

Sensors 2018, 18, 4273; doi:10.3390/s18124273 www.mdpi.com/journal/sensors

Article

Data Compression Based on Stacked RBM-AE Model

for Wireless Sensor Networks

Jianlin Liu, Fenxiong Chen * and Dianhong Wang

School of Mechanical Engineering and Electronic Information, China University of Geosciences,

Wuhan 430074, China; liujianlin@cug.edu.cn (J.L.); wangdh@cug.edu.cn (D.W.)

* Correspondence:cfx6810@163.com; Tel: +86-134-1950-9866

Received: 6 November 2018; Accepted: 1 December 2018; Published: 4 December 2018

Abstract: Data compression is very important in wireless sensor networks (WSNs) with the limited

energy of sensor nodes. Data communication results in energy consumption most of the time; the

lifetime of sensor nodes is usually prolonged by reducing data transmission and reception. In this

paper, we propose a new Stacked RBM Auto-Encoder (Stacked RBM-AE) model to compress

sensing data, which is composed of a encode layer and a decode layer. In the encode layer, the

sensing data is compressed; and in the decode layer, the sensing data is reconstructed. The encode

layer and the decode layer are composed of four standard Restricted Boltzmann Machines (RBMs).

We also provide an energy optimization method that can further reduce the energy consumption of

the model storage and calculation by pruning the parameters of the model. We test the performance

of the model by using the environment data collected by Intel Lab. When the compression ratio of

the model is 10, the average Percentage RMS Difference value is 10.04%, and the average

temperature reconstruction error value is 0.2815 °C. The node communication energy consumption

in WSNs can be reduced by 90%. Compared with the traditional method, the proposed model has

better compression efficiency and reconstruction accuracy under the same compression ratio. Our

experiment results show that the new neural network model can not only apply to data compression

for WSNs, but also have high compression efficiency and good transfer learning ability.

Keywords: wireless sensor networks; data compression; stacked RBM; transfer learning; energy

consumption optimization

1. Introduction

Research has found sensor networks suitable to collect environment information, such as

temperature, light and humidity in harder-to-reach areas. In recent years, with the development of

information technology, wireless sensor networks (WSNs) have played an important role in a wide

range of disciplines [1]. Unmanned vehicles need GPS and accelerometer to locate themselves, and

to get information regarding their environments using a camera and lidar [2]. By fusing these multi-

modal sensor data, they can also predict the moving trajectory of nearby objects. Similarly,

environmental monitoring applications need temperature, humidity, wind direction, etc. The

increase in WSNs applications and sensor nodes have led to an explosion in the amount of sensing

data. If the sensing data collected by WSNs are directly sent to a gateway, it will not only consume a

lot of power but also increase the probability of transmission errors. Because a sensor node’s storage

and portable energy resources is limited, it is important to design an energy-saving and redundant

data compression scheme for WSNs. These factors have motivated efficient technologies to reduce

energy consumption and extend the lifetime of WSNs.

WSNs’ data collection methods include direct transmission to the base station, multi-hop

forwarding, data aggregation, and modeling with coding. Data aggregation is an important

Sensors 2018, 18, 4273 2 of 19

technology for data processing in WSNs. By aggregating the collected or received data, the amount

of data to be transmitted can be effectively reduced [3]. In the existing data aggregation algorithm

research, the node usually compares the relationship between its perceptual data and the

surrounding node data. If the data is found to be close, it will not be submitted in order to reduce the

transmission of redundant data. Although these aggregation algorithms reduce the amount of data

and save the energy consumption of the node, they cause a loss of node data. In addition, when

aggregating, the outlier detection is expensive and could introduce delays [4]. The Slepian-Wolf

coding applies distributed source coding technology to perform non-collaborative data compression

at the sources. However, it is not practical due to the lack of prior knowledge of the data correlation

structure [5]. Model-based compression algorithms such as APCA [6] and PWLH [7] also have good

compression ratio. However, they result in loss of sensing data, as they approximate data with

temporal and spatial locality. There is research that shows that modeling with the encoding method

is better for data transmission of WSNs [8]. It first models the original sensing data of the sensor node,

following which the modeled weights are sent to the base station, which uses the weights to compress

the original sensing data.

Compressed sensing (CS) [9] provides a new data compression method for WSNs. The basic idea

is that if the signal is sparse or compressible at a certain level, it can be reconstructed from a small

number of linear measurements lower than the Shannon–Nyquist limit [10]. In recent years, the study

of CS has led to many significant developments in the field of signal processing, including novel sub-

Nyquist sampling strategies and a veritable explosion of work in sparse approximation and

representation [11,12]. In Ref. [13], the CS technology proposes a method to reduce the sensing data

traffic for WSNs without the need for adapting to the data correlation structure. In Ref. [14], the CS

principle was used as a compression and forwarding scheme to minimize the transmission data. At

present, the CS requires a large amount of memory space to store the random sampling operator

when the signal amplitude is large. Therefore, the classic CS is not directly applied to largescale

application, and it will inevitably increase the computational complexity of encoding, so the CS

compression is limited by the mobile embedded processor. At the same time, it is difficult to apply

largescale WSNs while its energy is constrained. The analog CS technique is a novel strategy to

sample and process sparse signals at a sub-Nyquist rate [15]. In Ref. [16], the problem of energy

consumption for sensor nodes performing CS and DCS was addressed when both digital and analog

CS were considered. The minimum energy CS-based data aggregation problem was studied to

minimize the total energy consumption of a WSN in collecting sensing data from the whole network

[17]. In Ref. [18], the CS based signal and data acquisition for WSNs was proposed, and a cluster-

sparse reconstruction algorithm was proposed for in-network compression to achieve accurate signal

recovery and energy efficiency. Although the segmented linear compression method can be used to

reduce the dimension of high compression ratio by using polynomial approximation in the form of

segmentation, it has poor smoothness, poor precision and abnormal change. In Refs. [19,20], the data

compression algorithms based on spatiotemporal correlation for WSNs were summarized. In Ref.

[21], the run length coding method was proposed, which is suitable to compress the sensing data for

WSNs. A lightweight data compression algorithm based on spatial correlation was proposed in

ICACT [22], which saves more energy than wavelet compression in the case of the same distortion

rate. However, it is mentioned above that the learning ability of the shallow learning algorithm is

very weak for advanced features.

The deep learning method can extract detection data in multi-level features, which makes the

system have a strong data fitting ability by learning the deep features in the data. At present, there

are few researches on how to use the deep learning model to compress the sensing data for WSNs.

In Ref. [23], a method of using principal components analysis (PCA) to reduce the dimensionality of

data was proposed. In Ref. [24], the unification of machine learning approaches with CS was also

addressed, in which feed-forward deep neural network structures are used to aid CS signal

reconstruction. In Ref. [25], a data compression algorithm based on the stacked Auto-Encoder (SAE)

was proposed. This method combines the SAE and the cluster routing protocol. Compared with the

traditional compression algorithm, the SAE can improve the accuracy of data fusion by 7.5%. In Ref.

Sensors 2018, 18, 4273 3 of 19

[26], a deep convolution network for ECG signal compression is proposed, which needs a large

amount of calculation. The Restricted Boltzmann Machine (RBM) is a probabilistic model for a

density over observed variables that uses a set of hidden variables (representing presence of features).

In the standard RBM, all observed variables are related to all hidden variables by different

parameters. It was widely used in classification and generation. In Ref. [27], the Convolutional RBM

(C-RBM) was developed to achieve object detection. The C-RBM is a variant of the RBM model in

which weights are shared to respect the spatial structure of images. In Ref. [28], a pre-training

algorithm for the Deep Boltzmann Machines (DBMs) was described. In Ref. [29], a CS reconstruction

algorithm was proposed, which amounts to two nested inference problems, one on the CS

observation-matching problem, and the other on the RBM model. Compared with variational

autoencoders (VAE) and generative adversarial networks (GAN), RBM has the simplest network

structure and the minimum number of parameters. Correspondingly, RBM has a small computational

energy consumption and is more suitable for use in WSNs with limited energy. In our survey, there

is currently no research on how to directly use RBM to compress the sensing data for WSNs.

Currently, we mainly explore how to use RBM to compress the sensing data. In our next research, we

will also explore how to use VAE, GAN and other deep learning models to compress sensing data.

In this work, we combined the RBM generation model with the nonlinear learning method of

deep learning theory, and propose the Stacked RBM-AE model, which can compress and reconstruct

the sensing data for WSNs. We use four standard RBMs of different sizes to form the encoder and

decoder of the Stacked RBM-AE model. The Stacked RBM-AE model compresses the sensing data by

using its mathematical characteristics. In our experiments, we explore the performance of the model

and compare it with other compression methods, and we propose an energy optimization method of

the model to reduce the energy consumption of calculation. The contributions of this paper are

summarized as follows:

 We developed a hybrid model named Stacked RBM-AE that combines four standard RBMs with

the feature of auto-encoder to compress and reconstruct the sensing data.

 We proposed a new method of data compression, which has better reconstruction accuracy than

the traditional algorithm under the same compression ratio.

 We proposed an energy optimization method by pruning the model parameters, and we

analyzed the efficiency of pruning different proportion model parameters on the reconstruction

accuracy of the Stacked RBM-AE model under the same compression ratio.

The remainder of this paper is organized as follows: Section 2 introduces the architecture of the

Stacked RBM-AE, and the details of Stacked RBM-AE training. Section 3 discusses the results of the

experiments. Specially, we conduct several tricks on energy optimization. In Section 4, we sum up

our algorithm, and discus further work.

The code of the Stacked RBM-AE model is available online (https://github.com/LJianlin/Stacked-

RBM-AE).

2. Stacked RBM-AE Model

2.1. Architecture of the Stacked RBM-AE

The Stacked RBM-AE model contains two parts. The first part of the Stacked RBM-AE model we

call encoder � , which includes four standard RBMs (in Figures 1 and 2).

Sensors 2018, 18, 4273 4 of 19

Figure 1. Standard RBM.

Figure 2. Stacked RBM.

Each standard RBM is an undirected graph model, which includes two layers. The vector

� (��, ��, … , ��) represents the visual layer, which is the input vector with n scalar components from

the training dataset; The vector � (ℎ�, ℎ�, … , ℎ�) represents the hidden layer vector with m scalar

components. The standard RBM takes the state space (�, �) ∈ {0,1}���. The goal of RBM is to find

�����(�) the unknown true high dimensional distribution of the visual layer variables [30]. To

achieve this goal, the high-dimensional distribution of the training dataset is modeled to get �(�|�),

where the sample distribution depends on the model parameters � [31].

For the second part of the Stacked RBM-AE model, firstly we use the characteristics of auto-

encoder to flip the encoder � to get a symmetrical scale decoding output named decoder �; the

structure is shown in Figure 3. The initial input of the encoder � is used as the input of the multilayer

auto-encoder. Our goal is to satisfy the top output approximately equal to the bottom input.

Sensors 2018, 18, 4273 5 of 19

Figure 3. Stacked RBM-AE.

2.2. Details of Stacked RBM-AE Training

2.2.1. Pre-training of standard RBM

For the standard RBM, � denotes the activation probability of all visual units, and � denotes

the activation probability of all hidden layer units. The model parameter � contains three

parameters: � , � and � . � and � are the binary column vectors of 1 × � and 1 × � ,

respectively; � is the real-valued matrix of � × � , which represents the weights of the units

connected; � is the bias of visual layer units in � × 1 size; � is the bias of the hidden layer units in

� × 1 size. We use ��� to represent the weights between �� and ℎ�. �� represents the bias of ��. ��

represents the bias of ℎ�.

In the pre-training phase, we use CD algorithm [32] to train four standard RBMs of different

sizes in turn. Algorithm 1 shows the procedure of the pre-training of standard RBM. It first calculates

the activation probability of all hidden layer units and the activation probability of all visual layer

units, and then updates model parameters by minimizing the model loss.

Algorithm 1: Pre-training of standard RBM

Input: A mini-batch of training data set S, the number of train iteration iter, the learning

rate α

Initialization:

�, �, � = 0

While i < iter do

The hidden layer units activation probability � = �������(� + ��)

Get �(�) by one step Gibbs sampling for �

The visible layer units activation probability � = �������� � + ��(�) �

Update parameters �, �, � according to (7)–(9)

i + +

end

For the standard RBM, the activation state of each hidden layer unit is conditionally independent

for a given state of the visible layer unit. So, we can get the activation probability of ℎ�:

Sensors 2018, 18, 4273 6 of 19

��ℎ� = 1|�� = ������� ��� + � �����

�

� (1)

Similarly, when a state of a hidden layer unit is given, the activation probability of the visual

layer unit is also conditionally independent:

�(�� = 1|�) = ������� ��� + � ���ℎ�

�

� (2)

We define the energy function as:

�(�, �|�) = − � � �����ℎ�

�

���

− � ����

�

���

− � ℎ���

�

���

�

���

 (3)

The energy function means that there is an energy value between each visual layer unit and each

hidden layer unit. By indexing and regularizing the energy function, we get the joint probability of

� and �:

�(�, �|�) =
exp�−�(�, �|�)�

∑ exp�−�(�, �|�)��,�

=
exp�∑ ∑ �����ℎ�

�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� �

∑ exp�∑ ∑ �����ℎ�
�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� ��,�

(4)

We use the likelihood function derivation method to get the solution of parameters. The joint

probability distribution �(�, �|�) is known. By summing all the states of the hidden layer unit, the

edge distribution �(�|�) of the visible layer unit set can be obtained:

�(�|�) =
∑ exp�−�(�, �|�)��

∑ exp�−�(�, �|�)��,�

=
∑ exp�∑ ∑ �����ℎ�

�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� ��

∑ exp�∑ ∑ �����ℎ�
�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� ��,�

(5)

The representation based on the energy function is simply an alternative to the product

representation of the factor [33]. According to Equation (5), we can get � by maximizing �(�|�).

As ln(�) is increnebted, arg max
�

 �(�|�) and arg max
�

ln� �(�|�)� are equivalent. Thus, we

define the train goal function �(�) as:

�(�) = − ln � ���(�)|�� = − � ln ���(�)|��

�

���

�

���

 (6)

� is the number of train set. arg min
�

�(�) uses the gradient descent method [34]. In the

direction of
��(�)

�(�)
, �(�) becomes the fastest, we can find the minimum value of function by finding

an optimal parameter adjustment stride in this direction.

We use � to represent the learning rate of the algorithm, and the parameters update formula

can be defined as:

��� = ��� + �[��ℎ� = 1|���� − ��ℎ� = 1��(�)���
(�)] (7)

�� = �� + �(�� − ��
(�)

) (8)

�� = �� + �[��ℎ� = 1|�� − ��ℎ� = 1��(�)�] (9)

�(�) is the state of � after k step Gibbs sampling.

Sensors 2018, 18, 4273 7 of 19

2.2.2. Retraining of Stacked RBM-AE

We initialize the Stacked RBM-AE model by using pre-trained standard RBM parameters, but

the pre-trained parameters are only applicable to standard RBM, and we do not achieve good

performance on the Stacked RBM-AE model. Therefore, we use the pre-trained parameters to retrain

the Stacked RBM-AE model and use the BP algorithm [35] to fine tune the model parameters.

Algorithm 2 shows the procedure of the retraining of Stacked RBM-AE. It first calculates the encoder

output � and the decoder output, and then calculates the model loss according to Equation (13),

finally updating model parameters. The encoder output and the decoder output are calculated by the

Stacked RBM.

Algorithm 2: Retraining of Stacked RBM-AE

Input: A mini-batch of training data set S, the number of train iterations iter, the learning rate

α, the regularization parameter λ

Initialization:

�, �, � from the pre-trained standard RBM parameters

While i < iter do

The encoder output � according to (10)

Get �(�) by one step Gibbs sampling for �

The decoder output � according to (11)

The model loss L according to (13)

Update parameters �, �, � according to (7)–(9)

i + +

end

The encoder output of the Stacked RBM-AE model is calculated by four different sizes of RBMs

in turn, as shown in Figure 2. We use �� , �� and �� to represent the parameters of the � layer

standard RBM in the model. The encoder output is calculated by:

�(�) = � ������� ��� + � �����

�

���

 (10)

where �� is the activation probability of all hidden layer units in the ��� RBM. Similarly, the decoder

output is calculated by:

�(�) = � ������� ��� + � �����

�

���

 (11)

where �� is the activation probability of all visual layer units in the ��� RBM. For the input data

normalized to [0,1], they will be given the probability meaning that each neural unit value of the

Stacked RBM-AE model still obeys the Bernoulli distribution of {0,1}. The normalized real value of

the operation is considered to be the probability that the current unit has a value of 1. Then for a

single training sample, the objective or cost function that minimizes the cross entropy is:

���� ����(�)�� = − ����
(�)

log���
(�)��� + �1 − ��

(�)
� log�1 − ��

(�)����

�

���

 (12)

For the training dataset, the loss of the Stacked RBM-AE model is defined as:

����(�) = −
1

�
�� �����

(�)
log���

(�)��
� + �1 − ��

(�)
� log�1 − ��

(�)��
��

�

���

�

�

���

�

+
�

2
� � � ��(���)(��)

� �
�

����

�����

��

����

�����

���

(13)

Sensors 2018, 18, 4273 8 of 19

where � is layer number. �� represents the unit numbers of ��� layer, �� and ��� represents the

current layer number and the next layer number. The second term is the weights penalty item, which

is used to prevent over-fitting. λ is the regularization parameter in the penalty item.

3. Results and Discussion

3.1. Preprocessing Dataset

The experimental data was collected by the Intel Lab wireless sensor network research team

from the University of California, who placed 54 sensors to collect environmental data information

in the laboratory from 28 February to 5 April 2004. The sensor node distribution by Intel Labs is

shown in Figure 4. The weather board sensor collects time stamp topology information as well as

temperature, humidity, light and voltage values every 31 s. Due to node failure, there are several

temperature values above 100 °C and below −30 °C. We, therefore, preprocessed the temperature

data by taking the threshold of −5 °C and 45 °C by a priori knowledge.

In order to reduce the difference between the input data of the compressed model, and converge

the algorithm more quickly, we mapped the original data to [0, 1] by ��� − ��� normalization,

where ��� is the maximum value of the node sensing data, ��� is minimum value.

�∗ =
� − ���

��� − ���
 (14)

Figure 4. Sensor node distribution in Intel Lab.

After the preprocessing is completed, the node temperature database is converted to a data set.

Each node collects temperature data as a column vector, and stores this data in the temperature.txt

file. Due to node failure, some nodes only recorded a small amount of data. The average number of

data by each node after preprocessing is 29,665. The maximum number of data in all nodes is 55,080,

and the minimum number is 2507. We divide each node data into two parts: The training set and the

test set. In order to ensure that each node has enough training data to train the model, we did not use

common split standards such as 7:3 and 6:2:2, and instead used 9:1.

The more the number of samples in the training set, and the closer the empirical distribution is

to the true distribution, the more accurate will the fitness of model distribution be. Increasing the

number of training sets is an effective measure to prevent over-fitting. We provide following three

methods: (1) Obtain data from the source; (2) estimate the data distribution parameters of the training

set by statistical methods such as point estimation and interval estimation, and use this distribution

Sensors 2018, 18, 4273 9 of 19

to generate more data; (3) augment the training set by interpolation in the original training set, such

as Kriging Interpolation and Natural Neighbor Interpolation.

3.2. Compression and Reconstruction

We used the following performance criteria to evaluate the performance of our compression

algorithm: (1) compression ratio (CR); (2) percentage RMS difference (PRD) [26]; (3) quality-score

(QS) [26]. The definitions and formulas of these performance criteria are as follows:

(1) Compression Ratio (CR): It is defined as the compressed data length over the size of

uncompressed data, as shown in Equation (15).

�� =
���

���
 (15)

where ��� is the number of bytes of all original data. ��� is the number of bytes of all compressed

data. The CR value is expected to be high for an effective compression algorithm.

(2) Percentage RMS Difference (PRD): It is a widely used performance measure that is used for

calculating the quality of reconstructed data in the compression. The PRD value is expected to be as

low as possible for a quality compression approach.

���(%) = 100 × �
∑ ���(�) − ��(�)�

����
���

∑ ���(�)�
����

���

�

�
��

 (16)

where �� represents the original input data, �� represents the reconstructed data.

(3) Quality-Score (QS): Other important evaluation criteria for determining the effectiveness of

compression algorithms is the QS value. QS is the ratio of CR to PRD. It represents the reconstructed

data quality. The larger the QS value, the better the compression and reconstruction performance.

�� =
��

���
 (17)

The learning rate determines how far the weights move in the gradient direction in a mini-batch,

which is usually set by the experimenter. If the learning rate is small, the training will become more

reliable, but optimization will take a long time, because each step towards the minimum of the loss

function is small. If the learning rate is big, the training may not converge and could also diverge.

Optimization will cross the minimum value and cause loss function to become worse. There are many

ways to set an initial value for the learning rate. A simple solution is to try a few different values to

see which value will optimize the loss function without loss in training speed. In the pre-training

phase, we refer to the parameters in Ref. [36], set the learning rate of 0.01/batch-size (the batch-size is

120). In the retraining phase, we start with a value of 0.1, then exponentially reduce the learning rate

to 0.01, 0.001 and 0.0001. In order to find the optimal learning rate, we set different learning rates to

train the model and record the summation of loss value when the model loss is no longer reduced

[37]. Figure 5 shows the loss value of a model with different learning rates. We sought to find a point

with the smallest value of model loss. In our experiment, we found that when the learning rate was

between 0.0001 and 0.001, the model loss value was the smallest. We finally selected a learning rate

of 0.0001.

We first use the training set of node 7 to pre-train the model without retraining, and test the

efficiency of a different number of pre-training iterations to the compression performance of the

model. Then we use the test set of node 7 to calculate the PRD value and the QS value of the model

under different numbers of pre-training iterations. Similarly, we use the training set of node 7 to

retrain the model with a fixed number of pre-training iterations. We use the test set of node 7 to

calculate the PRD value and the QS value of the model under different numbers of retraining

iterations. During the test, we added the PRD value and the QS value of each mini-batch of the test

set, and then averaged the sum value as the final result. The number of mini-batches of the test set is

325. The results are shown in Figure 6.

Sensors 2018, 18, 4273 10 of 19

Figure 5. The loss value of model with different learning rates.

(a) (b)

Figure 6. (a) Compression performance under different number of pre-training iterations without

retraining; (b) compression performance under different retraining iterations with the number of pre-

training iterations as 10.

Without retraining, the compression performance of the model will not increase and could even

decrease with an increase in the number of pre-training iterations. When the number of pre-training

iterations is 10 and the number of retraining iterations is 0, the compression performance of the model

is optimal with the smallest PRD value and the largest QS value. Thus, we set the number of pre-

training iterations of our model to 10. When the number of pre-training iterations is fixed, increasing

the number of retraining iterations can significantly improve the compression performance of the

model. When the number of retraining iterations reaches 200 and above, the compression

performance of the model tends to be stable. At this time, increasing the number of retraining

iterations does not significantly improve the compression performance of the model. Considering

that the model needs to be calculated on the sensor node, increasing the number of retraining

iterations will lead to an increase in calculation energy consumption. We finally selected the number

of retraining iterations as 200.

In this experiment, we test the compression performance of the model under different CRs. This

experiment data uses the data of node 7 with the number of pre-training iterations of 10, and the

Sensors 2018, 18, 4273 11 of 19

number of retraining iterations of 200. We then set CR as 10, 20, 40, and 120. We use the test set of

node 7 to calculate the PRD value and the QS value of the model under different CRs. During the test,

we summed up the PRD value and the QS value of each mini-batch of the test set, and then averaged

the sum value as the final result. The number of mini-batches of the test set is 325. Figure 7 shows the

compression performance of the model under different CRs.

(a) (b)

Figure 7. (a) The PRD value under different CRs, (b) The QS value under different CRs.

Figure 7 illustrated that for a single node, with the increase of the CR, the compression

performance of the model is not significantly increased or decreased, which shows that the model

can imbibe the inherent properties of the data. These inherent properties are inherently weighted on

the weight matrix and are independent of the dimension after compression. This is the difference

between the deep compression method and the shallow compression method, since the

reconstruction error of the shallow compression method increases with an increase in the CR. The

result means that our algorithm can get a higher CR in the case of minimal reconstruction error. In

our experiments, when CR was 10, the PRD value was the smallest. The reconstructed data value is

closest to the original data value. Although increasing CR can significantly increase the QS value, the

PRD value will also increase, which represents a difference between the reconstructed data, and the

original data becomes larger. In this experiment, we explore the optimal compression performance

of the model, and in the next experiment, we set the CR to 10 to explore the reconstruction

performance of the model.

Figure 8 shows the reconstructed data and the original data of node 7 for our model, with the

number of pre-training iterations being 10, the number of retraining iterations being 200, and CR of

10. We first use the model to compress the original data, and then use the model to reconstruct the

compressed data. For all the data in the test set of node 7, we sum up the absolute value error between

the original data and the reconstructed data, and then average the sum value as the final result. The

average absolute value error obtained was 0.2815 °C, maximum value was 0.4602 °C, and minimum

value was 0.0026 °C. Our model has been proven to have higher reconstruction accuracy, and the

reconstructed data can correctly approximate the trend and value of the original data.

Sensors 2018, 18, 4273 12 of 19

Figure 8. The reconstructed data and the original data of node 7 under CR is 10.

In the following experiments, we compare the performance of our algorithm with other

compression algorithms. Performing CS algorithm on 40,000 data points for node 7. Since the length

of stream data for CS algorithm cannot be too long, we divide these points into eight segments with

segment length of 5000. We average the results of all segments as the final result of CS algorithm, and

set the CR at 10. The results are shown in Table 1. At the same time, we test the performance of our

algorithm on different data sets. The results are shown in Table 2.

Table 1. Compression performance comparison.

Algorithm PRD (%) QS Reconstruction Data Error (°C)

CS 38.40 26.04 1.4143

Standard RBM 33.03 30.28 1.0423

Our algorithm 10.04 99.60 0.2815

Table 2. Model performance on other datasets.

Dataset PRD (%) QS Reconstruction Data Error

Argo (temperature) 11.10 90.09 0.8434 (°C)

ZebraNet (location/UTM format) 9.82 101.83 259.26

CRAWDAD (speed) 8.53 117.23 6.2056 (km/h)

Intel Lab (humidity) 10.90 91.74 3.8383 (%RH)

3.3. Transfer Learning

In order to verify the generalization performance of the Stacked RBM-AE model, we use the data

of node 7 to train the model, and then use the trained model to test the compression and

reconstruction performance of all nodes. This process in deep learning is called transfer learning. At

the same time, each node is trained separately to obtain the performance of the model of each node.

We test the performance of the model after 10 pre-training iterations and 200 retraining iterations.

We set the CR to 10 and the learning rate to 0.0001. We record the PRD value, QS value and

reconstruction error of the model of each node. The PRD value and QS value of each node both are

the average after summing up the value of PRD and QS of each mini-batch. The reconstruction error

is the average after summing the absolute value error between the original data and the reconstructed

data of each mini-batch. The red lines in Figures 9–11 show the compression and reconstruction

performance of the model of each node. The compression and reconstruction performance of each

node on testing with parameters of node 7 are shown in blue lines in Figures 9–11.

Sensors 2018, 18, 4273 13 of 19

Figure 9. The PRD value of each node on testing with different model parameters.

Figure 10. The QS value of each node on testing with different model parameters.

Figure 11. The reconstruction error of each node on testing with different model parameters.

We can see from the red lines in Figures 9 and 10 that the model has good compression

performance for all nodes. For most nodes, the PRD value of the model is less than 20. There are some

spikes in the red line in Figure 9, such as in node 18 and node 33. For this spike parts of the red line,

we analyzed the model loss value during the training process, and find that the training loss value of

the model is very small, reaching 3.7652, while the training loss value of most nodes are between 8

and 10. The phenomenon of low training error and high test error shows that the model has been

over-fitted. Since we use a fixed number of training iterations in our experiments, the number of

training iterations exceeds the optimal number of training iterations of the model for some nodes. By

reducing the number of training iterations, the phenomenon of model over-fitting can be avoided

effectively. The red line in Figure 11 shows that the error of data reconstruction is less than 1 for most

nodes. Except those over-fitting nodes, the minimum and maximum error of data reconstruction can

reach 0.2835 °C and 0.9303 °C for all nodes. Changing data cannot cause a significant drop in the

compression and reconstruction performance of the model. The blue line shows that the model

trained with the data of node 7 is not very suitable for most other nodes. Compared to the red lines,

the PRD value and reconstruction error value are increased. For all nodes, the biggest difference of

the PRD value between red line and blue line can reach 15.37, and the smallest difference is 0.16. The

minimum and maximum error of the digital difference between the data reconstruction of red line

and blue line is 0.0176 °C and 0.5289 °C, respectively. For nodes located near node 7, such as node 6,

node 8 and node 9, the reconstruction error varies little and the performance of the model does not

decrease significantly by using model parameters that are not corresponding to the nodes themselves.

Sensors 2018, 18, 4273 14 of 19

The digital difference of reconstruction error of node 6, node 8 and node 9 is 0.0875 °C, 0.1127 °C and

0.0720 °C, respectively. This means that for some areas of the WSNs with strong spatial correlation,

when a node in the area is trained, all nodes in the area can share the trained model parameters. These

results prove that our algorithm has a good transfer learning ability. The error reduction speed during

the model training helps judge whether the training is completed or not. When the training error

value drops slowly and approaches a stable value, it means that the training is complete. In our

experiments, when the training of the model was completed, the number of training iterations was

mostly less than 200. This can further reduce the storage and communication energy consumption of

node model parameters. The transfer learning ability can be applied to the design of clustering

routing protocol in WSNs.

3.4. Energy Optimization

For the use of the Stacked RBM-AE model in WSNs, we present a solution. The server first uses

the node data to train the model and sends the trained model parameters to the node (only the

parameters of the encoder need to be sent, because the node does not need to decode the data). After

the node receives the trained model parameters, the node constructs and initializes the encoder by

using the parameters. When the node collects the sensing data, the encoder is used to encode and

compress the data. The compressed data is formed into a data packet. Then the node sends the data

packet to the server. The server uses the decoder to decode and reconstruct the sensing data of the

data packet. For some areas of the WSNs with strong spatial correlation, the server only needs to train

one time of one node in the area to get the model parameters, and all nodes in the area share the

parameters. Figure 12 shows the process.

Figure 12. The process of the model solution.

In our experiments, we use the model to compress the sensing data; when the number of data is

120, we set CR to 10. If the type of original sensing data is float, the original data size is 120 × 4 = 480

(byte), and the packet size after compression is 12 × 4 = 48 (byte). The energy of data transmission can

be reduced by 90% for each node. Using the Stacked RBM-AE model to compress a data packet needs

18,737 floating point calculations (including multiplication and addition). We train the model by

using NVIDIA GeForce GTX 1080 Ti and Tensorflow. Training the model take 181.54 ms when the

number of model training iterations is 200 and the number of sensing data is 120. Compressing this

sensing data takes 0.23 ms. We also test the floating-point calculation speed of STM32F103. When the

main frequency of the STM32F103 is 150 M, STM32F103 will take 42 instruction cycles (0.22 ms) to

Sensors 2018, 18, 4273 15 of 19

execute a floating-point calculation. In theory, STM32F103 will take 4122 ms to calculate the encoder

floating point calculation of the model, where the main frequency is 150 M. We utilize the parameter

pruning method to further reduce storage energy consumption and communication energy

consumption. Figure 13 shows the energy optimization process. Figure 14 shows the parameter

pruning process.

Figure 13. Energy optimization.

Figure 14. Parameter pruning.

We judge the importance of the parameters in the model according to the absolute value of the

parameters [38], and then calculate the number of pruning and prune threshold, according to the

prune ratio. The parameters in the model whose absolute value is less than the prune threshold are

removed from the network, and then we retrain the model to restore the performance of the model.

Algorithm 3 shows the procedure of the pruning parameters. We first sort the trained model

weights according to the absolute value, and then multiply the prune rate and the number of weight

parameters to get the number of parameters that we need to prune. After sorting is completed, we

expand the weights into a 1-D vector. The numerical value is found in the vector as the prune

threshold according to the number of prune parameters. The weights are compared with the prune

threshold value. When the absolute value of the weights is less than the prune threshold, set the value

to 0. We get a simplified model that initialized the model parameters by using the pruned weights.

In order to restore accuracy, this simplified model requires retraining to fine-tune weights, because

we prune a portion of the original model parameters [39]. We then iterate the pruning and retraining

processes until the model performance returns to the original performance.

Sensors 2018, 18, 4273 16 of 19

Algorithm 3: Pruning Parameters. ABS(x) indicate the absolute value for x. Sort(x) indicate

sorting by the numerical value of x.

Input: The model weights W, the prune rate α, the number of prune iterations iter

While i < iter do

Sort(ABS(W))

Get � which is the number of elements in W

Get the number of W that need pruning � = � × �

Get prune threshold thr

if W < thr then

W = 0

end

Update parameters � according to Algorithm 2

i + +
end

The network of the Stacked RBM-AE model has eight layers, and each layer of the network is a

standard RBM. We use Li to represent the � layer standard RBM in the model. The distribution of the

Stacked RBM-AE model parameters is shown in the Table 3. As we can see from Table 3, most of the

model parameters are located in L1, L2, L7 and L8. When we prune weights, we only need to prune

the weights of the L1–L4, because the weights of the L5–L8 is the transposition of the L1–L4 weights.

Table 3. The distribution of the Stacked RBM-AE model parameters.

Layers Parameters Number Storage (Byte) Proportion (%)

�� 12,100 48,400 32.20

�2 5050 20,200 13.44

�� 1275 5100 3.39

�� 312 1248 0.83

�� 325 1300 0.86

�� 1300 5200 3.50

�� 5100 20,400 13.57

�� 12,120 48,480 32.25

In order to explore the efficiency of pruning the weights of the different layers on the

performance of the model, we separately prune different rates of the weights of each layer. We use

the data of node 7 to train and test the model. During the test, we record the average value of PRD,

QS and reconstruction error of each mini-batch of the test set. We use �� to represent the weights of

the ��� layer. Figure 15 shows the compression performance of the model under different prune rates

of each layer.

When the prune rate is below 20%, pruning the weight respectively of any layer will not lead to

the decline of the performance of the model. This means that there are redundant data in the weights

of our model, which cannot affect the performance of the model. On the whole, the compression

performance decreases with the increasing the prune rate. Removing too many parameters from the

model will affect the data learning and fitting ability of the model. If we seek to increase the prune

rate while maintaining the performance of the model, we need to choose an appropriate prune rate

according to the model compression performance change.

Sensors 2018, 18, 4273 17 of 19

(a) (b) (c)

Figure 15. (a) The PRD value under different prune rates of each layer; (b) the QS value under

different prune rates of each layer; (c) the reconstruction error under different prune rates of

each layer.

4. Conclusions

In this paper, we propose a Stacked RBM-AE model to compress WSNs data by using RBM and

AE. In order to improve compression performance, we design a model parameter adjustment

strategy, which includes two parts: pre-training and retraining. We test the efficiency of the number

of iterations of pre-training and retraining on the performance of the model by experiment studies.

We also offer a solution to use the model for WSNs and discuss the computational efficiency of the

model. Considering the calculation and communication energy consumption, we use the method of

prune parameters to further optimize the energy consumption of our algorithm. Our experimental

results show that our algorithm has better transfer learning ability, and has better reconstruction

accuracy than the traditional algorithms under the same CR. The data communication energy

consumption can be reduced by 90%.

The sensor node usually be equipped with multiple sensors to collect different environmental

monitoring data. This method can be extended to perform joint compression and reconstruction of

multi-stream data. Since Gibbs Sampling and k-step divergence are used to estimate the probability

distribution of the reconstructed data in this method, the theoretical system error is inevitably

introduced. Exploring how to reduce the systematic error of the model is the focus of our next

research work. VAE, GAN or other mixed deep learning models can also be used in future research

work, which is expected to reduce the systematic error caused by the model assumptions and further

reduce the energy consumption for WSNs. We will also look at how to use deep neural networks

for WSNs.

Author Contributions: Conceptualization, J.L. and F.C.; methodology, J.L. and F.C.; project administration, F.C.

and D.W.; supervision, D.W.; writing, original draft, J.L.

Funding: This work was supported partly by the National Natural Science Foundation of China (Grant

No.61771436, 61271274), key project of Natural Science Foundation of Hubei Province of China (2011CDA069),

general project of Natural Science Foundation of Hubei Province of China (2011CDB339), Key Science and

Technology of Hubei Province of China (2012BAA02003), and Key Science and Technology of Wuhan City

(2017010201010134, 2013075001)

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lazarescu, M.T. Design of a WSN platform for long-term environmental monitoring for IoT applications.

J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 45–54.

2. Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and

state-of-the-art. arXiv 2017, arXiv:1704.05519.

Sensors 2018, 18, 4273 18 of 19

3. Kuo, T.W.; Lin, K.C.J.; Tsai, M.J. On the Construction of Data Aggregation Tree with Minimum Energy

Cost in Wireless Sensor Networks: NP-Completeness and Approximation Algorithms. IEEE Trans. Comput.

2016, 65, 3109–3121.

4. Mcdonald, D.; Sanchez, S.; Madria, S.; Ercal, F. A survey of methods for finding outliers in wireless sensor

networks. J. Netw. Syst. Manag. 2015, 23, 163–182.

5. He, S.; Chen, J.; Yau, D.K.Y.; Sun, Y. Cross-Layer Optimization of Correlated Data Gathering in Wireless

Sensor Networks. IEEE Trans. Mob. Comput. 2012, 11, 1678–1691.

6. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Locally adaptive dimensionality reduction for

indexing large time series databases. ACM Sigmod Rec. 2001, 30, 151–162.

7. Buragohain, C.; Shrivastava, N.; Suri, S. Space efficient streaming algorithms for the maximum error

histogram. In Proceedings of the IEEE 23rd International Conference on Data Engineering, Istanbul,

Turkey, 16–20 April 2007; pp. 1026–1035.

8. Li, M.; Lin, H.J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor

Networks and Power Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442.

9. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306.

10. Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press:

Cambridge, UK, 2012; pp. 1289–1306.

11. Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25,

21–30.

12. Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. A survey of sparse representation: Algorithms and applications.

IEEE Access 2015, 3, 490–530.

13. Haupt, J.; Bajwa, W.U.; Rabbat, M.; Nowak, R. Compressed sensing for networked data. IEEE Signal Process.

Mag. 2008, 25, 92–101.

14. Caione, C.; Brunelli, D.; Benini, L. Distributed Compressive Sampling for Lifetime Optimization in Dense

Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2012, 8, 30–40.

15. Ranieri, J.; Rovatti, R.; Setti, G. Compressive sensing of localized signals: Application to analog-to-

information conversion. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems

(ISCAS), Paris, France, 30 May–2 June 2010; pp. 3513–3516.

16. Brunelli, D.; Caione, C. Sparse recovery optimization in wireless sensor networks with a sub-nyquist

sampling rate. Sensors 2015, 15, 16654–16673.

17. Xiang, L.; Luo, J.; Vasilakos, A. Compressed data aggregation for energy efficient wireless sensor networks.

In Proceedings of the 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad

Hoc Communications and Networks (SECON), Salt Lake City, UT, USA, 27–30 June 2011; pp. 46–54.

18. Li, S.; Xu, L.D.; Wang, X. Compressed sensing signal and data acquisition in wireless sensor networks and

internet of things. IEEE Trans. Ind. Inform. 2013, 9, 2177–2186.

19. Wu, M.; Tan, L.; Xiong, N. Data prediction, compression, and recovery in clustered wireless sensor

networks for environmental monitoring applications. Inf. Sci. 2016, 329, 800–818.

20. Sheltami, T.; Musaddiq, M.; Shakshuki, E. Data Compression Techniques in Wireless Sensor Networks.

Future Gener. Comput. Syst. 2016, 64, 151–162.

21. Bhosale, R.B.; Jagtap, R.R. Data Compression Algorithm for Wireless Sensor Network. Int. Res. J.

Multidiscip. Stud. 2016, 2, 1–6.

22. Ying, B. An energy-efficient compression algorithm for spatial data in wireless sensor networks. In

Proceedings of the 18th IEEE International Conference on Advanced Communications Technology,

PyeongChang, Korea, 31 January–3 February 2016; pp. 161–164.

23. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,

313, 504–507.

24. Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A deep learning approach to structured signal recovery. In

Proceedings of the 2015 53rd Annual Allerton Conference on Communication, Control, and Computing,

Monticello, IL, USA, 29 September–2 Octorber 2015; pp. 1336–1343.

25. Qiu, L.; Liu, T.J.; Fu, P. Data fusion in wireless sensor network based on sparse filtering. J. Electron. Meas.

Instrum. 2015, 352–357.

26. Yildirim, O.; San, T.R.; Acharya, U.R. An efficient compression of ECG signals using deep convolutional

autoencoders. Cogn. Syst. Res. 2018, 52, 198–211.

Sensors 2018, 18, 4273 19 of 19

27. Norouzi, M.; Ranjbar, M.; Mori, G. Stacks of convolutional restricted boltzmann machines for shift-

invariant feature learning. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009; pp. 2735–2742.

28. Hinton, G.E.; Salakhutdinov, R.R. A better way to pretrain deep boltzmann machines. In Proceedings of

the Twenty-Sixth Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8

December 2012; pp. 2447–2455.

29. Tramel, E.W.; Manoel, A.; Caltagirone, F.; Gabrié, M.; Krzakala, F. Inferring sparsity: Compressed sensing

using generalized restricted Boltzmann machines. In Proceedings of the 2016 IEEE Information Theory

Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 265–269.

30. Papa, J.P.; Rosa, G.H.; Marana, A.N.; Scheirer, W.; Cox, D.D. Model selection for Discriminative Restricted

Boltzmann Machines through meta-heuristic techniques. J. Comput. Sci. 2015, 9, 14–18.

31. Tomczak, J.M.; Zięba, M. Classification Restricted Boltzmann Machine for comprehensible credit scoring

model. Expert Syst. Appl. 2015, 42, 1789–1796.

32. Carreira-Perpinan, M.A.; Hinton, G.E. On contrastive divergence learning. Aistats 2005, 10, 33–40.

33. Tulder, G.V.; Bruijne, M.D. Combining Generative and Discriminative Representation Learning for Lung

CT Analysis with Convolutional Restricted Boltzmann Machines. IEEE Trans. Med. Imaging 2016, 35,

1262–1272.

34. Côté, M.A.; Larochelle, H. An Infinite Restricted Boltzmann Machine. Neural Comput. 2016, 28, 1265–1288.

35. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536.

36. Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering. In

Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June

2007; pp. 791–798.

37. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp.

464–472.

38. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016,

arXiv:1608.08710.

39. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In

Proceedings of the Twenty-Ninth Conference on Neural Information Processing Systems, Montréal, QC,

Canada, 7–12 December 2015; pp. 1135–1143.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

