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Abstract: Visual-inertial odometry (VIO) has recently received much attention for efficient and
accurate ego-motion estimation of unmanned aerial vehicle systems (UAVs). Recent studies have
shown that optimization-based algorithms achieve typically high accuracy when given enough
amount of information, but occasionally suffer from divergence when solving highly non-linear
problems. Further, their performance significantly depends on the accuracy of the initialization of
inertial measurement unit (IMU) parameters. In this paper, we propose a novel VIO algorithm of
estimating the motional state of UAVs with high accuracy. The main technical contributions are
the fusion of visual information and pre-integrated inertial measurements in a joint optimization
framework and the stable initialization of scale and gravity using relative pose constraints. To account
for the ambiguity and uncertainty of VIO initialization, a local scale parameter is adopted in the
online optimization. Quantitative comparisons with the state-of-the-art algorithms on the European
Robotics Challenge (EuRoC) dataset verify the efficacy and accuracy of the proposed method.
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1. Introduction

In robots and unmanned aerial vehicle systems (UAVs), the ego-motion estimation is essential.
To estimate the current pose of a robot, various sensors such as GPS, inertial measurement units (IMU),
wheel odometers, and cameras have been used. In recent years, the visual-inertial odometry (VIO)
algorithm, which fuses the information from a camera and an IMU, has been garnering increasing
interest because it overcomes the shortcomings of other sensors and can operate robustly. For example,
a GPS sensor can estimate the global position of the device, but it can only operate in outdoors and
cannot get precise positions needed for autonomous UAV navigation. An IMU sensor measures
acceleration and angular velocity at high frequency, but the pose estimated by integrating the sensor
readings easily drifts due to the sensor noise and time-varying biases. Visual odometry (VO) is
more precise than other methods for estimating the device poses because it utilizes the long-term
observations of fine visual features. However, it is vulnerable to motion blur from fast motions, the
lack of scene textures, and abrupt illumination changes. Furthermore, monocular VO systems cannot
estimate the absolute scale of motion due to the theoretical limitation of the camera’s projective nature.
By fusing IMU and visual information, VIO operates in extreme environments where the VO fails and
achieves higher accuracy with metric scale.

Initially, VIO was approached by loosely-coupled fusion of visual and inertial sensors [1,2].
An extended Kalman filter (EKF) [3,4] is also used, as it can update the current state (e.g., the 3D pose
and covariance) by solving a linearized optimization problem for all state variables in a tightly-coupled
manner [5–7]. The filtering-based approaches can estimate the current poses fast enough for real-time
applications; however, they are less accurate than the optimization-based approach because of the
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approximation in the update step. Recently, optimization-based algorithms [5–8] have been developed
for higher accuracy, but they require higher computational cost and suffer from divergence when
the observation is poor or the initialization is not correct. Certainly, there is a trade-off between
performance and speed, and it is difficult to optimize all the parameters in the initialization and update
phase, especially when the information is insufficient.

In this work, we propose a VIO system that uses the tightly-coupled optimization framework
of the visual and pre-integrated inertial observation, together with a robust initialization method
for the scale and gravity. For real-time operation, the optimization cost for the trajectory estimation
should not contain a large number of parameters. By using the pre-integrated IMU poses as the inertial
costs, the number of pose parameters in the optimization window is drastically decreased, roughly
from the number of frames to the number of keyframes. This reduction enables us to increase the
size of the optimization window, which results in improved accuracy and robustness of the system.
To account for the noise and error in the IMU biases, we introduce a local scale parameter in the device
pose formulation.

Bootstrapping a VIO system requires careful treatment, as incorrect system parameters can easily
break the system. The pose estimation problem for visual-inertial systems may not have a unique
solution depending on the types of motion [9], and it makes the initialization task more challenging.
As the IMU readings contain time-varying biases, we do not use the initial IMU measurement for the
motion scale estimation. Instead of assuming that the biases are given to the system, we start with an
arbitrarily-scaled vision-only map and upgrade it to a fully-metric map when enough information
on the bias is available. We propose an efficient method to compute the global scale and gravity
direction in the bootstrapping stage, by combining the relative pose constraints in the optimization.
Furthermore, the convergence criterion to determine when to upgrade to the metric map and finish
the bootstrapping process is proposed. As it works without any assumption on the motion or biases,
this greatly improves the applicability of the proposed algorithm in the real world.

The experiments with the EuRoC [10] benchmark dataset confirm that our algorithm can estimate
the reliable device poses with the correct real scale even in dynamic illumination changes and fast
motions. On top of the robustness, we achieve better estimated pose accuracy compared to the
state-of-the-art VIO algorithms. Our main contributions are summarized as follows:

• We propose a novel visual-inertial odometry algorithm using non-linear optimization of
tightly-coupled visual and pre-integrated IMU observations with a local scale variable. The old
information and estimation results are marginalized and utilized in the optimization for
better stability.

• A robust online initialization algorithm for the metric scale and gravity directions is introduced.
By enforcing the relative pose constraints between keyframes acquired from visual observations,
the initial scale and gravity vectors can be estimated reliably, without assuming any bootstrapping
motion patterns or that the bias parameters are given. To avoid failure due to the divergent scale
variable in the optimization, we also propose a criterion that can determine the initialization
window size adaptively and autonomously.

• The experimental results show that the proposed method achieves higher accuracy than the
state-of-the-art VIO algorithms on the well-known EuRoC benchmark dataset.

2. Related Work

The VIO algorithms focus on highly accurate pose estimation of a device by fusing visual and
IMU information. Cameras provide the global and stationary information of the world, but the visual
features are heavily affected by the external disturbances like fast motion, lighting, etc. IMU sensors
generate instantaneous and metric motion cues, but integrating the motions for a long period of time
results in a noisy and drifting trajectory. As these two sensors are complementary, there have been
many attempts to combine the two observations.
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Recent VIO algorithms can be classified into the filtering-based approach, which feeds the
visual and inertial measurements to filters, and the optimization-based approach, using non-linear
optimization for state estimation. The former approaches use an extended Kalman filter (EKF) [11],
which represents the state as a normal distribution with the mean and covariance. The EKF-based
systems are faster than the optimization-based methods since they use linearized motion and
observation models. In the multi-state constrained Kalman filter (MSCKF) [3], the visual information
and IMU data are combined into a filter and the body poses are updated by a 3D keypoint processing
with high accuracy. Li and Mourikis [4] proposed the new closed-form representation for the IMU
error state transition matrix to improve the performance of MSCKF and the online model with extrinsic
calibration. Hesch et al. [12] developed an observability constraint, OC-VINS, that explicitly enforces
the system’s unobservable direction, to prevent spurious information gain and reduce discrepancies.
The optimization-based methods are more accurate than the filtering-based method; however, they
suffer from a high computational cost. To overcome this limitation, optimizing only a small window of
poses or running an incremental smoothing is proposed [13,14]. Leutenegger et al. [5] proposed to
calculate the position and velocity by integrating IMU measurements with VO’s keyframe interval
while marginalizing out to old keyframe poses to mitigate complexity. However, these methods use
the propagated poses of the IMU measurements for a certain interval, which has the disadvantage of
re-integrating the linear acceleration value according to the device orientation changes for the local
window. Forster et al. [8] proposed extending the IMU pre-integration method [15] to update the
bias variables efficiently by calculating linear approximation IMU biases’ Jacobian for a very short
interval using the IMU pre-integration method. Lupton and Sukkarieh [16] proposed a sliding window
optimization framework for the IMU pre-integration method and old keyframe marginalization in
the local window, and Qin and Shen [17] and Raul Mur-Artal and Tardos [6] combined VIO with the
SLAM system for more accurate pose estimation.

The optimization methods directly use IMU sensor measurements together with the visual
features as the constraints of the pose variables, which results in a highly non-linear formulation. For
accurate and stable pose estimation, the initialization of the metric scale and gravity direction is critical
because the time-varying IMU biases need to be calculated from the device poses. If the biases are
not estimated accurately, the following online pose optimization is likely to diverge. Martinelli [9]
demonstrated that there may exist multiple solutions in the visual-inertial structure from motion
formulation. Mur-Artal and Tardos [6] proposed a closed-form formulation for vision-based structure
from motion with scale and IMU biases; however, one should wait for initialization until 15 s to make
sure all values are observable. Weiss et al. [18] proposed an initialization method that converges quickly
using the extracted velocity and the dominant terrain plane based on the optical flow between two
consecutive frames, but it requires aligning the initial pose and the gravity direction at the beginning.
We discuss in Section 5 how to calculate the metric scale and gravity using the pose graph optimization
(PGO) [19] and IMU pre-integration.

3. System Overview

As shown in Figure 1, the proposed visual-inertial odometry algorithm consists of visual
feature tracking, IMU pre-integration, initialization, and optimization modules. We use the
Kanade–Lucas–Tomasi (KLT) feature tracker [20] to find the feature point correspondences
for geometric modeling of camera poses and scene structure. Alternatively, one can use
descriptor-matching algorithms [21–24] for this task, which also can be used for loop-closure finding
in visual SLAM systems. We introduce a tightly-coupled visual-inertial odometry algorithm, which
continuously estimates the motion state with a local scale parameter by minimizing the costs from
visual information and IMU measurements (Section 4). For successful operation, it is critical to measure
the IMU biases from the reliable metric poses and gravity direction. In Section 5, we present a robust
initialization algorithm of the metric scale and gravity using pose graph optimization. Figure 2 shows



Sensors 2018, 18, 4287 4 of 21

one example result of our VIO system and a few images of the challenging situations from the EuRoC
dataset. More results and discussions are presented in Section 6.

Visual information

KLT feature tracking
Assign unique

feature ID

IMU measurements

Accelerometer

Gyroscope
IMU pre-integration

Initialization

Alignment
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Keyframe
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Figure 1. Overview of the proposed system. First, the initialization module computes a vision-only
map and tries to determine the global metric scale and gravity. When this bootstrapping is
over, the tightly-coupled VIO algorithm continuously estimates the device trajectory. PGO, pose
graph optimization.

(a)

(b)

Figure 2. (a) An example result of the proposed system for V1-02 of the EuRoCbenchmark dataset.
The blue line is the estimated trajectory; the black dots are the reconstructed sparse landmarks; and the
red quadrangular pyramid represents the current camera pose. (b) Captured images in EuRoC with
various challenges, such as motion blur and illumination changes. Our proposed system is able to
estimate reliable poses for all sequences of EuRoC datasets (Section 6).
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4. Visual Inertial Optimization

The goal of the visual-inertial odometer is to estimate the current motional state using visual
information and inertial measurements at every time. The state st at time t is defined as a quadruple:

st = 〈wdθt, wvt,
dba

t,
dbω

t〉, (1)

where w
dθ ∈ special Euclidean group SE(3) is the rigid transformation parameter from the device

to the world coordinate system, v is the velocity of the device, and dba, dbω are the sensor biases.
The IMU sensor bias is modeled as a random walk, whose derivation is zero-mean and Gaussian
as dḃa = nba

, dḃω = nbω
, where nba ∼ N (0, σ2

ba
), nbω ∼ N (0, σ2

bω
). The coordinate systems are

denoted as a prescript on the left side of the symbol, and there are the world (w), the device (d), and the
camera (c) coordinate systems. The time or keyframe index is denoted as a subscript (t or j) of the
symbol. Let us denote the rigid transformation corresponding to θ as T = [R, p] ∈ SE(3), and ?

and −1 denote the composition/application and the inversion operators for SE(3) transformations,
respectively. The world coordinate system is defined so that the gravity direction is aligned with the
negative z-axis. We follow the convention that the device coordinate system is aligned with the IMU
coordinate system. The transformation from the camera to the device coordinate system is written as
d
cT, and it is pre-calculated in the device calibration process [25,26].

4.1. Visual Reprojection Error

The visual error term of our proposed method uses the re-projection error in the conventional local
bundle adjustment. The error is the difference between the projected location xi,l of a 3D landmark Xl
and its tracked location x̂i,l at the keyframe i. As illustrated in Figure 3, the visual cost Cν

i,l from the
tracked features is defined as:

Cν
i,l = ρ

(
eν(i, l)>Λν

i,le
ν(i, l)

)
(2)

eν(i, l) = x̂i,l − π
(

d
cT−1 ? T(w

dθi)
−1 ? wXl

)
, (3)

where Λν
i,l is the information matrix associated with the tracked feature point at the keyframe and π

denotes the camera projection function. ρ is the Huber norm [27], which is defined as:

ρ(x) =

{
1, if x ≥ 1

2
√

x− 1, if x < 1
. (4)

. . .

Figure 3. Illustration of the visual error. The green dashed line represents re-projection error eν, and
the visual error term optimizes the summation of these errors for the local window.
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4.2. IMU Pre-Integration

The IMU sensors measure the angular velocity and translational acceleration, and in theory, the
3D pose (orientation and position) of the device can be calculated by integrating the sensor readings
over time. However, the raw IMU measurements contain significant noise and time-varying non-zero
bias, and these make the integration-based pose estimation very challenging. The IMU angular velocity
dω̂ and acceleration dâ measurements at time t are modeled with the true acceleration wa and angular
velocity dω as:

dât =
w
dR>t (

wat − wg) + dba
t + na, and (5)

dω̂t =
dωt +

dbω
t + nω, (6)

where w
dR>t is the rotation from the world to the device coordinates (note the transpose), wg is the

constant gravity vector in the world, dba
t, dbω

t are the acceleration and gyroscope biases, and na,
nω are the additive zero-mean noise. From the following relations, wṗ = wv

wv̇ = wa
wṘ = w

dR[dω]×

 , where [ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (7)

for the image frames k and k+ 1 (at time tk and tk+1, respectively), the position, velocity, and orientation
of the device can be propagated through the first and second integration used in [28],

wpk+1 = wpk +
wvk∆tk +

∫ ∫
t∈tk ,tk+1

(w
dRt(

dât − dba
t − na) + wg)dt2 (8)

wvk+1 = wvk +
∫

t∈tk ,tk+1

(w
dRt(

dât − dba
t − na) + wg)dt (9)

w
dRk+1 = w

dRk Exp
(∫

t∈tk ,tk+1

(dω̂t − dbω
t − nω)dt

)
. (10)

Assuming the acceleration dâk and the angular velocity dω̂k are constant between time interval tk
and tk+1, we can simplify the above equations as follows:

wpk+1 = wpk +
wvk∆tk,k+1 +

1
2

wg∆t2
k,k+1 +

1
2

w
dRtk (

dâtk −
dba

tk − na)∆t2
k,k+1 (11)

wvk+1 = wvk +
wg∆tk,k+1 +

w
dRtk (

dâtk −
dba

tk − na)∆tk,k+1 (12)

w
dRk+1 = w

dRtk Exp
(
(dω̂tk −

dbω
tk − nω)∆tk,k+1

)
. (13)

The measurement rate of the IMU is much faster than that of the camera, as illustrated in Figure 4,
and it is computationally burdensome to re-integrate the values according to the changes of the state
in the optimization framework. Thus, we adopt the pre-integration method, which represents IMU
measurements in terms of the poses of the consecutive frames by adding IMU factors incrementally as
in [7,29].

For two consecutive keyframes [i, j] where the time between two (ti, tj) can vary, the changes of
position, velocity, and orientation that are not dependent to the biases can be written as follows from
Equations (11)–(13):

∆pi,j := w
dR>i (

wpj − wpi − wvi∆ti,j −
1
2

wg∆t2
i,j) =

j−1

∑
k=i

1
2

Ri
k(

dâtk −
dba

tk − na)∆t2
k,k+1 (14)
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∆vi,j := w
dR>i (

wvj − wvi − wg∆ti,j) =
j−1

∑
k=i

Ri
k(

dâtk −
dba

tk − na)∆tk,k+1 (15)

∆Ri,j := (w
dRi)

> w
dRj =

j−1

∏
k=i

Exp((dω̂tk −
dbω

tk − nω)∆tk,k+1), (16)

where Ri
k represents the rotation from the frame k to the time i. We can calculate the right side of

above equation directly from the IMU measurements and the biases between the two keyframes.
However, these equations are functions of the biases, dba

tk and dbω
tk . If the biases dba and dbω

between the keyframes are assumed to be fixed, we can obtain the values of ∆pi,j, ∆vi,j, ∆Ri,j from the
IMU measurements without re-integration.

𝑖 𝑗 

∆𝑡𝑡,𝑡+1 

Visual measurements 

IMU measurements 

Figure 4. IMU sensor measurements are typically much faster than the camera frame rate. The EuRoC
benchmark provides the IMU sensor readings at 200 Hz and camera images at 20 fps. i and j denote
the time of camera capture, and t is the IMU measurement time.

However, in the case of bias, it changes slightly in the optimization window, and we use the recent
IMU pre-integration described in [7,29] to reflect the bias changes in the optimization by updating
delta measurements of bias using the Jacobians, which describe how the measurements change due to
the estimation of the bias. The bias is updated from the delta measurements δba and δbω using the
first-order approximation as,

∆pi,j ' ∆p̄i,j + Jω
∆p

dδbω
i + Ja

∆p
dδba

i (17)

∆vi,j ' ∆v̄i,j + Jω
∆v

dδbω
i + Ja

∆v
dδba

i (18)

∆Ri,j ' ∆R̄i,j Exp(Jω
∆R

dδbω
i), (19)

where ∆p̄i,j, ∆v̄i,j, ∆R̄i,j are the pre-integrated measurements from the fixed bias and Jacobians
[Jω

∆p, Jω
∆v, ...] are computed at integration time, describing how the measurements change from bias

estimation [29].

wpj =
wpi +

wvi∆ti,j +
1
2

wg∆t2
i,j +

w
dRi(∆p̄i,j + Jω

∆p
dδbω

i + Ja
∆p

dδba
i) (20)

wvj =
wvi +

wg∆ti,j +
w
dRi(∆v̄i,j + Jω

∆v
dδbω

i + Ja
∆v

dδba
i) (21)

w
dRj =

w
dRi ∆R̄i,j Exp(Jω

∆R
dδbω

i), (22)

Finally, the local optimization cost of the IMU residual eµ
i,j for the interval of keyframes i and j

using pre-integration is defined as follows:

Cµ
i,j = eµ(i, j)> Λµ

i,j eµ(i, j) (23)

eµ(i, j) =



w
dR>i (

wpj − wpi − wvi∆ti,j − 1
2

wg∆t2
i,j)− (∆p̄i,j + Jω

∆p
dδbω

i + Ja
∆p

dδba
i)

w
dR>i (

wvj − wvi − wg∆ti,j)− (∆v̄i,j + Jω
∆v

dδbω
i + Ja

∆v
dδba

i)

Log((∆R̄i,j Exp(Jω
∆R

dδbω
i))
>(w

dRi)
> w

dRj)
dba

j − dba
i

dbω
j − dbω

i

 (24)
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where Λµ
i,j is the information matrix associated with the IMU pre-integration covariance between the

keyframes, reflecting the IMU factor noise. The computed measurement of IMU pre-integration factor
is a function of the random noises [na, nω , nba

, nbω
], which are assumed to be zero-mean and Gaussian.

A covariance matrix of pre-integrated parameters Σµ
i,j ∈ R15×15 is propagated from the knowledge

of the IMU sensor noise given in the sensor specifications. As the IMU biases follow the Brownian
motion model, we penalize abrupt changes of the biases between consecutive keyframes with the bias
costs at the bottom two entries in Equation (25).

4.3. Online Optimization

Considering UAVs, the VIO system should estimate the current pose in real time using captured
visual information and IMU measurement. We use the visual-inertial bundle adjustment framework
and solve the optimization problem with the Gauss–Newton algorithm implemented in Ceres
Solver [30]. For the states sk and the 3D landmarks Xl , the cost function is defined as follows for the
optimization window:

S∗online = argmin
{sk},{li}

Cρ + ∑
(i,l)
Cν

k,i +
n−1

∑
k=0
Cµ

k,k+1

 , (25)

where Cρ is the prior information from marginalization, which is the factor for the states out of the
local optimization window.

In order to estimate the best metric scale, we add the local scale factor es′ into our cost function
(Equation (26)) and optimize it together with other variables. When a new keyframe is added,
we assume that the device experiences the motion changes and perform joint optimization including
the local scale s′ variable. To prevent the scale from becoming zero or negative, we use the exponential
parameterization es′ instead of using s′ directly. The updated IMU residual is:

eµ(i, j) =



w
dR>i ( es′ (wpj − wpi)− wvi∆ti,j − 1

2
wg∆t2

i,j)− (∆p̄i,j + Jω
∆p

dδbω
i + Ja

∆p
dδba

i)
w
dR>i (

wvj − wvi − wg∆ti,j)− (∆v̄i,j + Jω
∆v

dδbω
i + Ja

∆v
dδba

i)

Log((∆R̄i,jExp(Jω
∆R

dδbω
i))
>(w

dRi)
> w

dRj)
dba

j − dba
i

dbω
j − dbω

i

 . (26)

Figure 5 shows the graphical model of our visual inertial local bundle adjustment. We perform
local optimization with the sufficiently accurate scale variable computed by bootstrapping in Section 5,
and the optimized local scale is marginalized to prior information along with the poses of the
old keyframes. Figure 6 shows the comparison results with or without the local scale variable.
Optimization involving local scale factor achieves accurate estimation of poses, since this approach is
able to refine local scale information.
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: Velocity

: IMU pre-integration

: IMU biases

: Landmarks

: Keyframe pose

: Frame pose
𝑻𝒏−𝟐 𝑻𝒏−𝟏𝑻𝟎 𝑻𝒏𝑻𝒏−𝟑

𝑘

: Local scale

Figure 5. Illustration of the proposed visual inertial local bundle adjustment. All keyframe poses
〈wdθ0, w

dθ1, . . . , w
dθn〉 contain the visual terms with landmarks and the IMU pre-integration factors with

a common local scale parameter. The current frame n (which may not be a keyframe) is included in the
local window with the accumulated IMU pre-integration.

Figure 6. The difference in the trajectories from the ground-truth to the optimization without the scale
(left) and the proposed optimization with the scale parameter (right). The estimated trajectories are
aligned to the ground-truth via a rigid transform (special Euclidean group SE3) using the Technical
University of Munich (TUM) RGB-D benchmark tool [31]. The proposed method is able to accurately
estimate the poses by updating the scale incrementally.

4.4. Marginalization

The optimization-based VIO algorithms need to marginalize out the old information so as not to
slow down the processing speed [5,7]. The marginalization does not eliminate the old information
outside of the local optimization window of keyframes, but converts it into a linearized approximate
form to the remaining state variables using the Schur complement [32]. When a new keyframe is
added into the local optimization window and the window size exceeds the preset threshold, the state
(the pose, velocity, and bias) of the oldest keyframe in the window is marginalized (Figure 7 illustrates
keyframe marginalization in a graphical model). On the other hand, if the current frame is not selected
as a keyframe, only the visual information is dropped, while the IMU measurements are kept for IMU
pre-integration. The marginalized factor is applied to be a prior of the next optimization, which helps
to find a better solution than simply fixing the keyframe poses outside of the optimization window.
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Local window

𝑇0 𝑇1 𝑇𝑛−1 𝑇𝑛. . .

Marginalization

. . .

. . .

. . .

. . .

: Local scale

: Keyframe pose

Figure 7. Marginalization of the old keyframes with local scale. Marginalized measurements are used
as the prior for the next optimization.

5. Bootstrapping

Unlike the monocular visual odometry where the absolute scale of the map is not recoverable,
the visual-inertial odometry needs to find the important parameters such as the scale of the map and
gravity direction to estimate the metric state robustly. Moreover, there are many motion patterns
in which the multiple solutions of IMU bias parameters exist, such as constant velocity motions
including no motion [9]; thus, optimization involving all state variables without precise initialization
may not converge to the true solution. For these reasons, some VIO systems require approximate
manual initialization of the gravity vectors or IMU biases, or real scale distance information using
different sensors [33]. The map of visual features is constructed starting from the two keyframes with
sufficient parallax, and it is continuously updated as more keyframes are observed. However, the IMU
measurements for these keyframes may not observe any significant changes in acceleration, and this
can cause failure in bootstrapping the VIO system.

In this work, we propose a bootstrapping method that computes the accurate scale and gravity
through stepwise optimization using relative pose constraints. Our method consists of vision-only map
building, pose graph optimization with IMU pre-integration, convergence check, and IMU bias update.

5.1. Vision-Only Map Building

The first step, vision-only map building, is identical to monocular visual odometry [34,35] and
structure from motion algorithms (SFM) [36]. The system finds the first two keyframes w

cT0 and w
cT1

with sufficient motion, by checking the numbers of inlier features by a homography and a fundamental
by the five-point algorithm [37], as only the fundamental matrix can explain the non-planar scene with
enough parallax depth, and it is important for reliable 3D point reconstruction [35]. If the absolute
scale of motion is not available, the visual map is initialized with an arbitrary scale, and the inlier
features are triangulated and their 3D positions registered. The gravity direction is roughly initialized
with the average of the initial acceleration readings (we experimentally use the first 30 readings
@200 Hz), and the world coordinate system is set by aligning the gravity to y-down. Once the initial
map with 3D points is built, the poses of later keyframes are computed by the Perspective-n-Point
(PNP) algorithm [38] Local bundle adjustment using Equation (2) is performed initially and whenever
a keyframe is added to improve the accuracy of pose and point positions. Until the scale and gravity
are reliably measured in the next steps, purely vision-only map building is continued.

5.2. Pose Graph Optimization with IMU Pre-Integration

While the purely-visual mapping is running, we try to estimate the metric scale using the
pre-integrated IMU factor. For easy formulation and efficient estimation, we adopt the pose graph
optimization (PGO) framework [19,39,40], which constructs a graph of keyframes where the edges
represent the relative pose constraints between keyframes, and optimizes the keyframe poses so that
the inconsistency of the relative poses and constraints are minimized (note that this is equivalent to
marginalizing the landmarks in a standard bundle adjustment). PGO is commonly used in monocular
SLAM systems to fix the scale drift in loop closures using Sim(3) relative poses. In contrast, we
use SE(3) relative poses with a global scale parameter s for the entire map, as the scale drift for a
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short period of initialization time is not significant. Additional constraints from the pre-integrated
IMU and the gravity vector are added to PGO, and the factors in our formulation are illustrated in
Figure 8. Furthermore, to expedite the convergence, the gravity vector g is also included in the active
parameters. Because the magnitude of gravity g is always 9.8, we include the constraint g>g = 9.82

when performing the optimization.
Formally, we define the state for PGO with all keyframe poses, velocities, the gravity, and the

global scale s as:

Spgo = 〈wdθ0, w
dθ1, . . . , w

dθn, wv0, . . . , wvn, wg, s〉. (27)

In this section, we parameterize w
dθk an SE(3) transformation with a pair of a translation vector

p and a Hamiltonian quaternion [41] q, i.e., θ = [R(q), p], where R(·) is the function converting
a quaternion to a 3× 3 rotation matrix.

While performing visual pose estimation, we calculate IMU pre-integration for keyframes using
Equations (20)–(22), in which bias and noise are initialized as zero. Using Equations (20) and (21) for
consecutive keyframes i and j, we obtain the scale error cost es

i,j:

Cs
i,j = (es(i, j))>Λs

i,je
s(i, j) (28)

es(i, j) =

[
R(wqi)

>( es (wpj − wpi)− wvi∆ti,j − 1
2

wg∆t2
i,j)− (∆p̄i,j + Jω

∆p
dδbω

i + Ja
∆p

dδba
i)

R(wqi)
>(wvj − wvi − wg∆ti,j)− (∆v̄i,j + Jω

∆v
dδbω

i + Ja
∆v

dδba
i)

]
, (29)

where Λs
i,j denotes the information matrix, and we use the sub-block of Λµ

i,j.
For the relative pose between two keyframes i and j given as pi,j = R(qi)(

wpj − wpi) and
qi,j =

w
dq∗i

w
dqj, the relative pose costs in PGO are given as follows:

Crel
i,j = erel(i, j)>Λrel

i,j erel(i, j) (30)

erel(i, j) =

[
pi,j − p̂i,j

2 ∗Vec(qi,j q̂∗i,j)

]
(31)

where (p̂i,j, q̂i,j) is the relative pose constraint between keyframe i and j in the current map,
Vec(q) returns the vector (imaginary) part of q, and Λrel

i,j is the information matrix from the keyframe
pose covariance. We define the optimization cost for a new state Spgo by combining Equations (28)
and (31) for whole keyframes n as follows:

S∗pgo = argmin
Spgo

{
∑

i,j∈k
Crel

i,j + ∑
k
Cs

k,k+1

}
, k ∈ [0, n]. (32)

: Velocity

: IMU pre-integration

: Keyframe pose

𝑘

𝑻𝒏−𝟐 𝑻𝒏−𝟏𝑻𝟎 𝑻𝒏−𝟑 𝑻𝒏

: Scale, gravity

Figure 8. The proposed pose graph optimization model for bootstrapping. We estimate the global
metric scale and gravity vector while maintaining the relative poses between keyframes computed
only from the visual information.
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5.3. Convergence Check

While the proposed scale and gravity optimization can be calculated in real time at the moment of
insertion of a new keyframe, we need to determine when to update the current map with the optimized
parameters to initialize the VIO process. We use two ways to measure the convergence: the covariance
of S∗pgo and the variance of the global scale variable. S∗pgo is the optimal solution for the states Spgo for
the maximum likelihood estimation. Then, the covariance of S∗pgo is given by,

C(S∗pgo) =
(

J(S∗pgo)
> J(S∗pgo)

)−1
(33)

where J(S∗pgo) is the Jacobian of Equation (32) at S∗pgo. One way to measure the quality of the solution
for the non-linear least squares problem is to analyze the covariance of the solution. For a non-linear
cost function of the state S and the maximum likelihood estimate S∗, J(S∗pgo) can be computed as
the Jacobian of Equation (32) at the optimal state S∗pgo. We apply the optimized scale and gravity to
the system initialization when the largest eigenvalue of the optimized covariance λmax(C(S∗pgo)) is
less than the threshold τcov and the scale variance is less than the threshold τvar at the same time.
Figure 9 shows one example of global scale estimation in the bootstrapping process. In the experiments,
the scale and gravity initialization in the bootstrapping stage are estimated to reliable values within 5 s
on average for the EuRoC dataset.

Figure 9. The optimized scale variable for the sequence MH (Machine Hall) 01. The optimal scale value
is computed by aligning the estimated visual trajectory with the ground-truth poses via Sim(3) [42].
Our bootstrapping algorithm estimates reliable initial scales within the 50th frame, then updates the
local scale by Equation (26) incrementally. It can be verified that the estimated scales are very close to
the optimal values.

5.4. IMU Biases Update

After the optimized scale and gravity are applied to the poses, we can calculate the initial
IMU biases while fixing all pose variables w

dθi in the optimization using Equation (25). As the
biases are updated, pre-integration for the local window keyframes is re-computed. At this point,
the bootstrapping of the VIO is complete, and afterwards, the online optimization is performed using
the framework presented in Section 4.3. Algorithm 1 shows the overall procedure of our method.
Our proposed system runs from the bootstrapping to online visual inertial optimization efficiently.
In Section 6, we discuss our results with the other comparison methods and how the estimated metric
scale converges to the true values by the proposed bootstrapping.
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Algorithm 1: Proposed online VIO algorithm.
Data: Images, accelerations and gyro
Result: 6DOF poses and landmarks
Initialization: Select 2 keyframes for visual motion-based initialization, and perform visual odometry to

estimate relative keyframe motion [43]. Then, calculate the metric scale and gravity by PGO with the
IMU factor. Check the convergence of the optimized parameters, and re-propagate the pre-integration
factor using the initial bias, scale, and gravity;

for k = 1–K do
Extract and track keypoints using KLT [20];
if the kth frame is the keyframe then

Add new landmarks;
Perform the online optimization minimizing cost function with local scale factor Equation (26);
Marginalize the old keyframe’s variables with scale;

else
Perform pose optimization by Equation (25) with the fixed previous keyframe’s poses;
Marginalize visual information observed on the current frame;

end
end
return optimized 6DOF pose and landmarks involving the real scale

6. Experiments

We use the EuRoC [10] dataset, which contains various challenging motions, to evaluate the
performance of the proposed algorithm quantitatively. The dataset is collected from the Firefly
micro-aerial vehicle equipped with a stereo camera and an IMU at high flying speeds. We use
only the left images with inertial sensor data. The sensor data in the EuRoC dataset are captured by
a global shutter WVGA monochrome camera at 20 fps and the IMU at 200 Hz. This dataset consists
of five “Machine Hall” sequences and six “Vicon Room” sequences, whose difficulties are labeled as
easy, normal, and difficult, depending on the motion speed and environmental illumination changes.
Both datasets contain the ground-truth positions measured by the Leica MS50 laser tracker and the
Vicon motion capture systems, which are well calibrated to be used as the benchmark datasets in
various VO/VIO/SLAM applications. The proposed system is implemented in C++ without GPU
acceleration and is executed on a laptop with Intel Core i7 3.0 G CPU and 16 GB RAM in real time.

6.1. Comparison with the State-of-the-Art Algorithms

We compare the proposed algorithm with the recent state-of-the-art approaches using the same
evaluation method by Delmerico and Scaramuzza [33], where the evaluation results of the VIO systems
were presented. All parameter settings are kept unchanged in all tests, and the metric is the RMSE
position error over the alignment trajectory to the ground-truth pose via SE(3) [44]. Note that, because
our proposed method is not a SLAM system, we only compare ours with the systems that do not have
loop closing. We directly compare the RMSE results with those of Open Keyframe-based Visual-Inertial
SLAM (OKVIS) [5], Robust Visual Inertial Odometry (ROVIO) [45], Monocular Visual-Inertial Systems
(VINS-Mono) [17], Semi-direct Visual Odometry (SVO) + Multi Sensor Fusion (MSF) [46,47], and SVO
+ Georgia Tech Smoothing and Mapping (GTSAM) [29] presented in [33].

OKVIS is an open source VIO system that minimizes the visual re-projection errors for landmarks
and IMU measurement with non-linear optimization. It uses a direct integration model without using
the IMU pre-integration method. ROVIO is an EKF-based VIO system that updates the pose state
using multi-level patches around feature points with propagated IMU motion and minimization of
photometric errors. VINS-Mono is similar to OKVIS as it uses the non-linear optimization based on
a sliding window, but it incorporates the IMU pre-integration for relative pose constraints between
the keyframes. In addition, the authors propose a loop closure using 4DOF pose graph optimization,
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which is not included in our comparison. SVO + MSF is an algorithm that combines semi-direct visual
odometry (SVO) [47], which can quickly estimate the frame poses based on visual patches and IMU
measurement, with the EKF framework. Note that it needs manual initialization using extra sensors.
SVO + GTSM optimizes structureless visual reprojection error with IMU pre-integration, performing
full-smoothing factor graph optimization by [14]. These methods differ from usage of visual terms
(re-projection and photometric error), IMU terms (IMU pre-integration and direct integration), and
minimization methods. Unlike with SLAM systems, VIO does not use re-localization and loop closing.
Momentary failures in pose estimation, e.g., due to fast motion or dramatic illumination changes in
Vicon Room1-03 (V1-03) or V2-03, can result in large pose errors in a long trajectory, and this is useful
in evaluating the robustness of the systems.

Table 1 shows the RMSE of the proposed algorithm and the state-of-the-art VIO systems in terms
of the estimated full trajectories of EuRoC. Figure 10 shows the estimated trajectories of our method
and the ground-truth poses. Our system works robustly and accurately in all sequences without any
failures. ROVIO, VINS, and OKVIS operate robustly in all sequences, but show low accuracy at V2-03,
which is difficult to initialize robustly due to fast motion, and MH-05, which contains a night-time
outdoor scene. SVO + GTSAM achieves superior performance in the “Machine Hall” sequences with
far features with illumination changes; however, it fails to estimate correct trajectories of some “Vicon
Room” sequences with fast motion (V1-03, V2-02∼03). Our algorithm performs well in MH-04∼05 and
V1∼2-03, which are the most difficult sequences with dramatic illumination changes, motion blur, and
dark illumination. Accurate scale and gravity initialization helps with the reliable estimation of the
bias, and it in turn enables estimating exact poses even when the feature tracking is unstable. We have
the best performance for overall without any failure cases, due to our tightly-coupled optimization
framework with the robust initialization method using relative pose constraints. The most important
aspect of the UAV applications is to estimate the vehicle ego-motion stably for the entire running.
The proposed method is suited for this purpose since it can yield accurate poses from the global metric
scale and gravity estimation using visual and inertial information together.

Table 1. Average distance error on the EuRoC dataset (unit: m).

EuRoC Sequence Ours SVO + MSF [46] OKVIS [5] ROVIO [45] VINS-Mono [17] SVO + GTSAM [29]

MH 01 (easy) 0.14 0.14 0.16 0.21 0.27 0.05
MH 02 (easy) 0.13 0.20 0.22 0.25 0.12 0.03

MH 03 (medium) 0.20 0.48 0.24 0.25 0.13 0.12
MH 04 (difficult) 0.22 1.38 0.34 0.49 0.23 0.13
MH 05 (difficult) 0.20 0.51 0.47 0.52 0.35 0.16

V1 01 (easy) 0.05 0.40 0.09 0.10 0.07 0.07
V1 02 (medium) 0.07 0.63 0.20 0.10 0.10 0.11
V1 03 (difficult) 0.16 X 0.24 0.14 0.13 X

V2 01 (easy) 0.04 0.20 0.13 0.12 0.08 0.07
V2 02 (medium) 0.11 0.37 0.16 0.14 0.08 X
V2 03 (difficult) 0.17 X 0.29 0.14 0.21 X

Overall 0.13 0.23 0.22 0.16
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RMSE (full trajectory): 0.14 m (80.13 m) 0.13 m (73.10 m)
MH 01 (easy) MH 02 (easy)

0.20 m (130.40 m) 0.22 m (97.34 m) 0.20 m (91.49 m)
MH 03 (medium) MH 04 (difficult) MH 05 (difficult)

0.05 m (58.43 m) 0.07 m (75.80 m) 0.16 m (78.84 m)
V1 01 (easy) V1 02 (medium) V1 03 (difficult)

0.04 m (36.31 m) 0.11 m (83.09 m) 0.17 m (85.92 m)
V2 01 (easy) V2 02 (medium) V2 03 (difficult)

Figure 10. Comparison trajectory result of the proposed method with the ground-truth. Estimated
trajectories are aligned to the ground-truth pose via SE(3). The green line represents the ground-truth
trajectory, and the red dashed line is ours. For overall sequences, the proposed method estimates the
accurate poses without any failure cases in the tightly-coupled optimization framework with a robust
initialization method using relative pose constraints.

6.2. Bootstrapping Experiments

We evaluated the proposed bootstrapping using a few challenging datasets of MH 02 (easy), MH 05
(difficult), and V2 03 (difficult). Figures 11 and 12 show the plots of the bootstrapping progress, as well as the
trajectory and individual parameters of our estimation vs. the ground-truth for the first 15 s. With insufficient
short-term initial poses, the estimated scale is very likely to be incorrect and unstable, but it is also not
desirable for the bootstrapping to take too long. The proposed two variance-based metrics can effectively
determine if the scale can be estimated reliably, and they can be computed easily from the PGO with IMU
pre-integration. Even when the visual observation is noisy and insufficient in MH 05 and V2 03 due to
fast motion, our proposed bootstrapping estimates the metric scale within 5 s. Furthermore, the estimated
initial scale in short bootstrapping time is gradually refined by the local scale factor throughout in the online
visual-inertial optimization framework for improved pose estimation. Figure 13 shows the plots of the
comparison for the positions and velocities of V1-01. Our proposed initialization and online scale update
method successfully estimates positions and velocities, which involve the metric scale.
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EuRoC-MH-02

EuRoC-MH-05

EuRoC-V2-03

Figure 11. The scales and the two variance-based confidence metrics at the bootstrapping stage, as well
as the estimated and ground-truth trajectories of three EuRoC sequences are shown. The left graphs
show the estimated scale, the maximum eigenvalues of the covariance, and the variance of the scale
parameter from top to bottom. When the bootstrapping starts, the uncertainty of the pose and scale is
large, and it is reflected in the metrics. As more visual and inertial observations become available, the
variances decrease, and the bootstrapping ends when both go below the thresholds (shown in blue
dashed lines). The right 3D plots are the ground-truth (green) and estimated (red) trajectories of the
initial 15-s period. Our adaptive bootstrapping successfully finishes within 5 s for the challenging
EuRoC sequences, and the RMSE pose errors after 15 s are less than 0.01 m.
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MH 02

MH 05

V2 03

Figure 12. The comparison of the ground-truth positions and orientations with ours. The ground-truth
values are plotted in green, and the estimated values are the red dashed lines. The black lines represent
the section where the bootstrapping takes place. Note that it starts when there exists enough motion
and finishes when the two confidence metrics are satisfied (Figure 11). The graphs show that the our
adaptive proposed initialization method estimates the scale and bias parameters reliably and accurately.
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Figure 13. The comparison of the ground-truth velocities and positions with ours for V1 01.
The ground-truth values are plotted in green lines, and the estimated values are the red dashed
lines. The positions and velocities computed by the estimated scale from the bootstrapping and
updated by the local scale parameter align well with the ground-truth.

The estimated scale graphs of Figure 11 show that our estimated scale variable converged to the
optimal scale in bootstrapping. The true scale value is computed by aligning the estimated visual
trajectory with the ground-truth poses via similarity transformation [42]. The two graphs below
them show the convergence-check parameters in bootstrapping, which are described in Section 5.3.
Experimentally, we set the maximum eigenvalue of the covariance τcov to 30 and the scale variance τvar

to 0.005. Note that the variances can be estimated when there exists meaningful motion. For example,
in Figure 11, the first 0.6 (MH 02)∼5.1 (V2 03) seconds are not used. When both metrics drop below
the thresholds, bootstrapping is finished, and the estimated scale is applied to the entire trajectory.
In contrast, ref. [6] is designed to wait for 15 s to find the initial variables (scale, gravity, and biases)
by the closed-form solution. Once the parameters are found at the beginning, they are not updated
afterwards; thus, if the calculated scale variable is not accurate, the following pose estimation can fail
completely. Compared to [6], our method provides an adaptive and reliable bootstrapping.

Figure 12 shows our position and orientation estimates after bootstrapping compared with the
ground-truth. The proposed method provides reliable scaled position and aligned orientation; thus, it
is suited for various robotics systems in the real world.

7. Conclusions

In this paper, we propose a robust and accurate monocular visual inertial odometry system,
which can be applied to UAVs in unknown environments. Even when the initial motion is not known
and constrained, we optimize the relative motion with the IMU pre-integration factors to solve the
highly non-linear problem effectively and estimate the reliable states with convergence criteria to
bootstrap the system. We also estimate the local scale and update it with marginalization of old
keyframes to overcome the limitation of the sliding window approach. We evaluate the robustness
and accuracy of the proposed method with the EuRoC benchmark dataset, which contains various
challenges, and show that ours outperform the state-of-the-art VIO systems.

The problem of state estimation of UAVs is a challenging research topic due to its dynamic motion
and interaction with the unknown environment. Therefore, we are interested in further extending
the algorithm with additional sensors for stable operation in the real world. In addition, we are
planning the dense map reconstruction from the reliable device poses estimated from various sensors.
The high-density reconstruction of the environment can be applied to various applications such as
obstacle detection, re-localization, and 3D object tracking, which will help UAVs become more practical.
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