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Abstract: This work describes the performance of a DPNA-GA (Dynamic Planning Navigation
Algorithm optimized with Genetic Algorithm) algorithm applied to autonomous navigation
in unknown static and dynamic terrestrial environments. The main aim was to validate the
functionality and robustness of the DPNA-GA, with variations of genetic parameters including
the crossover rate and population size. To this end, simulations were performed of static and
dynamic environments, applying the different conditions. The simulation results showed satisfactory
efficiency and robustness of the DPNA-GA technique, validating it for real applications involving
mobile terrestrial robots.
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1. Introduction

In most of the studies concerning Genetic Algorithms (GAs) encountered in the literature, global
or local planning strategies are employed. The former provides optimum routes, at high computational
cost associated with a priori knowledge of the environment, while the latter provides suboptimal routes,
at lower computational cost and with complete, or almost complete, lack of knowledge concerning
the environment [1,2]. Global or local planning can be applied to static and dynamic environments,
although in the case of dynamic environments, global planning strategies require the use of external
observation devices to periodically transmit the current state of the environment to the robot [3].

Several studies [1,3–8] have described navigation strategies employing GAs, with global planning
in which the individuals (or chromosomes) are composed of all the possible routes between the
initial and final points. In all cases, a priori knowledge is required of the environment, which is
represented using a bidimensional grid. Several of the proposed techniques are specific to static
environments [1,4–7,9], while the proposal presented in Refs. [3,8] is aimed at dynamic environments,
although an external observation device is needed to transmit the state of the environment to the robot
at a speed faster than the speed of changes in the environment. Although efficient results have been
reported in these earlier studies, three issues need to be highlighted. The first is that the size of the
individual is variable and is a function of the length of the route (the greater the complexity of the
environment, the greater the length) and the resolution of the grid associated with the displacement of
the robot. This can significantly increase the spatial and temporal complexity of the GA, making it
unviable for use in limited hardware systems such as microcontrollers (MCUs), digital signal processors
(DSPs), and others. The second issue is that it is not always possible to obtain the a priori knowledge
of the environment that is important for global planning strategies. The third point is that these global
strategies are better suited to static environments, due to the necessity of using external observation
equipment for dynamic environments.
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Navigation strategies with GAs based on local planning have been presented for dynamic [10,11]
and static [2,12] environments. In these proposals, the individuals possess a dynamic size (dynamic
dimension) and store the nodes that compose the route. Despite making use of local planning
strategies, these proposals have the same problem described for the global planning methods, where
the complexity of the GA is a function of the complexity of the environment and the resolution of the
displacement of the robot. Another strategy is shown in Ref. [13] where the chromosomes are formed
with the obstacle distances (left, right, front), angle and direction. This approach uses the individuals
(chromosomes) with a static dimension which enables have a computation complexity less than the
works proposed in Refs. [2,10–12].

The works presented in Refs. [14,15] propose global navigation planning, similar to the
works [1,4–7,9] with other population-based metaheuristics algorithms [16]. The research [14] uses
the ant colony optimization, and the work [15] uses the pseudo-bacterial genetic algorithm. Already,
the work presented in Ref. [17] proposes the local planning for mobile robot navigation using firefly
algorithm. Other approaches using artificial intelligence techniques such as machine learning, fuzzy
systems, Q-learning are presented in Refs. [18–21].

Different to the studies cited above, the work described in Ref. [22] presents a navigation strategy
called the Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm (DPNA-GA).
This strategy employs a navigation scheme with local planning, in which the environment is a priori
unknown, and the sizes of the individuals are fixed (only representing possible local objectives through
which the robot could move) and are independent of the complexity of the environment or the size
of the route. Another important point is that the DPNA-GA can be applied to static or dynamic
environments, given that the planning is reformulated at each displacement. Even though navigation
techniques with local planning provide suboptimal solutions, it can be seen from the results presented
that in many cases it is possible to obtain routes very close to the optimum.

Nonetheless, the work presented in Ref. [22] does not provide details of the operation of the
DPNA-GA as a function of the genetic parameters. Therefore, the purpose of this work is to present
results obtained using the DPNA-GA for static and dynamic environments, varying the genetic
parameters to validate and generalize the technique proposed in Ref. [22].

2. DPNA-GA Strategy

To facilitate understanding of the results, this section details the DPNA-GA strategy presented in
Refs. [22,23].

It is assumed that the robot possesses a location sensor, which returns its spatial position,
pR =

(
xR, yR), and a set of n evenly distributed distance sensors. The navigation strategy based on

the DPNA-GA generates a route composed of M local displacement events to reach the final objective,
po f =

(
xo f , yo f

)
. In each m-th displacement event, there is a local objective, pol(m) =

(
xol(m), yol(m)

)
,

to which the robot moves.
The selection of the local objective, pol(m), in each m-th event, is performed by a GA that

considers the current position of the robot, pR(m), the distance to the final objective,po f , and the
obstacles detected by the n distance sensors. All the positions, pR(m), already visited by the robot up
to the m-th displacement are stored in the vector, pR, expressed by
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pR =


pR(0)
pR(1)

...
pR(m− 1)

pR(m)

 (1)

=



(
xR(0), yR(0)

)(
xR(1), yR(1)

)
...(

xR(m− 1), yR(m− 1)
)(

xR(m), yR(m)
)


and are also used to optimize the GA, avoiding searches in areas that have already been explored.

The algorithm ends when the current position of the robot is the same as the final objective, so that,
pR(m) =

(
po f ± ε

)
where ε is a tolerance factor, or when the number of displacement events exceeds a

maximum value, Mmax. The DPNA-GA can be used in both static and dynamic environments, because
at each m-th displacement event there is a new search for obstacles and for a new local objective,
pol(m). The steps processed by the DPNA-GA are presented in Algorithm 1 and are described in detail
in the following sections.

Algorithm 1 DPNA-GA

1: m = 0
2: pR =

[
pR(0)

]
3: while pR(m) 6=

(
po f ± ε

)
AND m < Mmax do

4: pDP(m) = Scanning
5: pO(m) = ObstaclesDetection

(
pDP(m)

)
6: pol(m) = LocalObjectiveSearch

(
pO(m), pDP(m), pR)

7: pR(m + 1) = Displacement
(

pol(m)
)

8: pR =
[
pR, pR(m + 1)

]T

9: m = m + 1
10: end while

2.1. Scanning Step

In this step (line 4 of Algorithm 1), the DPNA-GA forces the robot to perform a 360◦ scan of the
environment around its axis. From this scan, each j-th sensor, in the m-th event, returns a signal, sj(m),
proportional to the range, dmax, of the sensor, so that

sj(m) =


dj(m) for dj(m) ≤ dmax

dmax for dj(m) > dmax

(2)

where dj is the distance measured by the j-th sensor coupled to the robot.
During the scan, the angular displacement, α, can be expressed by

α =
360◦

n · p , (3)

where n is the number of distance sensors and p− 1 represents the number of angular displacements
that the robot can make on its axis, with the aim of decreasing the resolution and hence requiring a
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small number of sensors. At the end of the scan process, the DPNA-GA generates a polygon, called the
delimiting polygon (DP), composed of a set of K points, expressed by the vector

pDP(m) =



pDP
0 (m)

...
pDP

k (m)
...

pDP
K−1(m)


(4)

=



(
xDP

0 (m), yDP
0 (m)

)
...(

xDP
k (m), yDP

k (m)
)

...(
xDP

K−1(m), yDP
K−1(m)

)


where K = p× n and (xk, yk) represents the in-plane coordinates of the k-th point associated with the
DP. This polygon is used to delimit the search space associated with the genetic algorithm, such that
the points (individuals) generated within the polygon are more suitable than points generated outside
it. Meanwhile, it is not only the fact of being within or outside the polygon that defines the suitability
of each individual. Also considered are the distances between the point generated and the obstacles
detected in the scan, among other factors. Figure 1 illustrates the polygon generated by the DPNA-GA
for the case of n = 4 and α = 10◦.

−3 −2 −1 0 1 2 3 4
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−1

0
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2
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Figure 1. Example of the delimiting polygon (dashed blue line) for the case where n = 4 and α = 10◦

(p = 9).

2.2. Detection of Obstacles

The scan step is followed by initiation of the step for detection of the obstacles (line 5 of
Algorithm 1). In addition to the DP, a virtual polygon (VP) is generated that describes a circumference
centered on the position of the robot (pR), with radius rPV , slightly less than the range of the sensors,
dmax, such that

rPV = dmax(1− η), (5)
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where η is a factor limited to the range 0 < η ≤ 0, 1. The objective of the VP is to detect only those
points of the DP that are associated with obstacles, here denoted pO. Hence, after this step, a new set
of L points is generated, represented by the vector

pO(m) =



pO
0 (m)

...
pO

l (m)
...

pO
L−1(m)


(6)

=



(
xO

0 (m), yO
0 (m)

)
...(

xO
l (m), yO

l (m)
)

...(
xO

L−1(m), yO
L−1(m)

)


where

pO
l (m) = pDP

k (m) if fed

(
pR(m), pDP

k (m)
)
≤ rPV (7)

and L ≤ K. The function fed (·, ·) calculates the Euclidean distance between any two points, which can
be expressed by

fed (pi, pb) =

√
(xi − xb)

2 + (yi − yb)
2 (8)

Figure 2 provides an example showing the VP (dashed green circle) and the set of points pO

(red asterisks).
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Figure 2. Example illustrating the VP (green line) for a case where η = 0.01, and the set of points, pO,
detected (red asterisks) that avoid the obstacles.

2.3. Local Objective Search

In this step (line 6 of Algorithm 1), the proposed navigation strategy employs a GA to find a
possible local objective, pol , to which the robot will move. For each m-th displacement event, the GA is
executed with a new population for H generations. The individuals are characterized by the vector
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pGA(h, m) =



pGA
0 (h, m)

...
pGA

j (h, m)
...

pGA
J−1(h, m)


(9)

=



(
xGA

0 (h, m), yGA
0 (h, m)

)
...(

xGA
j (h, m), yGA

j (h, m)
)

...(
xGA

J−1(h, m), yGA
J−1(h, m)

)


,

where pGA
j (h, m) represents the j-th individual of the population of size J, associated with the h-th

generation of the m-th displacement of the robot. In each generation, h, all the individuals are generated
according to the nonlinear restriction expressed by

rd ≥
√

dxGA
j (h, m) + dyGA

j (h, m) (10)

where
dxGA

j (h, m) =
(

xGA
j (h, m)− xR(m)

)2
(11)

and
dyGA

j (h, m) =
(

yGA
j (h, m)− yR(m)

)2
(12)

This restriction limits the individuals of the population to a circumference with radius rd, centered
on the position of the robot at the m-th instant, pR(m). Usually, DP occupies most of the circle with
radius rd, so that a few individuals are created outside DP. Thus, using the coordinates of DP as
constraints on population creation would result in a much more complex creation routine, with few
practical compensations.

The evaluation function associated with the j-th individual of the h-th generation in the m-th
displacement is expressed by

gj(h, m) = do f
j (h, m) + β(m) 1

do
j (h,m)

+β(m)Cj(h, m) + Aj(h, m)
(13)

where do f
j (h, m) is the Euclidean distance between the j-th individual of the h-th generation and the

final objective, po f , such that
do f

j (h, m) = fed

(
pGA

j (h, m), po f
)

(14)

and do
j (h, m) is the shortest Euclidean distance between the j-th individual of the h-th generation and

all the L obstacles encountered, which can be expressed as

do
j (h, m) = min fed

(
pGA

j (h, m), pO
l (m)

)
for l = 0, . . . , L− 1 (15)

The variables β(m), Cj(h, m) and Aj(h, m) can be considered as penalty factors added to each
j-th individual of the GA. If no obstacle is encountered in the m-th displacement event (L = 0), it is
assumed that the optimum evaluation function is simply do f

j (h, m), such that
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β(m) =


1 for L 6= 0

0 for L = 0
(16)

Starting from the principle that the circumferences with radius rd, centered in the vector of the
center, pR, are areas that have already been visited, the penalty vector, Cj(h, m), can be characterized
as follows

Cj(h, m) =



1 if
@i ∈ {0, · · · , m− 1} :

fed

(
pGA

j (h, m), pR(i)
)
< rd

Z if
∃i ∈ {0, · · · , m− 1} :

fed

(
pGA

j (h, m), pR(i)
)
< rd

(17)

where Z is a relatively large number. Hence, if an individual, pGA
j (h, m), is located within any of the

m circumferences of radius rd, centered in the vector of the center, pR, it will be positively penalized,
reducing its chances of selection. Finally, the penalty, Aj(h, m), is referenced to the individuals,
pGA

j (h, m), located outside the DP, where

Aj(h, m) =


0 if ∈ DP

∞ if /∈ DP
(18)

In this last case, individuals that receive this penalty will have little chance of surviving to the
next generation. Figure 3 illustrates the calculation of the evaluation function for a j-th individual,
pGA

j (h, m).

−3 −2 −1 0 1 2 3 4
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fo

local objective chosen

Figure 3. Example illustrating the calculation of the evaluation function for a j-th individual, pGA
j (h, m),

in relation to the final objective, po f , and the obstacles, pO.

The evaluation function, presented in Equation (13), follows the same principle as the potential
fields technique [24], in which do f

j (n, m) (the Euclidean distance between the j-th individual and the

final objective, po f ) represents a traction force to the final point, and 1
do

j (n,m)
(the smallest Euclidean
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distance between the j-th individual and all the points associated with the obstacles) represents the
greatest force of repulsion between the j-th individual and all the obstacles encountered. At the end of
H generations, the point with the smallest evaluation function is selected as the local objective, pol(m),
associated with the m-th displacement event.

2.4. Displacement

The displacement step (line 7 of Algorithm 1) involves movement of the robot to the local
objective found in the previous step. After the movement, a new center point, pR(m + 1), is generated,
expressed by

pR(m + 1) 6=
(

pol(m)± ε
)

(19)

where ε is an allowed tolerance in relation to the local objective. This tolerance is essential to the robot
with restricted movements, such as nonholonomic robots [24] and errors from real measures. Figure 4
shows a sequence of M = 6 displacements to the final point, po f .

−4 −2 0 2 4 6

−2

0

2

4

6

8

  b1

Figure 4. Example illustrating the displacements (M = 6) made by the robot towards the final
point, po f .

3. Simulation Results

To validate the functioning of the DPNA-GA (for static and dynamic environments), considering
its robustness in terms of the genetic parameters, simulations were conducted using two types of
environment (A1 and A2), varying the number of generations (H), the size of the population (J), and the
crossover rate (Rc). The simulations were performed in MATLAB, using the updated version of the
iRobot Create toolbox [25,26]. The toolbox simulated a circular nonholonomic robot with variable
action and four distance sensors spaced at 90◦. Table 1 presents the fixed parameters used in the
simulations. Each simulation (Figures 5–12) was executed ten times, and the results are associated
with the average of the values obtained in all executions.
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Table 1. Common parameters used in the simulations.

Number of sensors (n) 4
Maximum sensor range (dmax) in meters 3 m
Angular displacement (α) 10◦

Radius (rd) in meters 1 m
Z (Equation (17)) 1000
Codification of individuals Real number
Selection method Stochastic uniform
Elitism Yes (2 individuals)
Crossover operator Uniform random [0, 1]
Mutation operator Gaussian random N(0, 1)

The individuals used the real number encoding method, the crossover operator used the
intermediate scheme where the offspring (pGA

i (h + 1, m) and pGA
v (h + 1, m)) are chosen using the

uniform random number, that is,

pGA
i (h + 1, m) = pGA

l (h, m)r(h, m) + pGA
k (h, m)(1− r(h, m)) (20)

and
pGA

v (h + 1, m) = pGA
l (h, m)(1− r(h, m)) + pGA

k (h, m)r(h, m) (21)

where the pGA
l (h, m)rj(h, m) and pGA

k (h, m)rj(h, m) are individuals chosen from pGA(h, m) in selection
step and r(h, m) is a uniform random number between 0 and 1. Using Equation (9), Equations (20) and
(21) can be rewritten as

xGA
i (h + 1, m) = xGA

l (h, m)r(h, m) + xGA
k (h, m)(1− r(h, m)), (22)

xGA
v (h + 1, m) = xGA

l (h, m)(1− r(h, m)) + xGA
k (h, m)r(h, m), (23)

yGA
i (h + 1, m) = yGA

l (h, m)r(h, m) + yGA
k (h, m)(1− r(h, m)), (24)

and,
yGA

v (h + 1, m) = yGA
l (h, m)(1− r(h, m)) + yGA

k (h, m)r(h, m). (25)

As the mutation operator, it was used the Gaussian mutation operator expressed as

pGA
i (h + 1, m) = pGA

i (h, m) + g(h, m) (26)

where the g(h, m) is the Gaussian random variable of median zero and variance σ, N(0, σ), associated
of the h-th generation of the m-th displacement of the robot. Using Equation (9), Equation (26) can be
rewritten as

xGA
i (h + 1, m) = xGA

i (h, m) + gx(h, m), (27)

and,
yGA

i (h + 1, m) = yGA
i (h, m) + gy(h, m), (28)

where the gx(h, m) and gy(h, m) are the Gaussian random variable of median zero and variance σ,
N(0, σ), associated of the x and y coordinates, respectively. In all simulations, it was used variance,
σ = 1.

Eight simulations were made, four for environment A1 (simulations S1, S2, S3, and S4) and four
for environment A2 (simulations S5, S6, S7, and S8). For each simulation, Tables 2 and 3 show the
data for the length of the route, cp, travelled by the robot (in meters), the processing time associated
with all the displacements along the route, tp (in seconds), and the number of displacement events,
M. The displacements of the robot in each simulation are illustrated in Figures 5–12, where the
route is indicated by a continuous black line, the m displacement events are shown as circles along
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the route lines, and the DPs associated with each displacement are indicated by dashed blue lines.
The simulations were performed using a computer with a 64 bits CPU (Intel(R) Core(TM) i5-3210M),
2.5 GHz clock speed, and 8 GBytes of RAM.

During the development of the work, several combinations of GA parameters were tested. How
the target of the proposed method (DPNA-GA) is for embedded systems with low processing (such as
microcontrollers), it was measured the time processing in seconds per displacement event (s/disp), td,
for all simulations. After that, it was observed that the combinations with high population size (J > 30),
large generations number (H > 30) and low crossover rate (Rc < 60%) achieved high values of td
(td > 3 s/disp). However, values of td > 3 s/disp can reduce the continuity of movement associated
with the robot. Thus, the eight simulations (S1 to S8) were chosen using the criterion of td < 2.5 s/disp
(time processing in seconds per displacement event).

The size of the population at J = 10 is a relatively low amount for the GA standards, and
increasing that amount generally implies a slight improvement in GA convergence values, but a
considerable increase in processing time in environments with many obstacles. A similar situation is
the one that concerns the crossover rate. Lowering the crossover rate, Rc, from 60% to close values
or increasing the crossover rate, Rc, from 80% to close values, the results did not show significant
differences. Lowering from 60% crossover rate to distant values has led to bad results that were already
expected. Based on these results, we decided to include in our analysis only the most significant ones.

In the case of environment A1 (results shown in Table 2 and Figures 5–8), it can be seen that the
navigation strategy showed little variation in terms of the number of displacement events, m (mean
of 19.5 and standard deviation of 2.5), and the length of the route, cp (mean of 18.1 m and standard
deviation of 1.67 m). However, greater variability was found for the processing time (mean of 28.92 s
and standard deviation of 12.88 s).

Comparing simulations that have the same crossover rate (simulations S1 and S2, and simulations
S3 and S4), it can be observed that the ones with a larger population size (simulations S1 and S3)
have slightly higher performances in terms of route size and number of displacements. However,
this little increase in performance does not compensate for the increase in processing time, which
is more than twice its counterparts are. On the other hand, when comparing simulations with the
same population size (simulations S1 and S3, and simulations S2 and S4), the increase in crossover rate
meant a smaller route size and less displacements, with a less significant increase in processing time
than in the previous comparison.

Lowering the crossover rate led to a more elitist configuration of the population, letting more
individuals continue unchanged in the next generation. For a routing problem, reaching a few points
in the search space can lead to a poor convergence of the algorithm. A larger population increases the
variability of solutions reached in the search space, as can be seen in simulation S3 (Figure 7), but it
does not quite compensate for the lower crossover rate in this case. The simultaneous decrease of these
parameters of genetic variability, as shown in simulation S4 (Figure 8), leads to the worst convergence of
the algorithm among the simulations, causing the robot to do bad and/or unnecessary displacements.

Finally, another important point to emphasize is that reduction of the size of the population only
slightly increased the number of displacements (from 17 to 19) and greatly reduced the total time
associated with the displacements (from 39.31 s to 15.64 s).

Table 2. Parameters used in the simulations of environment A1.

Population Generations Crossover Length Processing Displacement Time per
Size Number Rate of Route Time Events Displacement
(J) (H) (Rc) (cp) (tp) (M) Event (td)

S1 30 30 80% 16.52 m 39.31 s 17 2.31 s/disp
S2 10 30 80% 17.10 m 15.64 s 19 0.82 s/disp
S3 30 30 60% 18.46 m 40.60 s 19 2.14 s/disp
S4 10 30 60% 20.28 m 20.15 s 23 0.88 s/disp
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Figure 5. Displacement of the robot in simulation S1 (J = 30, H = 30 and Rc = 80%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 6. Displacement of the robot in simulation S2 (J = 10, H = 30 and Rc = 80%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 7. Displacement of the robot in simulation S3 (J = 30, H = 30 and Rc = 60%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 8. Displacement of the robot in simulation S4 (J = 10, H = 30 and Rc = 60%). The red
circumference—labeled as b1—indicates the final point of the displacement.

In the simulations using environment A2 (S5, S6, S7, and S8), the robot encountered a dynamic
obstacle (red rectangle) and had to avoid it. The results of these simulations are shown in Table 3 and
Figures 9–12. Different to the results for environment A1, the data for the length of the route, cp (mean
of 13.25 m and standard deviation of 0.47 m), the processing time, tp (mean of 10.43 s and standard
deviation of 0.67 s), and the number of displacement events, M (mean of 13.5 and standard deviation of
0.58) showed very low variability associated with changes in the genetic parameters. This result could
be explained by the alternation between the size of the population, J, and the number of generations,
H, in simulations S5, S6, S7, and S8.

Compared to the findings for environment A1, environment A2 showed poorer results, with
a crossover rate of 80%. This could be explained by the simplicity of environment A2, relative to
environment A1, which did not require a high rate of renewal of the individuals of the population.

The data shown in Tables 2 and 3 demonstrate that the execution time of the DPNA-GA is much
shorter than for the strategies presented previously [6] for an environment similar to A1. This difference
is mainly associated with the size of each individual, the number of generations, and the size of the
population, which in the case of the DPNA-GA were limited to 2, 30, and 30, respectively. The proposal
described in Ref. [1], for example, employed populations of up to 2000 individuals with size of around
140 values (in the best case), for an environment similar to A1. In other work, a population of 50
individuals was used, together with 2000 generations [11].

Table 3. Parameters used in the simulations of environment A2.

Population Generations Crossover Length Processing Displacement Time per
Size Number Rate of Route Time Events Displacement
(J) (H) (Rc) (cp) (tp) (M) Event (td)

S5 30 10 80% 13.94 m 10.65 s 14 0.76 s/disp
S6 10 30 80% 13.19 m 11.25 s 14 0.80 s/disp
S7 30 10 60% 12.87 m 9.68 s 13 0.74 s/disp
S8 10 30 60% 12.93 m 10.16 s 13 0.78 s/disp
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Figure 9. Displacement of the robot in simulation S5 (J = 30, H = 10 e Rc = 80%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 10. Displacement of the robot in simulation S6 (J = 10, H = 30 e Rc = 80%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 11. Displacement of the robot in simulation S7 (J = 30, H = 10 e Rc = 60%). The red
circumference—labeled as b1—indicates the final point of the displacement.
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Figure 12. Displacement of the robot in simulation S8 (J = 10, H = 30 e Rc = 60%). The red
circumference—labeled as b1—indicates the final point of the displacement.

3.1. Comparison with Other Approaches

To compare the results with other works in the literature, the DPNA-GA was simulated with
environments used in works presented in Refs. [9,13,14,17,21]. Figures 13–16 show the displacement of
the DPNA-GA in the environment proposed in Refs. [9,13,14] and [17,21], respectively. Table 4 shows
the parameters and the results of the DPNA-GA in the environments shown in the Figures 13–16.
Finally, Table 5 compares the result between the DPNA-GA and the literature works presented
in Refs. [9,13,14,17]. Each simulation (Figures 13–16) was executed ten times, and the results are
associated with the best cases. The genetic parameters for DPNA-GA were J = 30, H = 10 and
Rc = 80%, corresponding to the best configuration found in the simulations with static environment
(see Table 2, S2). The techniques compared were the Improved Genetic Algorithm (IGA) [9], the
Matrix-Binary Codes-based Genetic Algorithm (MGA) [13], the Ant Colony Optimization (ACO) [14],
the ACO with the Influence of Critical Obstacle (ACOIC) [14], the Firefly algorithm [17] and the Fuzzy
System [21].

Table 4. Results of the simulations of environments shown in the Figures 13–16.

Environment
Length Processing Displacement Time per

of Route Time Events Displacement
(cp) (tp) (M) Event (td)

Reference [9] Figure 13 25.95 15.83 s 10 1.58 s/disp
Reference [13] Figure 14 33.92 7.92 s 6 1.32 s/disp
Reference [14] Figure 15 2119.94 8.39 s 5 1.68 s/disp
Reference [17,21] Figure 16 69.93 10.51 s 7 1.50 s/disp

Table 5. Route length comparison between DPNA-GA and other navigation approaches.

Environment Technique

Other Approaches DPNA-GA

Length of the Average Length of the Average
Best Route Route Length Best Route Route Length

Reference [9] Figure 13 IGA 22.83 22.83 25.05 25.95
Reference [13] Figure 14 MGA 35.1 35.1 33.92 36.77

Reference [14] Figure 15 ACO 2700 3513.3 2119.94 2720.74ACOIC 3446.7

Reference [17] Figure 16 Firefly 95 95 69.93 72.96Reference [21] Fuzzy 97.97 98.53
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Figure 13. Displacement required for the robot using DPNA-GA in the environment proposed in
Ref. [9]. The red circumference indicates the final point of the displacement.
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Figure 14. Displacement required for the robot using DPNA-GA in the environment proposed in
Ref. [13]. The red circumference indicates the final point of the displacement.
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Figure 15. Displacement required for the robot using DPNA-GA in the environment proposed in
Ref. [14]. The red circumference indicates the final point of the displacement.
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Figure 16. Displacement required for the robot using DPNA-GA in the environment proposed in
Ref. [17]. The red circumference indicates the final point of the displacement.

The comparative results in Table 5 show that the DPNA-GA had a route length gain in most cases.
Table 6 presents the route length saved by DPNA-GA for works [13,14,17,21]. For research presented
in Ref. [9] the DPNA-GA had a slightly worse result (<10%) however, it is important to emphasize
that the work shown in Ref. [9] uses a GA navigation strategies with global planning in which each
individual (or chromosome) is coded as a possible routes between the initial and final points and this
increase the chromosome size and GA processing. The DPNA-GA uses the fixed chromosome size
regardless of route length.

Table 6. The route length, in %, saved by DPNA-GA.

Environment Technique Route Length Saved by DPNA-GA

Reference [13] Figure 14 MGA 3.47%

Reference [14] Figure 15 ACO 27.36%ACOIC

Reference [17] Figure 16 Firefly 37.28%
Reference [21] Fuzzy 40.00%

4. Conclusions

The objective of this work was to validate the robustness of a dynamic planning navigation
technique for mobile terrestrial robots, based on genetic algorithms, denoted DPNA-GA. The validation
was performed by varying some of the genetic parameters, in two different types of environment.
Starting with strategies described in the literature as a basis, the DPNA-GA comprises a navigation
scheme with local planning (applied to static and dynamic environments), in which the environment is
unknown a priori and the size of the individuals is independent of the complexity of the environment.
This property is fundamental from the point of view of practical implementation. The simulations
showed that the DPNA-GA provided viable route solutions for different types of environment,
following changes in the genetic parameters, hence demonstrating robustness at a relatively low
cost, compared to other global and local planning strategies.
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