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Abstract: This paper investigated the throughput performance of a secondary user (SU) for a random
primary user (PU) activity in a realistic experimental model. This paper proposed a sensing and
frame duration of the SU to maximize the SU throughput under the collision probability constraint.
The throughput of the SU and the probability of collisions depend on the pattern of PU activities.
The pattern of PU activity was obtained and modelled from the experimental data that measure the
wireless local area network (WLAN) environment. The WLAN signal has detected the transmission
opportunity length (TOL) which was analyzed and clustered into large and small durations in the
CTOL model. The performance of the SU is then analyzed and compared with static and dynamic PU
models. The results showed that the SU throughput in the CTOL model was higher than the static
and dynamic models by almost 45% and 12.2% respectively. Furthermore, the probability of collisions
in the network and the SU throughput were influenced by the value of the minimum contention
window and the maximum back-off stage. The simulation results revealed that the higher contention
window had worsened the SU throughput even though the channel has a higher number of TOLs.

Keywords: cognitive radio; opportunistic access; primary user; secondary user; transmission
opportunity length; WLAN

1. Introduction

Dynamic spectrum access (DSA) is one of the cognitive radio (CR) technologies, and it is used
to utilise the spectrum proficiently. The purpose of DSA is to use the primary user (PU) channel
that is sparsely occupied by other temporary users such as the secondary users (SU). Opportunistic
spectrum access (OSA) or commonly known as the spectrum overlay is one of the DSA schemes which
has the best compatibility with the static PU transmission [1]. Accordingly, the OSA enables the SU
to access a channel when the PU is detected as an idle state through the spectrum sensing process
(SSP). Previous studies [2–4] have reported that the longer sensing duration has reduced not only the
collision probability but also introduced a time overhead that decreases the SU throughput. Hence,
this study intended to investigate the compromise between the increment of SU throughput and the
reduction of the interference to understand the fundamental performance of the CR network.
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Spectrum opportunities or also known as the transmission opportunity length (TOL) can be
detected using spectrum sensing and may influence the SU performance. In [2] the length of contention
phase in small-scale-backoff-based of MAC protocol (SMAC) has been studied. The SU will not interfere
during the contention phase but only can use the remaining period to transmit data. The remaining
period is considered to be TOL for SU to transmit data. The longer TOL may increase more chances
of the SU to access a channel compared to the smaller TOL. According to [2,4], TOL durations
provide a variable impact in the performance of SU throughput and interference to the PU. Therefore,
the strategy that is used to access the channel should consider analyzing the length of TOL from the
PU activity patterns to obtain a better SU performance.

The behavior of the SU networks is influenced by the spectrum occupancy patterns in PU
networks [5]. Hence, the accuracy of the PU activity model is considered to be an important factor.
The PU activity durations are usually modelled as an exponential distribution of random variables
in [6–9]. According to several empirical measurement studies [10–13] on the time duration of PU
activity, it is not exponentially distributed in the actual system [6]. Moreover, the prior spectrum usage
models that have been widely used are based on several assumptions which have not been validated
by empirical evidence [14,15].

In this study, the PU activity is obtained from the real-time experimental or measurement data.
This study has used an experimental setup for a wireless local area network (WLAN) to measure
the TOL in the system in which WLAN is emulated as a PU to represent the random PU activity.
Furthermore, an empirical model based on the primary user traffic for opportunistic access (EM-PuO)
is introduced as an empirical model of the PU channel usage pattern. The model offers access to the
SU based on a realistic wireless environment, where the PU activity pattern is modelled based on an
actual WLAN environment. Besides that, energy detection is used to detect the PU and extract the
TOL. The TOL is clustered into two categories which are small and large, and the first order of the
Markov model is used to obtain the PU activity pattern based on the clustering of the TOL. The main
contributions of this paper are summarized as follows:

1. EM-PuO model: The PU activity traffic pattern model is designed based on a realistic
(i.e., real-time) wireless environment which is WLAN. The EM-PuO is an empirical model of
the measured WLAN signal. This model presents a temporal characterization of the detection
TOL which approaching the real situation as it was constructed by the experiment in a wireless
environment. This empirical model will be used to demonstrate the SU access strategy in the
CTOL model.

2. Clustering TOL model: A new SU access strategy from clustering the durations of TOL. The TOLs
in the EM-PuO model was analyzed and then classified into two types of TOL which are large
and small. The CTOL model is designed using a Markov model that formulated the two states
using the clustered TOLs. The probability of collision and the SU throughput were investigated
using CTOL model by considering the dynamic PU traffic.

2. Related Work

It was known that several spectrum access techniques used mathematical models such as Markov
decision process (MDP) [16], queuing theoretic [17], and game theoretic [18]. A multiple access
strategy with cooperative relays was proposed in [17,19,20] where the SUs were modelled as a separate
queuing system. A coalitional game theoretic approach is presented in [18,21], while Jiang et al.
in [22] proposed a joint spectrum sensing and access framework that used evolutionary game theory.
The other spectrum or channel access technique is using rendezvous scheme which does not rely on
the common control channel (CCC) to control messages before starting data transmission. According
to [23,24] this approach can overcome the dense in the CR network.



Sensors 2018, 18, 4351 3 of 15

There are two types of PU activity models that are used as references: (1) the first model is a static
PU model, which is a detection model, and it assumes that the PU is either present or absent during
the SU frame duration [4,25]; and (2) the second model is known as the dynamic PU model, which
is a cross-layer approach indicating the PU’s traffic model based on its arrival and departure time
[2,4,26]. The dynamic PU model is designed to demonstrate a realistic situation where the PU may
randomly arrive or depart from the channel at any time.

The trade-off between the sensing and SU throughput was investigated to get a better quality of
sensing time without degrading the achievable throughput. The quality of sensing can be improved
by increasing the sensing period, but it will affect the SU throughput as a result of fixing the overall
frame duration. The sensing-throughput trade-off was studied in [27,28] by assuming that the PU is
static, while the dynamic PU traffic was addressed in [2,4,26].

3. System Model

The system model is an ad hoc network consisting of a pair of primary transmitters, and the
primary destination shares a channel with a pair of SUs. The SUs communicate with each other using
direct transmission by identifying the spectrum holes via spectrum sensing. The flow of the CTOL
system can be categorized into five main parts. The parts are included the measurement of WLAN
signal and detection, modelled the EM-PuO, and clustered the TOL and performance evaluation.
Figure 1 shows the sequence of the parts.

Measurement setup

Signal Detection

EM-PuO

CTOL

tRB

λ,µ 

λS, λL

Performance 

evaluation

WLAN 

signal, Y(t)

 

Figure 1. Flow chart of the CTOL system.

The SU frame structure is divided into two segments which are sensing time, τ and data
transmission time, Td, as shown in Figure 2. The frame duration is equal to TSU = Td + τ, and the
total number of samples in a frame is denoted as J. It is assumed that the SU operation occurs within
one frame and the energy detection is performed during the sensing period. According to the Nyquist
theorem, the sampling interval is set as Ts =

1
B , where B is the channel bandwidth and I = Bτ is the

total number of samples.
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Figure 2. Secondary user (SU) frame structure.

3.1. Measurement Setup

An experimental setup measures the WLAN signal to demonstrate a random PU activity that
resembles a real-time wireless environment. There are two stations (STAs) and an access point (AP1) in
the experiment. The two STAs are identified as STA1 and STA2, which are connected to AP1 through
a wired and wireless LAN, respectively. Both STA1 and STA2 share a significant amount of the data
(i.e., file) through AP1. STA2 retrieves the data file from STA1 using the MS Windows file sharing
facility. The large data file is used to avoid the download process from being completed during the
measurement process. Therefore, the resultant traffic via the access to the WLAN is considered to be
full-buffering. Table 1 shows the specification of the WLAN system in the experiment. The detecting
antenna (DA) has discovered a packet in the system, which is a wireless LAN Omni-antenna. The DA
is connected to a real-time spectrum analyzer, SA2600 (Techtronic, SW Karl Braun Drive, OR, USA),
to display the spectral activities of the system in an indoor real-time environment. The measurement
antenna is located near STA1 and AP1 to maintain the power of the signal. As a result, the setup can
avoid false alarms and misdetections. Figure 3 shows the structure of the experimental setup.

Table 1. The Specifications of the WLAN system.

WLAN Standard IEEE 802.11a

Transmission Power 12% of the Prescribed
WLAN Extension NEC Corp, Tokyo, Japan, PA-WL54SU2

Access Point Logitech Corp, Tokyo, Japan, LAN-WAGE/AP

Figure 3. The experimental setup of the WLAN networks.
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3.2. The Detection of the WLAN (802.11) Signal

The detected signal of the wireless network is observed from AP1 and displayed in the SA2600
spectrum analyzer, which is then saved for offline processing and analysis. The displayed signal is
emulated as PU activity in a channel, and the parameters of the signal detector are listed in Table 2.

Table 2. Parameters of Signal detector.

Bandwidth 5 MHz
Center frequency 5.2 GHz
Reference Level −10 dBm
Sampling rate 2 Msamples/sec
Measurement antenna ELECOM WDC 433DU2H
Detecting Antenna Omni-directional

The active and idle states of the channel are extracted from the experimental data based on
the energy detection which is the preferred approach in many prior studies due to its simplicity and
relevance in processing the measurement power [14,29,30]. The energy detection compares the received
signal energy in a certain channel to a correctly established decision threshold. The hypotheses model
of the detection technique is defined as:

Y =

{
∑I

i=1 n2
i , H0

∑I
i=1 s2

i + n2
i , H1

(1)

where ni, with i ∈ [1, 2...I] is the sample of Gaussian white noise, and si, with i ∈ [1, 2...I] are the
samples of the PU signals. The H0 indicates that the spectrum bands are detected as being idle, and H1

indicates that the PU occupies a channel.
The SU data transmission is activated based on the spectrum sensing result, where the SU will be

transmitted during H0 while remaining silent during H1. The threshold for the targeted Pd and Pf is
formulated as [31]:

λPd = σ2
n(

√
2(2γ + 1)

M
Q−1(Pd) + γ + 1) (2)

λPf = σ2
n(

√
2
M

Q−1(Pf ) + γ + 1) (3)

where Pd and Pf are the target detection probability and false alarm probability, whereas σ2
n is the

noise variance, γ is the signal to noise ratio, and M is the number of samples.
Figure 4 illustrates the number of idle period (tRB) detected with three different thresholds which

are 10−4, 10−5 and 10−6. In Figure 4a the number of detected tRB is 78, which is the lowest among
the other threshold decisions. For Figure 4b,c, the number of detected tRB is the same which is equal
to 156. The received signal is then compared with the correctly established threshold value, which is
10−5. The threshold value is chosen since it allows the received signal sense higher numbers of tRB
compared to the threshold value of 10−4, in addition to allow detection of longer idle times, compared
to the threshold of 10−6.
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(a) Threshold = 10−4 (b) Threshold = 10−5
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Figure 4. The number of idle times detected (tRB) with different threshold values: (a) 10−4, (b) 10−5

and (c) 10−6.

4. Primary User Traffic Model Based on the Empirical Model: EM-PuO Design

The PU activity model is based on a real-time experimental data. An experimental setup to
measure the TOL of a WLAN is employed in Section 3.1. The extracted TOL from the WLAN signal
is analyzed and modelled as EM-PuO. The EM-PuO is the empirical measurement data of the PU,
which is emulated by the WLAN system as random PU activity for SU opportunistic transmission.
The modelled EM-PuO is used to determine the realistic spectrum occupancy of the PU channels based
on the actual measurement of the WLAN system.

4.1. Analysis of the Detected WLAN (802.11) Signal

The obtained signal is analyzed according to the MAC protocol of the IEEE 802.11a standard.
The signal includes the data packet, short inter-frame spacing (SIFS), ACK, and stop period, tp. The tp

is a space that consists of distributed coordination function spacing (DIFS), and the random back-off
time (tRB). Figure 5 shows the analyzed WLAN signal. In the standard transmission data packet,
the appearance of SIFS indicates the end of the data packet, and the ACK signal is sent by AP1 to
acknowledge the received packet.

The appearances of the data series and SIFS, ACK, and DIFS spaces thereby indicate that the
channel is busy and is known as tbusy. While running the random back-off time, the channel is identified
as tidle (PU ‘off’state). The states of tbusy and tidle are expressed as given by the following equations:

tbusy = tDATA + tSIFS + tACK + tp (4)
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tRB = tp − tDIFS (5)

tidle = tRB (6)

where tRB is time for random back-off.

10 
x10·3

5 

0 

1� s 'S 

-5 '-'-----'------'-----'----'---'----'------'
300 400 500 600 700 800 900 1000 

Time (sec) 

Figure 5. The analysed WLAN signal using the spectrum analyzer.

In this system, the PU also performs sensing to detect the wireless access. If there is any access
detected during tRB, the countdown of the back-off is immediately stopped. During measurement,
the SU transmitter and receiver are configured to communicate through a short-range communication
with minimum signal power. Even though the SU signal is low, it still produces harmful interference to
PU due to the close distance between the SU transmitter and PU receiver. In this situation, the PU could
not detect any access in the system but suffers from the hidden node terminal interference. In order to
avoid this problem, the SU is only used to exploit the spectrum during the back-off period, tRB.

4.2. The Probability Distribution of Idle Time

Based on the extracted length of tidle and tbusy obtained from the empirical data, a cumulative
distribution function (CDF) was derived and compared to the probability of the distribution model.
Notably, the exponential distribution is used to fit with the obtained empirical curves to present the
duration of the idle and busy states in the statistical properties. Assuming that the exponential matches
or corresponds to the idle periods, it can be defined as follows:

FTidle = 1− e−λtidle (7)

where the estimated λ of the considered exponential distribution that uses the relation is as follows:

λ =
1

E[Tidle]
(8)
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Next, the Kolgomorov-Sminorv (KS) test is calculated as [32] for both empirical data and
exponential fit to quantify the distance, DKS:

DKS = max
Tidle
{|Fe

Tidle
(tidle)− FTidle(tidle)|} (9)

where FTidle is empirical cdf of Tidle. After running the KS test, the tidle and tbusy are approximately the
exponential distribution random variables as λ and µ respectively.

5. Clustering Transmission Opportunity Length (CTOL) Model

The CTOL model represents the presence and absence of PU, which is similar to [2] which is based
on the PU arrival and departure time. The channel occupancy contains of two states, P = {0, 1} in
which represent the channel are idle and occupied, respectively. In this model, the TOLs are clustered
or separated into two groups that are denoted as large TOL, tidleL and small TOL, tidleS. The tidleL is
defined as idle states, while tidleS is assumed as busy in P.

There are two states of SU frame structure, S = {0, 1} in which 0 represents the sensing time state
while and 1 is the data transmission time. No collision will happen when the SU state is 0 and collision
may occur during 1. Hence, there are four different states of PU’s traffic in the CTOL model, which are
based on the channel occupancy and SU frames structure during the transmission. The four states are:
(i) HN

00(x); (ii) HN
01(x); (iii) HN

10(x); and (iv) HN
11(x).

5.1. CTOL Protocol Design

The duration of tidle is a critical factor that enables the SU to access the channel. Therefore, it is
important to analyze tidle so that the throughput of the SU is enhanced without causing any harmful
interferences to the PU. In the CTOL model, the detected tidle undergoes the clustering process that
is detached to the large and small idle time. The transmission opportunity length of the channel is
defined as follows:

TOL =

{
tidleS, tidle ≤ tth

tidleL, tidle > tth
(10)

where tidleL and tidleS are large and small idle times, respectively and tth is the threshold values of the
random back-off time. The tth is determined by considering the range of the total tidle in the system
and the contention window (W) value.

From the classification of tidle, the opportunity length of the time required to access a channel
is modelled using the two-state Markov model. The PU activity is modelled as Q based on the
assumption that tidleL offers an idle channel for the access of SU. Meanwhile, tidleS is assumed not
suitable for the SU transmission because it will be exposed to the interference in the channel. The mean
values of tidleS and tidleL in the exponential distribution are given as λS and λL, respectively.

Additionally, the probability of the transition of tidleL time from large to large and small to large
are formulated as follows:

q00 =
NLL
NL

(11)

q01 =
NLS
NL

(12)

q10 =
NSL
NS

(13)

q11 =
NSS
NS

(14)
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where NL is the total number of tidleL and NS is the total number of tidleS. Meanwhile NLL is the
number of TOL transition from tidleL to tidleL, NLS is the transition from tidleLto tidleS, NSL is transition
from tidleS to tidleL, and NSS is the transition from tidleS to tidleS.

5.2. PU Traffic Model

A realistic PU traffic model is then developed as in [2] to analyze the detection of the PU’s signal
by the SUs during spectrum sensing. The detected WLAN signal in Section 3.2 is emulated as the
PU traffic pattern. The CTOL model uses the empirical data from the measured WLAN signal and
analyzed them randomly. This model uses equations in [2] as references to develop the random arrival
and departure times of PU. Figure 6 shows the PU’s random departure and arrival times within one
frame of SU that considers the duration of tidleS and tidleL.

The different scenarios of PU traffic pattern in CTOL model are indicated using the notation
of HN

ps(x). The subscript p indicates the channel occupancy status, s is the SU frame structure states,
and x represents the PU arrival and departure time. The superscript N represents the new model,
which is the CTOL model.

Initially, in HN
00(x) and HN

01(x), the PU is absent, and the noise is only detected during the sensing
period. However, the PU arrives during the xth sample of the sensing period in HN

00(x), and the
PU signal is then detected. Meanwhile, in HN

10(x) and HN
11(x), the channel is detected as busy at the

beginning of SU transmission. In HN
10(x), the PU departs from the channel during the sensing period,

while HN
11(x) is the hypothesis that the PU is always present during the sensing period. The transition

probability of the CTOL model is given by [33]:

QN
φθ =

[
q00(Ts) q01(Ts)

q10(Ts) q11(Ts)

]
(15)

where q00 , q01 , q10 , and q11 are the probabilities of transition between large and small states and
vice-versa.

Figure 6. The PU’s traffic model of the CTOL model.

The probabilities of the hypotheses for the CTOL model were formulated from [2,4,26] as shown
in Figure 5. The Equations of (16)–(19) are reformulated from [2] which incorporates the clustered
TOL; tidleS and tidleL from Equation (10). The probabilities of the hypotheses are considered as the
probability of small and large idle time which can be derived as follows:

pHN
00
(x) = pSqx

00(Ts)q01(Ts)q
J−x−1
00 (Ts), I ≤ x ≤ I − 1 (16)

pHN
01
(x) =

{
pLqx

00(Ts)q01(Ts)q
J−x−1
00 (Ts), I ≤ x ≤ J

pLqJ
00(Ts), x = J

(17)
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pHN
10
(x) = pbqx

11(Ts)q10(Ts)q
J−x−1
00 (Ts), I ≤ x ≤ J (18)

pHN
11
(x) =

{
pbqx

00(Ts)q01(Ts)q
J−x−1
00 (Ts), I ≤ x ≤ J

pbqJ
11(Ts), x = J

(19)

where pS = λS
λS+λL

and pL = λL
λS+λL

represent the probability of tidleS and tidleL, respectively. The SU
transmission rate is derived based on the hypotheses for the improved throughput [4] and can be
expressed as:

rHi(x) = B. log2(1 +
γSU

1 + γHi(x)

) (20)

The γH00(x) =
(I−x)γPU

I , γH01(x)
= 0 , γH10(x) =

(x)γPU
I and γH11(x)

= γPU are the average SNRs
that considered the random arrival and departure of PU traffic.

5.3. The Probability of Collision

The probability of the collision between the SU and the PU is observed through imperfect sensing.
In a real-time environment, the sensing errors can occur in spectrum sensing. The probability of the
collision between SU and PU is denoted as p1

coll . The spectrum sensing results might have errors that
can lead to false alarms and missed detection.

This study assumed that the sensing errors such as the probability of false alarms could occur
in a channel. The SU frames might collide with the PU’s transmissions if the channel is idle with the
presence of PU’s transmissions during the transmission period.

From Figure 6, the conditional probability of collisions of the CTOL model can be calculated
as follows:

p1
coll =

I−1

∑
x=1

pHN
00(x)p f a +

I−1

∑
x=1

pHN
01(x)p f a +

I−1

∑
x=1

pHN
11(x)p f a (21)

where p f a is the probability of false alarms.
When the sensing period increases, the probability of detection will also increase while the

probability of false alarm decreases, and it is equal to p f a = 1− pd.
The probability of the collision among the SUs is denoted as p2

coll , which can occur if there is
at least one SU that is transmitted in the same frame. The conditional collision probability between
p1

coll and p2
coll means that the probability for the collision of the SU packet can be seen during its

transmission in a channel. The conditional probability of the collision between the SUs is given
as p2

coll = 1− (1− τ
(n−1)
st ), where τst is the stable transmission probability at the beginning of the

idle time.
The total conditional probability collision from both the SU and the PU to a packet can be derived

as follows:

pN
C = p1

coll + p2
coll − p1

coll .p
2
coll (22)

The stable transmission probability is formulated from [34] as:

τst =
2(1− 2pN

C )

2(1− 2pN
C )(W + 1) + pN

C W(1− (2pN
C )M)

(23)
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where W and M represent the minimum contention window value and the maximum back-off stage,
respectively. Next, let the probability of at least, an SU transmitting during the transmission be
pN

tx = 1− (1− τst)n and the probability of the interference to a PU can be derived as in [2] as:

pN
in = p1

coll · p
N
tx (24)

5.4. Normalized Throughput of the SU

The normalized throughput of the SU is defined as the portion of the period that the SU uses to
transmit the data successfully. The throughput of the SU is calculated based on the successful SU’s
transmission, which occurs when the channel is detected as idle, and the PU does not reappear during
the transmission period.

As an example, let n be the number of SUs that contend in the channel, and the probability of at
least one SU’s success to transmit in the channel is as follows:

pN
success = nτst(1− τst)

n−1 (25)

By considering the SU throughput, it is formulated as [2]:

SN =
TSU − τ

TSU
(pHN

01(J)(p f a)rHN
01(J) +

I−1

∑
x=1

pHN
10(x)(p f a)rHN

10(x) + pHN
11(I)(p f a)rHN

11(I))pN
success (26)

where TSU is the frame duration, and τ represents the sensing duration.

6. Results and Discussions

In this section, the CTOL model is evaluated and compared to the static PU model and dynamic
PU model. The probability of collisions and the SU’s throughput in the network are investigated for all
of the models. The total frame duration is set to 30 ms, the bandwidth B is 5 MHz, and the sampling
interval is Ts = 0.2 µs. The detection probability, pd, is set to 80% to restrict the interference probability
to below 20%.

Figure 7 illustrate the relationships of the SU normalized throughput with the increment of the
sensing durations for all of the models. These figures show the effect of the various sensing durations
on the SU throughput. The sensing duration from 0.1 ms in Figure 7a is increased to 1 ms (Figure 7b)
and 10 ms (Figure 7c). It shows that the CTOL model outperforms the other models due to the
increment of the sensing duration. This happens because the static model needs a longer sensing
duration to satisfy the detection constraint, in which pd is set as 0.8. The longer sensing duration
improves the sensing reliability and increasing the sensing durations degrades the SU throughput.
The reason for the degradation of the throughput is due to the shorter data transmission slot in the SU
frames. The longer sensing duration in the frames may, shorten the data transmission time for the SU,
that causes the degradation of the throughput.

The throughput performance in the CTOL model is slightly higher by 45% and 12.2% than the
other two reference models. This condition occurs because the CTOL model has analyzed the TOLs
and clustered them into two separate large and small parts. Then, the SU transmitted within the two
TOLs to reduce the possibility of colliding with the PU as both TOLs are idle. The fluctuation of the
throughput value is caused by the random values of SU transmit power in the simulation.
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Figure 7. The effect of sensing the duration of the normalized throughput for the secondary user when
increasing the sensing time: (a) τ = 0.1 ms; (b) τ = 1 ms and (c) τ = 10 ms.

In Figure 8, the probability of collisions is investigated and compared to the increasing of frame
duration. Then, the CTOL model is compared with the static and dynamic models. The probability of
collisions in the static model shows the highest number of collisions among the other models. The static
model assumed the absence and presence of the PU in the detection process. There might be the
occurrence of misdetections, which will lead to a higher collision in the channel due to the imperfect
sensing. Both CTOL and dynamic models use the random arrival and departure of the PU signals.
These models can detect and classify the PU signals thoroughly for every sample time in the four
different scenarios.

Figure 9 shows the SU throughput in the CTOL model for the three different transmission
opportunity lengths (TOLs) in the following channels: D1, D2 and D3. The SU throughput in D2 is
higher than in D1 and D3, even though it has the smallest number of TOLs compared to D1. Notably,
it occurs due to the value of the probability of stable transmissions τst, which did not only depend on
the conditional probability of collisions, pN

C , and it can also be determined by the number of W and M.
Although the numbers of TOL in D1 and D3 have a large gap, the throughput is slightly different as
they have the largest contention window, W = 1024.
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Figure 8. The probability of collisions for the CTOL model, dynamic model, and static model.

Figure 9. The normalized throughput for the CTOL model with the different numbers of TOL.

7. Conclusions

In this paper, the access opportunity for the SU is estimated in the channel and analyzed using
an experimental model that offers an accurate and realistic scenario. From the data, the CTOL model
is designed to examine the spectrum hole behaviors and evaluate all of them. The CTOL model was
compared between both static and dynamic models correspondingly. The proposed CTOL model
improves the SU throughput by 45% and 12.2% by clustering the detected TOLs into two large and
small categories. Even though the probability of collisions in the proposed CTOL model is 13.7%
higher than the dynamic model, the results showed that the performance improves as the value of
the probability of collision degrades and the frame duration increases. The simulation results have
proven that the SU throughput in the CTOL model can perform better with fewer minimum contention
windows and maximum back-off stage.
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