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Abstract: Human activity recognition (HAR) through sensors embedded in smartphones has allowed
for the development of systems that are capable of detecting and monitoring human behavior.
However, such systems have been affected by the high consumption of computational resources
(e.g., memory and processing) needed to effectively recognize activities. In addition, existing HAR
systems are mostly based on supervised classification techniques, in which the feature extraction
process is done manually, and depends on the knowledge of a specialist. To overcome these
limitations, this paper proposes a new method for recognizing human activities based on symbolic
representation algorithms. The method, called “Multivariate Bag-Of-SFA-Symbols” (MBOSS), aims to
increase the efficiency of HAR systems and maintain accuracy levels similar to those of conventional
systems based on time and frequency domain features. The experiments conducted on three
public datasets showed that MBOSS performed the best in terms of accuracy, processing time,
and memory consumption.
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1. Introduction

In recent years, human activity recognition (HAR) has been used to understand how humans act,
make decisions, and interact with other individuals [1]. For this reason, the HAR area has advanced
towards the development of systems that are capable of identifying human behavior patterns from
sensor data. These patterns, related to activities or habits, allow for the development of innovative
applications that aid users and support decisions in different areas, such as health [2,3], security [4],
and industry [5,6]. From this perspective, solutions for HAR based on data extracted from inertial
sensors (e.g., accelerometer and gyroscope) embedded in smartphones have been widely explored in
the literature [7–9]. In general, these sensors are used to recognize physical activities such as walking,
running, sitting, standing, lying down, and walking up- and down- stairs [10]. Inertial sensors data is
typically processed through the following steps: data collection, data segmentation, feature extraction,
feature selection, and classification model training [11]. Among these steps, feature extraction is the
most studied, since it directly impacts the performance of classification models [7].

In HAR based on inertial sensors signals, features are divided into two domains: the time
domain (e.g., mean, variance and standard deviation), and the frequency domain (e.g., energy and
spectral entropy) [8]. Although this approach can generate good classification models, this solution
depends on human knowledge to determine a set of features that achieves significant improvements in
computational performance and energy efficiency. In addition, this approach generates classification
models which are dependent on the specific domains limited by the training databases [12].
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To overcome this limitation, HAR systems have used deep learning algorithms to automatically
extract the features. Although this strategy has achieved high accuracy rates and good generalization
for the classification models, the computational cost required is unfeasible for smartphones with
limited processing, memory, and battery resources. Efficient deep learning models for mobile devices
as MobileNets [13] are intended to make this feasible in the future.

In an attempt to solve this problem, this article proposes a low-cost solution capable of
automatically extracting features using a symbolic representation algorithm called “Symbolic Fourier
Approximation” (SFA) [14]. These algorithms estimate the real values of a time series by transforming
them into a chain of symbols or words. Each word represents a pattern or feature found in the data,
and a set of words can be associated with a user’s activity. In addition, the classification models are
based on the word frequencies distribution using the Bag-Of-Words or histograms that are commonly
used in Information Retrieval (IR) [15].

The proposed solution is a symbolic classification algorithm called “MBOSS”
(Multivariate Bag-Of-SFA-Symbols). MBOSS is adapted to manipulate three-dimensional data
extracted from inertial sensors. MBOSS is an extension of the BOSS VS (SFA-Symbols in Vector
Space) [16], with the main difference being that MBOSS is able to process multiple time series using a
histogram fusion strategy. In addition, in the data classification step, MBOSS uses the vector space
model to measure the level of similarity between a non-labeled histogram and a labeled histogram.
The main contributions of this study for HAR are: (1) the creation of a low cost, automatic process for
feature extraction, i.e., one that does not depend on human knowledge; (2) a symbolic data model that
combines the SFA noise tolerance and dimensionality reduction; (3) a classification model based on a
vector space technique commonly used in the IR area; (4) a learning algorithm that provides the best
compromise between classification accuracy and the use of computational resources, like memory and
time processing.

MBOSS was evaluated through experiments conducted over three public databases, such as
WISDM [17], UCI-HAR [18], and UniMib SHAR [19]. The evaluation strategies used were based on
the personalized model (data from one user) and the generalized model (data from several users).
MBOSS was compared with the HAR systems based on the manual feature extraction from the time and
frequency domains used by conventional machine learning algorithms. The conventional algorithms
evaluated were the K-Nearest-Neighbors, Decision Tree, Naïve Bayes, and Vector Support Machines.
The results show good performance of the classifiers MBOSS in relation to other classifiers in terms of
accuracy, processing time, and memory occupancy space.

The remainder of this article is organized as follows: Section 2 describes the symbolic
representation algorithms used in this work. Section 3 describes the implementation of the proposed
method. Section 4 describes the set of experiments and the results regarding the comparative analysis
of the activity classifiers. Section 5 summarizes the main related work. Finally, Section 6 presents the
conclusions and directions for future work.

2. Symbolic Representation Algorithms

This section describes the symbolic representation algorithms used for time series as the basis
for developing the method proposed in this work. Previous studies [20] have shown the potential
to extract discrete features from inertial sensors signals represented by histograms based on word
frequency distribution. The main idea of these algorithms is to reduce data dimensionality and noise
of the time series in order to improve the classification stage of the machine learning algorithms.

2.1. SFA: Symbolic Fourier Approximation

The SFA [14] is a symbolic representation algorithm composed of two phases: approximation and
quantization. The approximation phase consists of an application of the Discrete Fourier Transform
(DFT) algorithm over the time series. The DFT results are real and imaginary coefficients that represent
the time series in the frequency domain. This phase is based on the first l/2 coefficients of an
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instance, where l is the length of the word SFA. The quantization phase consists of selecting the
most representative coefficients to generate the Multiple Coefficient Binning (MCB). The MCB is
responsible for generating the words in the discretization process. Figure 1 shows an example of the
SFA application for a time series of size n = 256, word length l = 4, and alphabet size c = 6.
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MCB lookup table. The result is a SFA word “DAAC” of length 4 and alphabet of size 6 [14].

2.1.1. Approximation Using the Discrete Fourier Transform (DFT)

The DFT [21] is an algorithm that decomposes a time series T of size n into a sum of basic
orthogonal functions, for example, sine waves. Each wave is represented by a complex number
Xu = (realu, imagu), for u = 0, . . . , n− 1, called Fourier coefficient. The n-value of Fourier coefficients
of a time series T(x) = 0, . . . , n− 1 is given as the equation:

DFT(T) = X0 . . . Xn−1 = (real0, imag0, . . . realn−1, imagn−1), (1)

with
Xu =

1
n ∑n−1

x=0 T(x)·e−j2πux/n, for u ∈ [0, n), j =
√
−1. (2)

The first Fourier coefficients are related to the lower frequency ranges that represent slow changes
in the signal. The higher order coefficients correlate to higher frequency bands representing rapid
changes in the signal. The SFA uses the first Fourier coefficients because they are sufficient to roughly
describe most of the signal. The DFT approximation is equivalent to the application of a low-pass filter
for smoothing and removal of signal noise. The first coefficient X0 = 1

n ∑n−1
x=0 T(x)·e0 is equal to the

mean value of the signal, and can be discarded to obtain offset invariance (vertical shifts).

2.1.2. Quantization Using the Multiple Coefficient Binning (MCB)

The quantization process consists of generating a search table in the time series, whose intervals
define the letters that compose the word generated after the discretization process. This lookup table is
called MCB (Multiple Coefficient Binning). The purpose of MCB is to minimize the loss of information
introduced by the quantization process. The MCB intervals are calculated from an ordered array of
Fourier coefficients obtained from the samples. The data in a matrix column are used to define the
breakpoints that represent the interval between letters. The matrix rows are the first real and imaginary
coefficients of the time series. The MCB is generated based on the following definitions:
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Quantization Intervals (bins): the a-th quantization interval QI is defined by its upper β(a) and
lower breakpoint β(a− 1) and labeled by the a-th symbola of the alphabet ∑:

QI(a) = [β(a− 1), β(a) ) , symbola ∈∑ . (3)

The number of bins corresponds to the number of values used in the DFT. An index j is used to
denote the corresponding values of the Fourier Transform DFT (T) = t′0, . . . , t′j, . . . , t′l−1:

QIj(a) =
[
β j(a− 1), β j(a)

)
, symbola, j ∈ [0 . . . l), a ∈ [1 . . . c),

∣∣∑∣∣ = c. (4)

Matrix MCB: The matrix A =
(
aij
)

i=1, ..., N;j=1,...,l is constructed from the data of N approximate

training time series (Ti, i∈[1,...,N]) with only the l
2 Fourier coefficients—equal to an SFA word of length l

with 1
2 l real and imaginary values. The i-th row of matrix A corresponds to the Fourier transform of

the i-th samples Ti (see Figure 2):

A =



DFT(T1)
...

DFT(Ti)
...

DFT(TN)


=



real1;0 imag1;0 · · · real1; l
2−1 imag1; l

2−1
...

... · · ·
...

...
reali;0 imagi;0 · · · reali; l

2−1 imagi; l
2−1

...
... · · ·

...
...

realN;0 imagN;0 · · · realN; l
2−1 imagN; l

2−1


= (C0 C1 . . . Cl−2 Cl−1). (5)
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Figure 2. A set of time series is used to generate the bins and breakpoints in MCB.
First, Fourier transform is applied and later is applied equi-depth binning for each i-th columns.

The j-column Cj corresponds to either the real or imaginary values of all N train samples.
Each column is sorted by value and then partitioned into c equi-depth bins. Bins follow the equi-depth
binning, in which the total amount of values in a range

[
β j(a− 1) ≤ β j(a)

)
is equal to any other range.
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The MCB quantization returns l sets of c quantization intervals for an SFA word. These intervals
are given by:

MCB =


−∞ −∞ · · · −∞ −∞

β0(1) β1(1) · · · βl−2(1) βl−1(1)
· · · · · · · · · · · · · · ·

β0(c− 1) β1(c− 1) · · · βl−2(c− 1) βl−1(c− 1)
+∞ +∞ · · · +∞ +∞

. (6)

The lookup table maps the first l
2 Fourier coefficients ( l

2 real values and l
2 imaginary values).

SFA Word: The symbolic representation SFA (T) = s0, . . . , sl−1 of the time series T
with approximation DFT(T) = real0, imag0, . . . , real l

2−1, imag l
2−1 = t′0, . . . , t′l−1 is mapping

SFA : Rl → ∑l of a real value to a symbol over the alphabet ∑ = {symbol1, . . . , symbolc} of size
c. Specifically, the-j numeric value t′j ∈ DFT(T) is mapped to a-th symbol of the alphabet ∑, if it
corresponds to the interval QIj(c) =

[
β j(a− 1), β j(a)

)
:

sj =
{

symbola, if
(

β j(a− 1) ≤ t′j < β j(a)
)

, for j ∈ [0 . . . l). (7)

In the lower right-hand corner of Figure 1 the mapping and MCB quantization intervals are shown.
As a result, an SFA word equal to “DAAC” is obtained from DFT(T) = (1.89, −4.73, −4.89, 0.56).

The SFA complexity is based on the discrete Fourier transform (DFT), where it is the dominant
stage that consumes more processing. In order to optimize this step, the SFA was implemented using a
DFT variation called Momentary Fourier Transform (MFT). The MFT is an evolution of the Fast Fourier
Transform (FFT) [22]; it has a recursive property applied in the time windows. Further details on this
optimization can be found in [16]. Therefore, the SFA has the following complexity:

T(SFA) = O(n log n), (8)

with n as the time series size.

2.2. BOSS: Bag-Of-SFA-Symbols

The BOSS is a classification algorithm of time series based on symbolic data generated using
SFA [16]. The BOSS data representation is based on word frequency distribution in the form of
histograms. This data representation is obtained following a process of three tasks: windowing,
symbolic transformation and histogram construction.

Figure 3 illustrates the process of creating the BOSS model from a previously normalized size
series n (mean zero and standard deviation equal to one). Firstly, the windows are obtained by applying
a windowing procedure of size w along the time series (Figure 3b). The total number of windows
obtained is (n−w+ 1). Then, each data window is submitted to symbolic transformation using the SFA
algorithm (Figure 3c). Finally, the histogram of the SFA words (Figure 3d) is constructed. At this point,
the numerosity reduction procedure is applied to reduce the repeated words in neighboring windows
that often occur in stable signals. Thus, the SFA word counting only occurs in its first iteration, and the
next repeated words are not counted in the histogram until a word change occurs (Figure 3c).
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The BOSS complexity is based on the SFA complexity. The difference is in the time windows and
the time series sizes. Thus, Equation (9) represents the BOSS complexity algorithm:

T(BOSS) = O(n + w log w) (9)

where n is the time series size and w is the time window size.

2.3. BOSS VS: Bag-Of-SFA-Symbols in Vector Space

The BOSS VS algorithm is an extension of the BOSS algorithm combined with a classification
strategy based on the vector space model [16]. The vector space template is commonly used by the
information retrieval community to retrieve relevant documents based on a query formed by a set of
terms or keywords. In short, the vector model means that the words of each document are represented
in the n-dimensional space by a vector, in the same way the terms of the query are also represented
by a vector. Thus, the document vectors are compared to the query vector by measuring similarity.
Therefore, the query vector is sorted by the document whose vector is closest or similar.

Each vector has an associated weight. Weights are assigned to each document term and query.
Both term frequency (tf ) and inverse document frequency (idf ) techniques [23] help to distribute
weights so that larger weights are assigned to the most representative terms, whereas irrelevant terms
receive smaller weights.

The BOSS VS model is constructed according to the approach described by Senin & Malinchik [24],
in which the idf is calculated for the words of each class as opposed to each time series. The tf for an
SFA word p of a time series T is given by the following equation:

t f (p, T) =

{
1 + log(BT(p)), if BT(p) > 0
0, else

, (10)
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where BT(p) being the BOSS histogram, which represents the frequency of an SFA word p in the time
series T. Therefore, the tf for an SFA word p in a class C is given by the following equation:

t f (p, C) =

{
1 + log(∑T∈C BT(p)), if ∑T∈C BT(p) > 0
0, else

. (11)

The idf of a word p in the C class is calculated by the following equation:

id f (p, C) = log
|CLASSES|∣∣∣{C

∣∣∣ T ∈ C
∧

BT(p) > 0}
∣∣∣︸ ︷︷ ︸

number o f classes that contain p

, (12)

where id f (p, C) is the total number of classes divided by the number of classes in which the word p
occurs. A high idf value is obtained when the word occurs in only one specific class, meaning that it
is a relevant term for the discrimination of a given class. On the other hand, a word with low idf is
common to several classes, meaning that word is not relevant.

Finally, the tf-idf of an SFA word in a C class is calculated by the following equation:

t f − id f (p, C) = t f (p, C)·id f (p, C). (13)

Classification consists of inferring an activity based on the comparison between a set of words
from a query Q and a set of words from a class (or activity) C. Both sets of words are represented
by a vector generated from tf-idf. The comparison between two vectors is performed by calculating
the cosine similarity using the weights matrix tf-idf for each class C. Finally, the label of query Q is
inferred by assigning the label of class C that maximized the result of the cosine similarity. Since the
calculation of the cosine similarity is defined by the following equation:

similarity(Q, C) =

→
Q .
→
C

‖
→
Q‖.‖

→
C‖

=
∑p∈Q t f (p, Q) . t f − id f (p, C)√

∑p∈Q(t f (p, Q))2
√

∑p∈C(t f − id f (p, C))2
(14)

And the label inferred by the following equation:

label(Q) = argmaxC∈CLASSES (similarity(Q, C)). (15)

In practice, the classification task is performed using the nearest 1-neighbor algorithm (1-NN).
The computational complexity of the classification given by a 1-NN search over |CLASSES| classes is:

T(BOSS VS) = |CLASSES|·O(n), (16)

where n is the time series size. In general, the main advantage of the BOSS VS algorithm is scalability,
since this algorithm is able to manipulate a large amount of data due to its ability to reduce a set of
histograms that represent the same class in a more compact histogram only. This process significantly
reduces the computational complexity of the model, resulting in a reduction of the classification times
for new samples.

3. MBOSS: Multivariate Bag-Of-SFA-Symbols

MBOSS was designed to classify multiple time series (or multivariate time series) because of the
three-dimensional characteristic of the inertial sensors embedded in smartphones. The multivariate
time series are collections of univariate time series that arise when multiple interconnected data sources
capture samples over time [25]. The MBOSS is an extension of the BOSS algorithm and is mainly
characterized by the histograms fusion generated by multiple synchronized time series.
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3.1. Stacking Histograms

MBOSS uses a concatenation function that combines multiple histograms generated by the
BOSS. Like several other research areas, as image recognition, the stacking of features strategy is
used [26]. Figure 4 shows an example of the histogram fusion process. Basically, the fusion is based
on concatenation of M histograms of dimension N (number of variables) into a single feature vector.
After that, the final feature vector is used for the training and classification task.Sensors 2019, 19 FOR PEER REVIEW  8 
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The pseudocode of Algorithm 1 shows the MBOSS implementation. This algorithm receives a
single structure of multivariate time series as input. This structure is defined as a time-series vector
s = {s1, . . . , si, . . . , sv} where si corresponds to an input time series in the variable i, and v the vector
size (line 1). The algorithm output is defined by a structure representing the histogram (line 2).
The algorithm transforms the time windows into symbolic data for each variable (line 3) and constructs
the histogram from the SFA words. MBOSS maintains the information of the original time series that
generated the words using an index (line 5). For example, if a word “ab” extracted from variable 2 will
receive the character “2”, then the new word formed will be “2ab”. Finally, the numerosity reduction
is applied (lines 6–8), and the algorithm result is the MBOSS histogram (line 8).

Algorithm 1. MBOSS Transformation.

1 function MBOSSTransform (MultivariateTimeSerie s, int v, int w, int l, int c)
2 map<String, int > histogram = [], String lastWord = NULL
3 for int i_v in [1..v]
4 for TimeSeries window in sliding_windows(s[i_v], w) // sliding window
5 String word = toChar(i_v) + SFA(window, l, c) // SFA word + variable identifier
6 if word != lastWord //numerosity reduction
7 histogram[word]++
8 lastword = word
9 return histogram

The MBOSS complexity is based on the BOSS complexity. The difference is the number of input
variables, as shown in the following formulas:

T(MBOSS) = v·T(BOSS) (17)

T(MBOSS) = v·O(n)
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T(MBOSS) = O(n), with v� n,

with n as the size of time series and v� n means that the number of variables is much smaller than
the segment size.

3.2. Classifier for HAR

Figure 5 illustrates the activities classification scheme using the MBOSS data representation in
the vector space model. In this example, the data from three activities (running, walking, and sitting
down) are used to generate the MBOSS histograms. Then, the histograms are represented by matrices
generated through the vector model. This new data representation is called MBOSS VS. The MBOSS VS
model is generated based on the tf-idfs calculations explained in Section 2.3. Each MBOSS VS model is
a compact representation of all training instances of a given activity class. The vectors tf-idf correspond
to each class and are used to infer the label of an unknown instance through the calculation of the
cosine similarity between the vectors tf-Idfs and the vector tf obtained from the unknown instance
(Equation (10)). Based on these calculations, the unknown instance is assigned to a class label that
maximizes the cosine similarity result.
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Algorithm 2 shows the pseudocode of MBOSS VS. Line 1 consists of the input parameters referring
to the matrix structure of tf-idfs and tf vector from unknown instance. Then, the cosine similarity is
calculated based on the dot-product between the tf-idfs and tf vectors (rows 4–5). Finally, the output
label refers to the class that maximized the result of the cosine similarity (lines 6–9).

Algorithm 2. Classification using 1-NN and MBOSS-VS models.

1 function predict(map<String, int> tf, map<String, int>[] tfIdfs)
2 double maxSim = 0
3 String bestClass = NULL
4 for int classId in [1..len(tfIdfs)] // do for each class
5 double cosSim = dotProduct( tf, tfIdfs[classId]) // similarity calculation
6 if cosSim > maxSim
7 maxSim = cosSim
8 bestClass = classId
9 return label(bestClass)

The vector product used to calculate the cosine similarity has computational complexity equal
to O(n), where n is the vector size of the instance that was submitted to classification. Therefore,
the classification 1-NN MBOSS VS (Algorithm 2) has computational complexity equal to:

T(1− NN MBOSS VS) = |CLASSES|·T(similarity) (18)
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T(1− NN MBOSS VS) = |CLASSES| ·O(n),

with n as the vector size of the unknown instance and |CLASSES| as the number of classes.

3.3. Optimizing MBOSS Parameters

In the feature extraction step, three parameters must be adjusted to use MBOSS: window size w,
word length l, and alphabet size c. These parameters directly influence the performance of the
generated classifier and must be adjusted according to the problem. Thus, the values of these
parameters are defined below:

• Window size: it is defined based on the analysis of the length w in the intervals ranging from 10
to n (n is the time series size). To reduce training times, only the

√
n windows are used.

• Word length: it is related to the first l/2 DTF coefficients used to approximate the signals. A small
word length is desirable, which correlates to a strong noise reduction (low-pass filter). If it
is use larger values, the ability of SFA’s noise reduction is degraded. In the context of HAR
smartphone-based, a set of values ranging from 4 to 16 is used.

• Alphabet size: it is related to the number of intervals in the SFA’s quantization phase. The larger
the alphabet size, the greater the ability of the method to approximate to the original time series.
However, Schäfer [16] claims that the alphabet size c = 4 is enough to approximate any time
series, since a large alphabet size and large word length consume more computing resources. In a
32-bit processing platform, the parameters c = 4 and l = 16 generate 416 = 322 = 4, 294, 967, 296
possible words. Any other option must meet the requirements of the processing platform to be
implemented, observing the maximum possible number of words that can be represented.

The parameter optimization process is implemented by Algorithm 3 and is based on the grid
search with cross validation, with k = 10 partitions, to estimate the best values of w and l. The algorithm
iterates all

√
n window sizes (line 5). For each iteration, the MBOSS model is obtained for different

window sizes (lines 7 and 8). Then, the algorithm iterates over the word length options, in this case
l ∈ {4, 6, 8, 10, 12, 14, 16} (line 9). For each word size, the symbolic representations of each segment
sample with word size l are constructed. In order to avoid recalculating the MBOSS transformation
for different word sizes, the larger word l = 16 is firstly calculated, and it is used as the basis for
reconstructing other, smaller words (line 10).

The cross validation is applied to obtain the combination w and l that obtained the highest rate
of accuracy in the training step. This is performed by dividing the samples into ten partitions. Next,
one partition is selected and used as the test dataset. The remaining nine partitions are used to
construct the classification model. This process is repeated until all partitions are evaluated and the
classification results for each partition are combined to obtain a final score. Finally, cross-validation is
repeated until all parameter combinations are evaluated, so that the output of the algorithm are the
best estimated values of l and w.
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Algorithm 3. Fit MBOSS using 10-fold cross-validation.

1 function fit(MultivariateTimeSerie[] samples, int n, int v, int folds)
2 int c = 4, int maxL = 16
3 int bestScore = 0, int bestL = 0, int bestW = 03
4 map<String, int > bestTfIdfs = []
5 for (int w = 10; w <= in; w += sqrt(n-10)) // itera sqrt(n)
6 map<String, int > sHist = []
7 for int i in [1..len(samples)] // N
8 sHist[i] = MBOSSTransform(samples[i], v, maxL, c) // O(n)
9 for int l in [maxL.., 8, 6, 4]
10 map<String, int >[] bags = createBags(sHist, l)
11 int score = 0
12 for int i_fold in [1..folds] // cross validation
13 map<String, int >[] bags_test, bags_train, tfIdfs
14 bags_test = getFold(i_fold, bags)
15 bags_train = getOthersFold(i_fold, bags)
16 tfIdfs = calcTfIdf(bags_train, l)
17 score += predict_score(bags_test, tfIdfs_train)
18 if score > bestScore
19 bestScore = score, bestL = l
20 bestW = w, bestTfIdfs = tfIdfs
21 return (bestScore, bestL, bestW, bestTfIdfs)

The MBOSS parameters optimization (Algorithm 3) has computational complexity equal to:

T(FIT MBOSS) =
√

n·N · [T(MBOSS) + T(1− NN MBOSS VS)] (19)

T(FIT MBOSS) =
√

n·N · [v·O(n) + |CLASSES| ·O(n)]

T(FIT MBOSS) = O
(

N · v · n
3
2

)
,

where n is the size of the multivariate time series, v is the number of variables and N is the amount of
time series.

4. Experiments and Results

This section presents the experiments performed to evaluate MBOSS in the context of the HAR
problem. In this study, MBOSS is evaluated from two perspectives. The first one deals with a
comparative analysis between classification models designed for HAR. The second one deals with an
analysis of the consumption of computational resources required by the evaluated methods. It includes
the data processing time and memory usage analysis. The databases used in the experiments are
described in Section 4.2, and the results for each analysis are described in Section 4.5.

4.1. Experimental Protocol

The experiments are divided into two steps:

1. Comparative analysis of the classification models: the comparative analysis includes the
comparison between MBOSS classifier and the baselines classifiers described in Section 4.3.
Two strategies of classification model evaluation are used: personalized model and generalized
model. These strategies exploit different experimental configurations that are often found in the
literature, and provide a comprehensive analysis of the classifiers.

2. Comparative analysis of the time processing and memory consumption: The time processing
analysis occurs in three stages: feature extraction, training, and testing of the classification
models. These results show the viability of using MBOSS in mobile devices. The memory
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consumption analysis evaluates the capacity of the MBOSS to reduce the amount of data in terms
of data compacting.

4.2. Datasets

Table 1 summarizes the characteristics of the datasets used in the experiments. The main
characteristics highlighted are the number of users, number of activities (classes), and segmentation
settings that were used in the data pre-processing. The WISDM, UCI HAR, and UniMiB SHAR datasets
have 176, 343 and 253 instances per user, respectively, and the segmentation configurations are identical
to those described by the authors in the respective original published articles.

Table 1. Summary of dataset characteristics used in experiments [27].

Dataset WISDM UCI HAR UniMib SHAR

Number of users 19 30 30
Number of activities 6 6 9

Segmentation
technique

Sliding window
without overlap

Sliding window with
50% of overlapping

Energy-based
segmentation

Segment length 200 (10 s–20 Hz) 128 (2.56 s–50 Hz) 151 (3 s–50 Hz)
Total of instances 3345 10,299 7579

The WISDM dataset was provided by the Wireless Sensor Data Mining laboratory of the
Department of Computer Science at Fordham University [17]. This dataset contains accelerometer data
from different Android smartphones like Nexus One, HTC Hero, and Motorola Back-flip. During data
collection, the user was asked to carry the device in one of their front pants pockets. Data was collected
from 36 users for six physical activities: walking, jogging, walking downstairs, walking upstairs,
sitting, and standing. However, in our experiments we only selected the users that had instances
of all six activity-classes. Samples from each user were collected at a fixed sampling rate of 20 Hz.
Data segments were obtained every 10 s by applying the sliding window algorithm with fixed size
equal to 200 samples per segment without overlap between windows. In total, the dataset contained
3345 segments.

The UCI-HAR dataset was provided by the Machine Learning Repository of the University of
California at Irvine (UCI) [18]. This database contains data from the inertial sensors accelerometer and
gyroscope collected from an Android smartphone Galaxy SII. The data was collected from 30 users
for six physical activities: walking, walking upstairs, walking downstairs, sitting, standing, and lying
down. Samples from each user were collected at a fixed sampling rate of 50 Hz. Users executed the
activities in two sessions. In the first session, users were asked to carry the smartphone on the left side
of the waist, and in the second session, users were asked to carry the smartphone in a free position.
In our experiments, we used data from all users and only those from the accelerometer. Data segments
were obtained every 2.56 s, applying the sliding window algorithm with fixed size equal to 128 samples
per segment with 50% of overlap between windows. In total, the dataset contained 10,299 segments.

The UniMib SHAR dataset was provided by the IT department at the University of
Milano-Bicocca [19]. This dataset contains accelerometer data obtained from a smartphone, the Android
Galaxy Nexus I9250. The data was collected from 30 users for nine physical activities and eight
activities related to fall events. Users were selected based on attributes such as height (169 ± 7 cm),
weight (64 ± 10 kg), age (18 to 60 years), and gender (24 women and 6 men). Samples from each user
were collected at a fixed sampling rate of 50 Hz. Users executed the activities in two sessions. In the
first session, users were asked to carry the smartphone in the front left pocket of the pants, and in the
second session, the smartphone was carried in the right pocket. Only data related to physical activities
was used in our experiments.

The UniMib SHAR has particular data segmentation characteristics based on the magnitude

mag (t) =
√

ax(t)
2 + ay(t)

2 + az(t)
2 of the accelerometer signal. This method consists of applying the
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sliding window technique to extract 3 s segments every time a peak in magnitude is encountered.
A peak is valid only if it reaches certain conditions: (1) The signal magnitude magt is greater than
1.5g, being g, the value of the universal gravitation constant; (2) The signal magnitude mt−1 at the
instant t− 1 is less than 1.5g. These conditions are justified by the authors to classify both movement
and fall activities. Each segment of 3 s is centered on the peak found. In total, the dataset contained
7579 instances.

4.3. Baseline

The MBOSS baselines are conventional machine learning algorithms as Decision Tree (J48),
Naive Bayes (NB), K-Neighbors (KNN) with k = 1, and Support Vector Machines (SVM) implemented
with SMO One-vs-One with polynomial kernel. The experiments were executed in the WEKA tool
(Waikato Environment for Knowledge Analysis) [28]. Each algorithm was trained with a set of features
extracted from the Time and Frequency domain (Hand-Crafted Features). The selected features
were obtained based on previous work found in the literature [29,30]. Table 2 presents the features
selected for the experiments. In total, 36 features were obtained from the tri-axial accelerometer data,
i.e., 12 features for each axis x, y, z.

Table 2. Set of the features used in the experiments with the baseline classifiers.

Domain Signal Feature

Time x-, y- e z-axis of
accelerometer

mean, median, min, max, variance, standard
deviation, zero crossing rate, and root mean square

Frequency x-, y- e z-axis of
accelerometer

dc component, sum of five first coef. of Fourier,
spectral energy, and spectral entropy

4.4. Evaluation Strategies

Different strategies are used in the literature to evaluate HAR systems [31]. This experiment uses
two common strategies. The first strategy is the generation of a personalized model, and the second is
the generation of a generalized model:

1. Personalized model: consists of creating a model for a single user. The evaluation process is
based on a cross-validation technique where the data user is partitioned into 10-fold, so that each
part is used as the test set, and the remaining nine parts are used as a training set. Previous studies
identify this strategy as a personal model, or user-dependent model.

2. Generalized model: consists of creating a generic model based on data from several users.
The evaluation process is based on a cross-validation technique where each partition is
represented by the data from different users. Basically, a target user n is used as the test set, and the
remaining users (n− 1) are used as the training set. In the literature, this type of assessment is
also called “cross-validation leave-one-subject-out” or “user-independent model”.

The consolidated results of the evaluations are presented using accuracy as the main metric,
and the confusion matrix for analysis of each activity class.

4.5. Classification of Effectiveness Analysis

This section presents the results in two parts: the first part is related to the personalized model
and the second part to the generalized model.

4.5.1. Personalized Model

Figure 6 shows the comparative analysis results between MBOSS and the other baselines for the
personalized model. As presented, the results show that MBOSS obtains the best accuracy rates for the
UCI-HAR and UniMiB SHAR datasets, with 98.85% and 99.37%, respectively. For the WISDM dataset,
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the KNN classifier obtained the best performance, with an accuracy of 96.2%, i.e., 1.53% higher than
the accuracy of MBOSS. To clarify this difference, the confusion matrices for the MBOSS and KNN are
presented in Figure 7.
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The results for each activity class show that MBOSS have lower hit rates than the KNN for static
activities such as sitting and standing in the WISDM dataset. However, this difference is not significant
in the other databases. One reason for this difference is the segmentation settings. In UCI HAR and
UniMiB SHAR datasets, each instance is composed of data collected at 50 Hz over a short period,
around 3 s. On the other hand, in WISDM dataset each instance is composed of data collected at
20 Hz over a long period, 10 s. Therefore, high sampling over short periods is more favorable for
symbolic representation.

4.5.2. Generalized Model

Figure 8 shows the comparative analysis between MBOSS and the other baseline classifiers for
the generalized model. As presented, the results show that MBOSS obtains the best accuracy rates
for the WISDM and UniMiB SHAR datasets, with 83.35% and 87.49%, respectively. For the UCI HAR
database, the SVM classifier obtained the best performance, with an accuracy of 82.28%, i.e., 19.29%
higher than the accuracy of the MBOSS. On the other hand, the results for the UniMiB SHAR show
that the baseline classifiers obtained unsatisfactory accuracy rates. One reason for this is that UniMiB
SHAR is an unbalanced dataset with a large number of activity classes. In this case, MBOSS obtained
an accuracy of 87.49%, and remained stable for different experimental settings.
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Figure 9 presents the confusion matrices obtained from the MBOSS and SVM classifiers for
UCI HAR dataset. The analysis by class shows that the accuracy of the MBOSS, in general,
decreases for a specific set of static activities like sitting, standing, and laying down. On the other
hand, MBOSS presents the highest accuracies for dynamic activity classes like walking, and walking
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4.5.3. Comparison between Strategies

Figure 10 shows the boxplot diagrams consolidating the classification results for each evaluation
strategy. Note that the results for all classifiers in the personalized model have satisfactory accuracy
rates, with values between 92% and 100%. In this evaluation, MBOSS demonstrated performance
comparable to baselines with a median accuracy of 98.85%, i.e., 1.29% higher than the KNN.

In addition, the accuracies of the generalized model were below 90%. This low performance
is expected when compared to personalized model, because it is difficult to generate generic and
flexible models for different users’ profiles. However, in this context the MBOSS presented a higher
generalization capacity compared to the baseline classifiers. On average, the MBOSS has a median
accuracy of 83.34%, i.e., 1.06% higher than the SVM classifier.
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4.6. Results of Time Processing and Memory Consumption Analysis

This section presents two types of results. The first type deals with a comparative analysis between
the processing time of the MBOSS and the baselines algorithms. The second deals with an analysis
of the memory consumption of the MBOSS. The experiments were executed on a Dell OptiPlex 9020
Desktop Computer (Intel Core i7-4790/32GB DDR3). The database used in this experiment was UCI
HAR, in which the data was partitioned into two sets: a training set with data from 21 users, and a
testing set with data from 9 users.

4.6.1. Time Processing

The data processing times of the classification algorithms were collected in three steps:

1. Feature extraction: processing time required to generate the set of features on the test instances.
2. Classification model training: processing time required to generate the classification model on

the training set.
3. Classification: processing time required to classify only the test set.

Figure 11 shows the processing times for the feature extraction step from the time and frequency
domain (baseline) and the MBOSS. The results are based on the average of ten-run times. As presented,
the feature extraction based on symbolic representation data has slower processing time than the
baseline, with a difference of 0.08 s. This represents a time reduction of 23.5%. Although we used a
small set of features, the symbolic representation shows rapid processing of the sensor data; therefore,
it is more efficient.
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Figure 12 shows the processing times for the classifier training and testing steps. As presented,
the results show that MBOSS took 1.49 s for the training process and 0.23 s for the testing process.
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It shows that the MBOSS obtained the shortest time to train the classification model, with a difference
of 0.16 s compared to the KNN. On the other hand, in the testing step the MBOSS took longer than the
classifiers DT, NB, and SVM, with a difference of about 0.20 s. This occurs because these algorithms
present a computational cost in the order of O(d), where d is the number of features. On the other
hand, MBOSS beat KNN because it had a computational cost for classification step in the order of
O(Nd), where N is the number of training instances, and MBOSS has a computational cost in the order
of O (cd), where c is the number of classes.
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4.6.2. Memory Consumption

The evaluation of the MBOSS memory consumption is based on the comparison between the data
volume in the memory before and after the feature extraction process. The experiments were based
on 10,000 instances obtained from the UCI HAR dataset. Each instance corresponds to a time series
of 128 samples. Originally, each sample is represented in the memory by 8 bytes (double). Therefore,
an original instance corresponds to a total of 1024 bytes. In addition, the results also showed the
influence of reduced data numerosity on memory consumption. The size of memory consumed is
evaluated in Kbytes.

Figure 13 presents the results referring to the space consumed by the MBOSS symbolic data with
the following parameters: alphabet size c = 4, window size w = 30, and word length l = {4, 8, 16}.
As presented, the result shows that the symbolic data can reduce the memory consumption from
60% to 90% over the space consumed by the original data. In addition, data reduction is directly
influenced by word length, where a smaller word length corresponds to a larger data reduction after
data processing.
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5. Related Works

This section presents a summary of the main works that use the manual feature extraction strategy,
and the works that use symbolic representation algorithms for the HAR solutions.

Kwapisz et al. [17] present a solution based on the manual feature extraction approach. In this
work, the time domain features, as mean, standard deviation, absolute mean, time interval between
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signal peaks, and binned distribution, were used. The experiments were conducted using the
accelerometer data extracted from the WISDM dataset. The classifiers used were the machine learning
algorithms Decision Tree, Logistic Regressor, and a Multi-layer Perceptron Neural Network (MLP).
Cross-validation with the partitioning of all instances of activities into 10 folds was the evaluation
strategy used. Finally, the results showed the superiority of the MLP classifier in relation to the other
classifiers evaluated, with an accuracy rate of 91.7%.

Anguita et al. [18] present a solution based on the manual feature extraction approach. In this case,
17 features were used in the time and frequency domain. These features were applied on the raw and
preprocessed signals obtained from the accelerometer and gyroscope. The preprocessed signals were
obtained from the application of digital filters, such as Butterworth low-pass, for the decomposition
of acceleration between body signals and gravity. In addition, the signals were preprocessed using
the magnitude and time derivatives of the linear and angular acceleration. The experiments were
conducted in the UCI HAR database. The Support Vector Machine (SVM) One-vs-All was used as
the classification algorithm, and evaluation consisted of partitioning the data 21-9, i.e., the data from
21 users was used for training, and the data from 9 users was used for testing. The results showed an
average accuracy of 96% for the test data.

Figo et al. [29] present an exploratory evaluation involving the time, frequency, and discrete
domains features. In the case of the discrete domain, data was discretized by the symbolic
representation algorithm called SAX (Symbolic Aggregate Approximation). The features generated
from the symbolic data were based on the distance between the words of each label. The experiments
were conducted using accelerometer data, and jumping, running, and walking activities were studied.
The classification stage is based on two steps. The first is to calculate the signal magnitude for each

coordinate axis (xi, xy, xz) using the formula ni =
√

x2
i + y2

i + z2
i . The second step is to find a

threshold that separates the classes well, based on the evaluated features. For the time domain features
(e.g., mean, minimum, maximum, and standard deviation), the results showed an average of about
70.4% for the training set and 60.8% for the testing set. For the features in the frequency domain,
the results showed an average of 69.6% and 70.1%, with the best accuracy obtained by the feature sum
of the spectral coefficients. For the features in the discrete domain, the results showed an average of
62.4% for the training set and 45.1% for the testing set.

Siirtola et al. [32] propose a solution based on the symbolic representation algorithm called SAXS
(Symbolic Aggregate Approximation Similarity). SAXS is characterized by generating a set of reference
words called templates, in which each one of them represents a label or activity. These words are
defined during the classification model training step. The SAXS classification process is based on the
calculation of similarity between the templates and the new, non-labeled words. Experiments were
conducted on five accelerometer databases including gestural, sports, and swimming style activities.
The classifiers used were Decision Tree, K-Nearest Neighbor (KNN), and Naive Bayes. The evaluation
was based on the combination of the SAXS features with the time (mean, standard deviation, median,
quartiles, minimum, and maximum) and frequency (sums of smaller sequences of Fourier-transformed
signals, and number and ratio of zero crossings) domain features. The results showed that the features
generated by the SAXS obtained better classification models, with an average accuracy rate between
3% and 10% when compared to the classification models generated only with the time domain and
frequency features. The KNN classifier obtained the highest accuracy rate, i.e., 85.3%.

Finally, Terzi et al. [33] propose a method based only on the discrete domain features specialized
in dealing with multivariate time series. The activities classification is performed by the 1-NN
classifier with three similarity metrics: average, minimum, and geometric distance. In addition,
the proposed method generates word templates and uses the SAX algorithm in the discretization
process. The experiments were conducted using the accelerometer data obtained from the UCI HAR
database for the following activities: walking and climbing stairs. The results showed that the similarity
metric based on the average distance performed better than the other distances. The accuracy rate
obtained was 99.54% and 97.07%, respectively, for the two studied activities.
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The work of Siirtola and Terzi uses symbolic representation algorithms in the feature extraction
step, as previously described. In general, in these works, the values corresponding to the
similarity between pairs of words are calculated. Unlike these approaches, MBOSS extracts multiple
words from the instances, counts the words, and generates models based on the word frequency
distribution-histogram. This symbolic representation approach enriches the extracted knowledge and
makes the classification models more precise.

6. Conclusions

This paper proposes a new time series classification algorithm (MBOSS) from the perspective
of the HAR area. MBOSS is a low-cost algorithm that can be deployed on mobile devices such as
smartphones. The main advantage of MBOSS is the reduction of computational complexity through
the reduction of data dimensionality and numerosity. In addition, MBOSS is able to reduce data
noise and extract features automatically. This reduces the influence of human knowledge in the
configuration steps.

The experiments’ results show good performance of MBOSS for both evaluation strategies of
the personalized and generalized models compared to the traditional approaches of manual feature
extraction in the field of time and frequency. In particular, MBOSS’s impersonal models are able
to thoroughly generalize for multiple activity categories. In addition, results regarding processing
time and memory consumption show that MBOSS is generally the best low-cost option among the
currently-available options. The results were extracted from different scenarios provided by the
different databases with different segmentation settings.

The conclusions obtained from this work help motivate future work and develop new projects
for HAR systems using inertial sensors in smartphones. Future work will be conducted to evaluate
the performance of MBOSS in applications that use data collected from a smartwatch. In addition,
new adaptations of symbolic representation algorithms, such as applying filters and feature selection
techniques, can be evaluated.
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