reference [49], which is outlined in Table 2,
three different crack sizes, four different motor loads, and four different motor speeds were seeded at
different positions of the bearing.
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Figure 4. An overview of the experimental setup and bearing faults: (a) schematic, (b-1) inner fault,
(b-2) outer fault, and (b-3) ball fault.

Table 2. Case Western University dataset.

Dataset
f = 12 kHz Fault Types Motor Load

(hp)
Motor Speed

(rpm)
Fault Crack

Size (in)
Number of

Samples

Dataset 1

Normal states 0 1797
0.007, 0.014,
and 0.021

1395
IR fault states 0 1797
OR fault states 0 1797
Ball fault states 0 1797

Dataset 2

Normal states 1 1772
0.007, 0.014,
and 0.021

1395
IR fault states 1 1772
OR fault states 1 1772
Ball fault states 1 1772

Dataset 3

Normal states 2 1750
0.007, 0.014,
and 0.021

1395
IR fault states 2 1750
OR fault states 2 1750
Ball fault states 2 1750

Dataset 4

Normal states 3 1730
0.007, 0.014,
and 0.021

1395
IR fault states 3 1730
OR fault states 3 1730
Ball fault states 3 1730

4.2. Performance Measurement

We compared the proposed variable structure feedback linearization observer proportional
integral observation (PIO) technique [32,47], traditional feedback linearization observer (TFLO), and
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variable structure observer (VSO) [47] for performance analysis. Based on Equations (27) and (28),
to define the threshold of each type of fault, we calculated the residue of the four different states.

−σn < ψ̂ < σn → −1 < ψ̂ < +1 (29){
−σb < ψ̂b < −σn

σn < ψ̂b < σb
→
{

1 < ψ̂b < 2
−2 < ψ̂b < −1

(30)

{
−σi < ψ̂i < −σb
σb < ψ̂i < σi

→
{

2 < ψ̂i < 4
−4 < ψ̂b < −2

(31)

{
−σi > ψ̂o

ψ̂o > σi
→
{

ψ̂o > 4
ψ̂o < −4

(32)

Three different severity levels (0.007, 0.021, and 0.021 inches) were employed in this study. Figure 5
shows the normal threshold values, and residual signals for normal and faulty signals from the forth
dataset in the Case Western University fault detection experiments, based on the proposed method.
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Figure 5. Residual of the normal and faulty states of the bearing and the normal threshold for
fault detection.

Figures 6–9 illustrate the residual signals and threshold values of the normal and faulty conditions
for fault diagnosis, based on the proposed method. Figure 6 shows the threshold values and residual of
the normal bearing signal from the third dataset of the Case Western University experiments. Based on
Equations (26) and (28), the range of the normal threshold value was between [−1, 1]. The normal and
ball residual signals and threshold values are illustrated in Figure 7. Figure 8 shows the normal, ball,
and inner residual signals and the threshold values for identifying the faults. The residual signal of the
outer fault is illustrated in Figure 9.

Figures 10–13 illustrate the detection and diagnostic accuracy of proposed FLO, TFLO, VSO and
PIO techniques for the normal condition, faulty ball condition, inner defect states, and outer failure,
respectively. The diagnostic accuracy is reported as a percentage of the rate of correct detection in
all data.

In Figures 10–13, we can see that the average rates of defect detection are 97.5% for the proposed
FLO, 92% for the VSO technique, 89% for the TFLO method, and 79% for the PIO method. Consequently,
the average performance improvements for the proposed procedure were 5.5%, 8.5%, and 18.5% in
comparison to the VSO, TFLO, and PIO models, respectively.
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Figure 10. Normal detection accuracy for proposed feedback linearization observer (FLO), variable
structure observer (VSO), traditional feedback linearization observer (TFLO), and proportional-integral
observer (PIO).
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Figure 12. Inner fault detection accuracy for proposed FLO, VSO, TFLO, and PIO models.

Tables 3–5 present the diagnostic accuracy for variant motor speed (e.g., 1730 rpm, 1750 rpm,
1772 rpm, and 1790 rpm) in different size of cracks (e.g., 0.007 in, 0.014 in, and 0.021 in) and conditions
(normal, ball faulty, inner faulty, and outer defect) of the proposed FLO, TFLO, SMO, and PIO.
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Figure 13. Inner fault detection accuracy for proposed FLO, VSO, TFLO, and PIO models.

Table 3. Fault diagnosis result for variant motor speed for proposed FLO, PIO, TFLO, AND VSO for
crack size = 0.007 (inch).

Algorithms Proposed FLO PIO TFLO VSO

Motor Speed (rpm) 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797
Normal state 100% 100% 100% 100% 90% 85% 89% 88% 96% 90% 93% 92% 100% 100% 98% 100%

IR fault 97% 99% 99% 99% 75% 73% 66% 63% 82% 85% 81% 89% 87% 89% 88% 88%
OR fault 93% 95% 94% 100% 75% 75% 75% 87% 86% 89% 88% 87% 80% 88% 90% 89%
Ball fault 95% 95% 97% 100% 78% 78% 81% 84% 86% 89% 86% 89% 85% 88% 90% 89%
Average 96.2% 97.25% 97.5% 99.7% 79.5% 77.7% 77.8% 80.5% 87.5% 88.2% 87% 89.2% 88% 91.25% 91.5% 91.5%

Table 4. Fault diagnosis result for variant motor speed for proposed FLO, PIO, TFLO, and VSO for
crack size = 0.014 (inch).

Algorithms Proposed FLO PIO TFLO VSO

Motor Speed (rpm) 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797
Normal state 100% 100% 100% 100% 90% 85% 89% 88% 96% 90% 93% 92% 100% 100% 98% 100%

IR fault 99% 100% 100% 96% 75% 70% 70% 88% 82% 87% 83% 88% 93% 90% 94% 91%
OR fault 98% 94% 95% 100% 75% 75% 80% 80% 84% 88% 88% 92% 87% 90% 90% 94%
Ball fault 94% 94% 95% 100% 75% 81% 81% 74% 86% 87% 92% 92% 87% 90% 88% 91%
Average 97.7% 97% 97.5% 99% 78.7% 77.7% 80% 82.5% 86% 88% 89% 91% 91.7% 92.5% 92.5% 94%

Table 5. Fault diagnosis result for variant motor speed for proposed FLO, PIO, TFLO, and VSO for
crack size = 0.021 (inch).

Algorithms Proposed FLO PIO TFLO VSO

Motor Speed (rpm) 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797 1730 1750 1772 1797
Normal state 100% 100% 100% 100% 90% 85% 89% 88% 96% 90% 93% 92% 100% 100% 98% 100%

IR fault 98% 99% 98% 97% 75% 75% 70% 70% 85% 88% 88% 90% 90% 90% 89% 94%
OR fault 99% 96% 97% 100% 78% 75% 78% 78% 84% 88% 90% 90% 89% 90% 90% 95%
Ball fault 94% 97% 98% 100% 81% 81% 84% 78% 87% 88% 90% 91% 87% 90% 92% 92%
Average 97.7% 98% 98.2% 99.2% 81% 79% 80.2% 78.5% 88% 88.5% 90.2% 90.7% 91.5% 92.5% 92.2% 95.2%

5. Conclusions

As a result of the uncertain and nonlinear parameters of REB dynamics, including noisy vibration
signals, the task of accurate fault diagnosis in the bearing system is a formidable challenge. To better
deal with nonlinearities in the residual signal, this paper introduced a model-based technique for
fault diagnosis in bearings using a variable structure feedback linearization observer. The generation
of a robust residual signal based on the variable structure feedback linearization observer was the
first step in the detection and identification of a faulty REB. The power of the proposed technique
to diagnose REB faults was demonstrated using the Case Western University vibration dataset.
As a result, the average performance improvements for the recommended procedure were 5.5%,
8.5%, and 18.5%, compared with the VSO, TFLO, and PIO models, respectively. In the future, a robust
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hybrid technique based on the feedback linearization observation method will be designed to enhance
the performance of fault diagnosis. The hybrid extended state observer will be combined with a
system estimation technique, and an intelligent extended state robust feedback linearization observer
to improve the performance of fault diagnosis in a faulty system.
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Nomenclature

F(q) Force vector I(q) Mass matrix
C(q) Stiffness matrix g(q) Damping matrix
N Nonlinear bearing parameter vector ψ Various types of fault
∆d Uncertain and unknown parameter ∆I(q) Unknown modeling for mass matrix
∆C(q) Unknown modeling for stiffness matrix ∆g(q) Unknown modeling for damping matrix
σn Normal threshold value u = F(q) System’s input
(

.
Z1,

.
Z2) State of REB C Output coefficient

ψb Ball fault ψi Inner fault

ψo Outer fault ∆d(Z1, Z2, t)
System’s uncertainty and unknown
parameter

W System’s output Ẑ(k) System state estimation
Ŵ(k) Measured output estimation u(k) Control input
∆̂d(k) Uncertainty estimation and disturbance ψ̂(k) Faults estimation

(Cα, Kp, Ki)
output, proportional, and integral coefficients,
respectively

ζa, ζb Laguerre poles

(ONa ,Nb &ONb ,Na ) Null matrices (Cα, γa, γb), (Kp1 , Kp2 , Cα) States and output coefficients
(Kz, Kz0 ), (λz, Kzα ) Coefficients

.
χ Variable structure variable

σ(n,b,i) Threshold value for normal, ball, and inner (σn, σb, σi) (normal, ball, and inner) threshold values
(ψ̂b, ψ̂i, ψ̂o) (ball, inner, and outer) failures ϕ,J+ Positive constants
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