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Abstract: Data compression is very important in wireless sensor networks (WSNs) with the limited 

energy of sensor nodes. Data communication results in energy consumption most of the time; the 

lifetime of sensor nodes is usually prolonged by reducing data transmission and reception. In this 

paper, we propose a new Stacked RBM Auto-Encoder (Stacked RBM-AE) model to compress 

sensing data, which is composed of a encode layer and a decode layer. In the encode layer, the 

sensing data is compressed; and in the decode layer, the sensing data is reconstructed. The encode 

layer and the decode layer are composed of four standard Restricted Boltzmann Machines (RBMs). 

We also provide an energy optimization method that can further reduce the energy consumption of 

the model storage and calculation by pruning the parameters of the model. We test the performance 

of the model by using the environment data collected by Intel Lab. When the compression ratio of 

the model is 10, the average Percentage RMS Difference value is 10.04%, and the average 

temperature reconstruction error value is 0.2815 °C. The node communication energy consumption 

in WSNs can be reduced by 90%. Compared with the traditional method, the proposed model has 

better compression efficiency and reconstruction accuracy under the same compression ratio. Our 

experiment results show that the new neural network model can not only apply to data compression 

for WSNs, but also have high compression efficiency and good transfer learning ability. 

Keywords: wireless sensor networks; data compression; stacked RBM; transfer learning; energy 

consumption optimization 

 

1. Introduction 

Research has found sensor networks suitable to collect environment information, such as 

temperature, light and humidity in harder-to-reach areas. In recent years, with the development of 

information technology, wireless sensor networks (WSNs) have played an important role in a wide 

range of disciplines [1]. Unmanned vehicles need GPS and accelerometer to locate themselves, and 

to get information regarding their environments using a camera and lidar [2]. By fusing these multi-

modal sensor data, they can also predict the moving trajectory of nearby objects. Similarly, 

environmental monitoring applications need temperature, humidity, wind direction, etc. The 

increase in WSNs applications and sensor nodes have led to an explosion in the amount of sensing 

data. If the sensing data collected by WSNs are directly sent to a gateway, it will not only consume a 

lot of power but also increase the probability of transmission errors. Because a sensor node’s storage 

and portable energy resources is limited, it is important to design an energy-saving and redundant 

data compression scheme for WSNs. These factors have motivated efficient technologies to reduce 

energy consumption and extend the lifetime of WSNs. 

WSNs’ data collection methods include direct transmission to the base station, multi-hop 

forwarding, data aggregation, and modeling with coding. Data aggregation is an important 
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technology for data processing in WSNs. By aggregating the collected or received data, the amount 

of data to be transmitted can be effectively reduced [3]. In the existing data aggregation algorithm 

research, the node usually compares the relationship between its perceptual data and the 

surrounding node data. If the data is found to be close, it will not be submitted in order to reduce the 

transmission of redundant data. Although these aggregation algorithms reduce the amount of data 

and save the energy consumption of the node, they cause a loss of node data. In addition, when 

aggregating, the outlier detection is expensive and could introduce delays [4]. The Slepian-Wolf 

coding applies distributed source coding technology to perform non-collaborative data compression 

at the sources. However, it is not practical due to the lack of prior knowledge of the data correlation 

structure [5]. Model-based compression algorithms such as APCA [6] and PWLH [7] also have good 

compression ratio. However, they result in loss of sensing data, as they approximate data with 

temporal and spatial locality. There is research that shows that modeling with the encoding method 

is better for data transmission of WSNs [8]. It first models the original sensing data of the sensor node, 

following which the modeled weights are sent to the base station, which uses the weights to compress 

the original sensing data. 

Compressed sensing (CS) [9] provides a new data compression method for WSNs. The basic idea 

is that if the signal is sparse or compressible at a certain level, it can be reconstructed from a small 

number of linear measurements lower than the Shannon–Nyquist limit [10]. In recent years, the study 

of CS has led to many significant developments in the field of signal processing, including novel sub-

Nyquist sampling strategies and a veritable explosion of work in sparse approximation and 

representation [11,12]. In Ref. [13], the CS technology proposes a method to reduce the sensing data 

traffic for WSNs without the need for adapting to the data correlation structure. In Ref. [14], the CS 

principle was used as a compression and forwarding scheme to minimize the transmission data. At 

present, the CS requires a large amount of memory space to store the random sampling operator 

when the signal amplitude is large. Therefore, the classic CS is not directly applied to largescale 

application, and it will inevitably increase the computational complexity of encoding, so the CS 

compression is limited by the mobile embedded processor. At the same time, it is difficult to apply 

largescale WSNs while its energy is constrained. The analog CS technique is a novel strategy to 

sample and process sparse signals at a sub-Nyquist rate [15]. In Ref. [16], the problem of energy 

consumption for sensor nodes performing CS and DCS was addressed when both digital and analog 

CS were considered. The minimum energy CS-based data aggregation problem was studied to 

minimize the total energy consumption of a WSN in collecting sensing data from the whole network 

[17]. In Ref. [18], the CS based signal and data acquisition for WSNs was proposed, and a cluster-

sparse reconstruction algorithm was proposed for in-network compression to achieve accurate signal 

recovery and energy efficiency. Although the segmented linear compression method can be used to 

reduce the dimension of high compression ratio by using polynomial approximation in the form of 

segmentation, it has poor smoothness, poor precision and abnormal change. In Refs. [19,20], the data 

compression algorithms based on spatiotemporal correlation for WSNs were summarized. In Ref. 

[21], the run length coding method was proposed, which is suitable to compress the sensing data for 

WSNs. A lightweight data compression algorithm based on spatial correlation was proposed in 

ICACT [22], which saves more energy than wavelet compression in the case of the same distortion 

rate. However, it is mentioned above that the learning ability of the shallow learning algorithm is 

very weak for advanced features. 

The deep learning method can extract detection data in multi-level features, which makes the 

system have a strong data fitting ability by learning the deep features in the data. At present, there 

are few researches on how to use the deep learning model to compress the sensing data for WSNs.  

In Ref. [23], a method of using principal components analysis (PCA) to reduce the dimensionality of 

data was proposed. In Ref. [24], the unification of machine learning approaches with CS was also 

addressed, in which feed-forward deep neural network structures are used to aid CS signal 

reconstruction. In Ref. [25], a data compression algorithm based on the stacked Auto-Encoder (SAE) 

was proposed. This method combines the SAE and the cluster routing protocol. Compared with the 

traditional compression algorithm, the SAE can improve the accuracy of data fusion by 7.5%. In Ref. 
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[26], a deep convolution network for ECG signal compression is proposed, which needs a large 

amount of calculation. The Restricted Boltzmann Machine (RBM) is a probabilistic model for a 

density over observed variables that uses a set of hidden variables (representing presence of features). 

In the standard RBM, all observed variables are related to all hidden variables by different 

parameters. It was widely used in classification and generation. In Ref. [27], the Convolutional RBM 

(C-RBM) was developed to achieve object detection. The C-RBM is a variant of the RBM model in 

which weights are shared to respect the spatial structure of images. In Ref. [28], a pre-training 

algorithm for the Deep Boltzmann Machines (DBMs) was described. In Ref. [29], a CS reconstruction 

algorithm was proposed, which amounts to two nested inference problems, one on the CS 

observation-matching problem, and the other on the RBM model. Compared with variational 

autoencoders (VAE) and generative adversarial networks (GAN), RBM has the simplest network 

structure and the minimum number of parameters. Correspondingly, RBM has a small computational 

energy consumption and is more suitable for use in WSNs with limited energy. In our survey, there 

is currently no research on how to directly use RBM to compress the sensing data for WSNs. 

Currently, we mainly explore how to use RBM to compress the sensing data. In our next research, we 

will also explore how to use VAE, GAN and other deep learning models to compress sensing data. 

In this work, we combined the RBM generation model with the nonlinear learning method of 

deep learning theory, and propose the Stacked RBM-AE model, which can compress and reconstruct 

the sensing data for WSNs. We use four standard RBMs of different sizes to form the encoder and 

decoder of the Stacked RBM-AE model. The Stacked RBM-AE model compresses the sensing data by 

using its mathematical characteristics. In our experiments, we explore the performance of the model 

and compare it with other compression methods, and we propose an energy optimization method of 

the model to reduce the energy consumption of calculation. The contributions of this paper are 

summarized as follows: 

 We developed a hybrid model named Stacked RBM-AE that combines four standard RBMs with 

the feature of auto-encoder to compress and reconstruct the sensing data. 

 We proposed a new method of data compression, which has better reconstruction accuracy than 

the traditional algorithm under the same compression ratio. 

 We proposed an energy optimization method by pruning the model parameters, and we 

analyzed the efficiency of pruning different proportion model parameters on the reconstruction 

accuracy of the Stacked RBM-AE model under the same compression ratio. 

The remainder of this paper is organized as follows: Section 2 introduces the architecture of the 

Stacked RBM-AE, and the details of Stacked RBM-AE training. Section 3 discusses the results of the 

experiments. Specially, we conduct several tricks on energy optimization. In Section 4, we sum up 

our algorithm, and discus further work. 

The code of the Stacked RBM-AE model is available online (https://github.com/LJianlin/Stacked-

RBM-AE). 

2. Stacked RBM-AE Model 

2.1. Architecture of the Stacked RBM-AE 

The Stacked RBM-AE model contains two parts. The first part of the Stacked RBM-AE model we 

call encoder � , which includes four standard RBMs (in Figures 1 and 2). 
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Figure 1. Standard RBM. 

 

Figure 2. Stacked RBM. 

Each standard RBM is an undirected graph model, which includes two layers. The vector 

� (��, ��, … , ��) represents the visual layer, which is the input vector with n scalar components from 

the training dataset; The vector � (ℎ�, ℎ�, … , ℎ�) represents the hidden layer vector with m scalar 

components. The standard RBM takes the state space (�, �) ∈ {0,1}���. The goal of RBM is to find 

�����(�)  the unknown true high dimensional distribution of the visual layer variables [30]. To 

achieve this goal, the high-dimensional distribution of the training dataset is modeled to get �(�|�), 

where the sample distribution depends on the model parameters � [31]. 

For the second part of the Stacked RBM-AE model, firstly we use the characteristics of auto-

encoder to flip the encoder � to get a symmetrical scale decoding output named decoder �; the 

structure is shown in Figure 3. The initial input of the encoder � is used as the input of the multilayer 

auto-encoder. Our goal is to satisfy the top output approximately equal to the bottom input. 



Sensors 2018, 18, 4273 5 of 19 

 

 

Figure 3. Stacked RBM-AE. 

2.2. Details of Stacked RBM-AE Training 

2.2.1. Pre-training of standard RBM 

For the standard RBM,  � denotes the activation probability of all visual units, and  � denotes 

the activation probability of all hidden layer units. The model parameter �  contains three 

parameters:  � ,  �  and  � . �  and �  are the binary column vectors of 1 × �  and 1 × � , 

respectively; �  is the real-valued matrix of � × � , which represents the weights of the units 

connected; � is the bias of visual layer units in � × 1 size; � is the bias of the hidden layer units in 

� × 1 size. We use ��� to represent the weights between �� and ℎ�. �� represents the bias of ��. �� 

represents the bias of ℎ�. 

In the pre-training phase, we use CD algorithm [32] to train four standard RBMs of different 

sizes in turn. Algorithm 1 shows the procedure of the pre-training of standard RBM. It first calculates 

the activation probability of all hidden layer units and the activation probability of all visual layer 

units, and then updates model parameters by minimizing the model loss. 

Algorithm 1: Pre-training of standard RBM 

Input: A mini-batch of training data set S, the number of train iteration iter, the learning  

rate α 

Initialization: 

�, �, � = 0  

While i < iter do 

The hidden layer units activation probability � = �������( � + �� ) 

Get �(�) by one step Gibbs sampling for �  

The visible layer units activation probability � = �������� � + ��(�) � 

Update parameters �, �, � according to (7)–(9) 

i + + 

end 

For the standard RBM, the activation state of each hidden layer unit is conditionally independent 

for a given state of the visible layer unit. So, we can get the activation probability of ℎ�: 
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��ℎ� = 1|�� = ������� ��� + � �����

�

� (1) 

Similarly, when a state of a hidden layer unit is given, the activation probability of the visual 

layer unit is also conditionally independent: 

�(�� = 1|�) = ������� ��� + � ���ℎ�

�

� (2) 

We define the energy function as:  

�(�, �|�) = − � � �����ℎ�

�

���

− � ����

�

���

− � ℎ���

�

���

�

���

 (3) 

The energy function means that there is an energy value between each visual layer unit and each 

hidden layer unit. By indexing and regularizing the energy function, we get the joint probability of 

� and �: 

�(�, �|�) =  
exp�−�(�, �|�)�

∑ exp�−�(�, �|�)��,�
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exp�∑ ∑ �����ℎ�
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���

�
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∑ exp�∑ ∑ �����ℎ�
�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� ��,�

 

(4) 

We use the likelihood function derivation method to get the solution of parameters. The joint 

probability distribution �(�, �|�) is known. By summing all the states of the hidden layer unit, the 

edge distribution �(�|�) of the visible layer unit set can be obtained: 

�(�|�) =  
∑ exp�−�(�, �|�)��

∑ exp�−�(�, �|�)��,�

  

=  
∑ exp�∑ ∑ �����ℎ�

�
��� + ∑ ����

�
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���

�
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�
��� + ∑ ����

�
��� + ∑ ℎ���

�
���

�
��� ��,�

 

(5) 

The representation based on the energy function is simply an alternative to the product 

representation of the factor [33]. According to Equation (5), we can get � by maximizing �(�|�). 

As ln(�) is increnebted, arg max
�

 �(�|�) and arg max
�

ln� �(�|�)� are equivalent. Thus, we 

define the train goal function �(�) as: 

�(�) = − ln � ���(�)|��  = − � ln ���(�)|��

�

���

�

���

 (6) 

�  is the number of train set. arg  min
�

�(�)  uses the gradient descent method [34]. In the 

direction of 
��(�)

�(�)
, �(�) becomes the fastest, we can find the minimum value of function by finding 

an optimal parameter adjustment stride in this direction.  

We use � to represent the learning rate of the algorithm, and the parameters update formula 

can be defined as:  

��� = ��� + �[��ℎ� = 1|���� − ��ℎ� = 1��(�)���
(�)] (7) 

�� = �� + �(�� − ��
(�)

) (8) 

�� = �� + �[��ℎ� = 1|�� − ��ℎ� = 1��(�)�] (9) 

�(�) is the state of � after k step Gibbs sampling. 
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2.2.2. Retraining of Stacked RBM-AE 

We initialize the Stacked RBM-AE model by using pre-trained standard RBM parameters, but 

the pre-trained parameters are only applicable to standard RBM, and we do not achieve good 

performance on the Stacked RBM-AE model. Therefore, we use the pre-trained parameters to retrain 

the Stacked RBM-AE model and use the BP algorithm [35] to fine tune the model parameters. 

Algorithm 2 shows the procedure of the retraining of Stacked RBM-AE. It first calculates the encoder 

output � and the decoder output, and then calculates the model loss according to Equation (13), 

finally updating model parameters. The encoder output and the decoder output are calculated by the 

Stacked RBM. 

Algorithm 2: Retraining of Stacked RBM-AE 

Input: A mini-batch of training data set S, the number of train iterations iter, the learning rate 

α, the regularization parameter λ 

Initialization: 

�, �, � from the pre-trained standard RBM parameters 

While i < iter do 

The encoder output � according to (10) 

Get �(�) by one step Gibbs sampling for � 

The decoder output � according to (11) 

The model loss L according to (13) 

Update parameters �, �, � according to (7)–(9) 

i + + 

end 

The encoder output of the Stacked RBM-AE model is calculated by four different sizes of RBMs 

in turn, as shown in Figure 2. We use �� , ��  and ��  to represent the parameters of the �  layer 

standard RBM in the model. The encoder output is calculated by: 

�(�) = � ������� ��� + � �����

�

���

 (10) 

where �� is the activation probability of all hidden layer units in the ��� RBM. Similarly, the decoder 

output is calculated by: 

�(�) = � ������� ��� + � �����

�

���

 (11) 

where ��  is the activation probability of all visual layer units in the ���  RBM. For the input data 

normalized to [0,1], they will be given the probability meaning that each neural unit value of the 

Stacked RBM-AE model still obeys the Bernoulli distribution of {0,1}. The normalized real value of 

the operation is considered to be the probability that the current unit has a value of 1. Then for a 

single training sample, the objective or cost function that minimizes the cross entropy is: 

���� ����(�)�� = − ����
(�)

log���
(�)��� + �1 − ��

(�)
� log�1 − ��

(�)����

�

���

 (12) 

For the training dataset, the loss of the Stacked RBM-AE model is defined as: 

����(�) = −
1

�
�� �����

(�)
log���

(�)��
� + �1 − ��

(�)
� log�1 − ��

(�)��
��

�

���

�

�

���

� 

+
�

2
� � � ��(���)(��)

� �
�

����

�����

��

����

�����

���

 

(13) 
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where �  is layer number. �� represents the unit numbers of ���  layer, �� and ��� represents the 

current layer number and the next layer number. The second term is the weights penalty item, which 

is used to prevent over-fitting. λ is the regularization parameter in the penalty item.  

3. Results and Discussion 

3.1. Preprocessing Dataset 

The experimental data was collected by the Intel Lab wireless sensor network research team 

from the University of California, who placed 54 sensors to collect environmental data information 

in the laboratory from 28 February to 5 April 2004. The sensor node distribution by Intel Labs is 

shown in Figure 4. The weather board sensor collects time stamp topology information as well as 

temperature, humidity, light and voltage values every 31 s. Due to node failure, there are several 

temperature values above 100 °C and below −30 °C. We, therefore, preprocessed the temperature 

data by taking the threshold of −5 °C and 45 °C by a priori knowledge. 

In order to reduce the difference between the input data of the compressed model, and converge 

the algorithm more quickly, we mapped the original data to [0, 1] by ��� − ��� normalization, 

where ��� is the maximum value of the node sensing data, ��� is minimum value. 

�∗ =
� − ���

��� − ���
 (14) 

 

Figure 4. Sensor node distribution in Intel Lab. 

After the preprocessing is completed, the node temperature database is converted to a data set. 

Each node collects temperature data as a column vector, and stores this data in the temperature.txt 

file. Due to node failure, some nodes only recorded a small amount of data. The average number of 

data by each node after preprocessing is 29,665. The maximum number of data in all nodes is 55,080, 

and the minimum number is 2507. We divide each node data into two parts: The training set and the 

test set. In order to ensure that each node has enough training data to train the model, we did not use 

common split standards such as 7:3 and 6:2:2, and instead used 9:1. 

The more the number of samples in the training set, and the closer the empirical distribution is 

to the true distribution, the more accurate will the fitness of model distribution be. Increasing the 

number of training sets is an effective measure to prevent over-fitting. We provide following three 

methods: (1) Obtain data from the source; (2) estimate the data distribution parameters of the training 

set by statistical methods such as point estimation and interval estimation, and use this distribution 
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to generate more data; (3) augment the training set by interpolation in the original training set, such 

as Kriging Interpolation and Natural Neighbor Interpolation.  

3.2. Compression and Reconstruction 

We used the following performance criteria to evaluate the performance of our compression 

algorithm: (1) compression ratio (CR); (2) percentage RMS difference (PRD) [26]; (3) quality-score 

(QS) [26]. The definitions and formulas of these performance criteria are as follows: 

(1) Compression Ratio (CR): It is defined as the compressed data length over the size of 

uncompressed data, as shown in Equation (15). 

�� =
���

���
 (15) 

where ��� is the number of bytes of all original data. ���  is the number of bytes of all compressed 

data. The CR value is expected to be high for an effective compression algorithm. 

(2) Percentage RMS Difference (PRD): It is a widely used performance measure that is used for 

calculating the quality of reconstructed data in the compression. The PRD value is expected to be as 

low as possible for a quality compression approach. 

���(%) = 100 × �
∑ ���(�) − ��(�)�

����
���

∑ ���(�)�
����

���

�

�
��

 (16) 

where ��  represents the original input data, �� represents the reconstructed data. 

(3) Quality-Score (QS): Other important evaluation criteria for determining the effectiveness of 

compression algorithms is the QS value. QS is the ratio of CR to PRD. It represents the reconstructed 

data quality. The larger the QS value, the better the compression and reconstruction performance. 

�� =
��

���
 (17) 

The learning rate determines how far the weights move in the gradient direction in a mini-batch, 

which is usually set by the experimenter. If the learning rate is small, the training will become more 

reliable, but optimization will take a long time, because each step towards the minimum of the loss 

function is small. If the learning rate is big, the training may not converge and could also diverge. 

Optimization will cross the minimum value and cause loss function to become worse. There are many 

ways to set an initial value for the learning rate. A simple solution is to try a few different values to 

see which value will optimize the loss function without loss in training speed. In the pre-training 

phase, we refer to the parameters in Ref. [36], set the learning rate of 0.01/batch-size (the batch-size is 

120). In the retraining phase, we start with a value of 0.1, then exponentially reduce the learning rate 

to 0.01, 0.001 and 0.0001. In order to find the optimal learning rate, we set different learning rates to 

train the model and record the summation of loss value when the model loss is no longer reduced 

[37]. Figure 5 shows the loss value of a model with different learning rates. We sought to find a point 

with the smallest value of model loss. In our experiment, we found that when the learning rate was 

between 0.0001 and 0.001, the model loss value was the smallest. We finally selected a learning rate 

of 0.0001. 

We first use the training set of node 7 to pre-train the model without retraining, and test the 

efficiency of a different number of pre-training iterations to the compression performance of the 

model. Then we use the test set of node 7 to calculate the PRD value and the QS value of the model 

under different numbers of pre-training iterations. Similarly, we use the training set of node 7 to 

retrain the model with a fixed number of pre-training iterations. We use the test set of node 7 to 

calculate the PRD value and the QS value of the model under different numbers of retraining 

iterations. During the test, we added the PRD value and the QS value of each mini-batch of the test 

set, and then averaged the sum value as the final result. The number of mini-batches of the test set is 

325. The results are shown in Figure 6. 
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Figure 5. The loss value of model with different learning rates. 

 
(a) (b) 

Figure 6. (a) Compression performance under different number of pre-training iterations without 

retraining; (b) compression performance under different retraining iterations with the number of pre-

training iterations as 10. 

Without retraining, the compression performance of the model will not increase and could even 

decrease with an increase in the number of pre-training iterations. When the number of pre-training 

iterations is 10 and the number of retraining iterations is 0, the compression performance of the model 

is optimal with the smallest PRD value and the largest QS value. Thus, we set the number of pre-

training iterations of our model to 10. When the number of pre-training iterations is fixed, increasing 

the number of retraining iterations can significantly improve the compression performance of the 

model. When the number of retraining iterations reaches 200 and above, the compression 

performance of the model tends to be stable. At this time, increasing the number of retraining 

iterations does not significantly improve the compression performance of the model. Considering 

that the model needs to be calculated on the sensor node, increasing the number of retraining 

iterations will lead to an increase in calculation energy consumption. We finally selected the number 

of retraining iterations as 200. 

In this experiment, we test the compression performance of the model under different CRs. This 

experiment data uses the data of node 7 with the number of pre-training iterations of 10, and the 
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number of retraining iterations of 200. We then set CR as 10, 20, 40, and 120. We use the test set of 

node 7 to calculate the PRD value and the QS value of the model under different CRs. During the test, 

we summed up the PRD value and the QS value of each mini-batch of the test set, and then averaged 

the sum value as the final result. The number of mini-batches of the test set is 325. Figure 7 shows the 

compression performance of the model under different CRs. 

 
(a) (b) 

Figure 7. (a) The PRD value under different CRs, (b) The QS value under different CRs. 

Figure 7 illustrated that for a single node, with the increase of the CR, the compression 

performance of the model is not significantly increased or decreased, which shows that the model 

can imbibe the inherent properties of the data. These inherent properties are inherently weighted on 

the weight matrix and are independent of the dimension after compression. This is the difference 

between the deep compression method and the shallow compression method, since the 

reconstruction error of the shallow compression method increases with an increase in the CR. The 

result means that our algorithm can get a higher CR in the case of minimal reconstruction error. In 

our experiments, when CR was 10, the PRD value was the smallest. The reconstructed data value is 

closest to the original data value. Although increasing CR can significantly increase the QS value, the 

PRD value will also increase, which represents a difference between the reconstructed data, and the 

original data becomes larger. In this experiment, we explore the optimal compression performance 

of the model, and in the next experiment, we set the CR to 10 to explore the reconstruction 

performance of the model. 

Figure 8 shows the reconstructed data and the original data of node 7 for our model, with the 

number of pre-training iterations being 10, the number of retraining iterations being 200, and CR of 

10. We first use the model to compress the original data, and then use the model to reconstruct the 

compressed data. For all the data in the test set of node 7, we sum up the absolute value error between 

the original data and the reconstructed data, and then average the sum value as the final result. The 

average absolute value error obtained was 0.2815 °C, maximum value was 0.4602 °C, and minimum 

value was 0.0026 °C. Our model has been proven to have higher reconstruction accuracy, and the 

reconstructed data can correctly approximate the trend and value of the original data. 
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Figure 8. The reconstructed data and the original data of node 7 under CR is 10. 

In the following experiments, we compare the performance of our algorithm with other 

compression algorithms. Performing CS algorithm on 40,000 data points for node 7. Since the length 

of stream data for CS algorithm cannot be too long, we divide these points into eight segments with 

segment length of 5000. We average the results of all segments as the final result of CS algorithm, and 

set the CR at 10. The results are shown in Table 1. At the same time, we test the performance of our 

algorithm on different data sets. The results are shown in Table 2. 

Table 1. Compression performance comparison. 

Algorithm PRD (%) QS Reconstruction Data Error (°C) 

CS 38.40 26.04 1.4143 

Standard RBM 33.03 30.28 1.0423 

Our algorithm  10.04 99.60 0.2815 

Table 2. Model performance on other datasets. 

Dataset PRD (%) QS Reconstruction Data Error 

Argo (temperature) 11.10 90.09 0.8434 (°C) 

ZebraNet (location/UTM format) 9.82 101.83 259.26 

CRAWDAD (speed) 8.53 117.23 6.2056 (km/h) 

Intel Lab (humidity)  10.90 91.74 3.8383 (%RH) 

3.3. Transfer Learning 

In order to verify the generalization performance of the Stacked RBM-AE model, we use the data 

of node 7 to train the model, and then use the trained model to test the compression and 

reconstruction performance of all nodes. This process in deep learning is called transfer learning. At 

the same time, each node is trained separately to obtain the performance of the model of each node. 

We test the performance of the model after 10 pre-training iterations and 200 retraining iterations. 

We set the CR to 10 and the learning rate to 0.0001. We record the PRD value, QS value and 

reconstruction error of the model of each node. The PRD value and QS value of each node both are 

the average after summing up the value of PRD and QS of each mini-batch. The reconstruction error 

is the average after summing the absolute value error between the original data and the reconstructed 

data of each mini-batch. The red lines in Figures 9–11 show the compression and reconstruction 

performance of the model of each node. The compression and reconstruction performance of each 

node on testing with parameters of node 7 are shown in blue lines in Figures 9–11. 
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Figure 9. The PRD value of each node on testing with different model parameters. 

 

Figure 10. The QS value of each node on testing with different model parameters. 

 

Figure 11. The reconstruction error of each node on testing with different model parameters. 

We can see from the red lines in Figures 9 and 10 that the model has good compression 

performance for all nodes. For most nodes, the PRD value of the model is less than 20. There are some 

spikes in the red line in Figure 9, such as in node 18 and node 33. For this spike parts of the red line, 

we analyzed the model loss value during the training process, and find that the training loss value of 

the model is very small, reaching 3.7652, while the training loss value of most nodes are between 8 

and 10. The phenomenon of low training error and high test error shows that the model has been 

over-fitted. Since we use a fixed number of training iterations in our experiments, the number of 

training iterations exceeds the optimal number of training iterations of the model for some nodes. By 

reducing the number of training iterations, the phenomenon of model over-fitting can be avoided 

effectively. The red line in Figure 11 shows that the error of data reconstruction is less than 1 for most 

nodes. Except those over-fitting nodes, the minimum and maximum error of data reconstruction can 

reach 0.2835 °C and 0.9303 °C for all nodes. Changing data cannot cause a significant drop in the 

compression and reconstruction performance of the model. The blue line shows that the model 

trained with the data of node 7 is not very suitable for most other nodes. Compared to the red lines, 

the PRD value and reconstruction error value are increased. For all nodes, the biggest difference of 

the PRD value between red line and blue line can reach 15.37, and the smallest difference is 0.16. The 

minimum and maximum error of the digital difference between the data reconstruction of red line 

and blue line is 0.0176 °C and 0.5289 °C, respectively. For nodes located near node 7, such as node 6, 

node 8 and node 9, the reconstruction error varies little and the performance of the model does not 

decrease significantly by using model parameters that are not corresponding to the nodes themselves. 
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The digital difference of reconstruction error of node 6, node 8 and node 9 is 0.0875 °C, 0.1127 °C and 

0.0720 °C, respectively. This means that for some areas of the WSNs with strong spatial correlation, 

when a node in the area is trained, all nodes in the area can share the trained model parameters. These 

results prove that our algorithm has a good transfer learning ability. The error reduction speed during 

the model training helps judge whether the training is completed or not. When the training error 

value drops slowly and approaches a stable value, it means that the training is complete. In our 

experiments, when the training of the model was completed, the number of training iterations was 

mostly less than 200. This can further reduce the storage and communication energy consumption of 

node model parameters. The transfer learning ability can be applied to the design of clustering 

routing protocol in WSNs. 

3.4. Energy Optimization 

For the use of the Stacked RBM-AE model in WSNs, we present a solution. The server first uses 

the node data to train the model and sends the trained model parameters to the node (only the 

parameters of the encoder need to be sent, because the node does not need to decode the data). After 

the node receives the trained model parameters, the node constructs and initializes the encoder by 

using the parameters. When the node collects the sensing data, the encoder is used to encode and 

compress the data. The compressed data is formed into a data packet. Then the node sends the data 

packet to the server. The server uses the decoder to decode and reconstruct the sensing data of the 

data packet. For some areas of the WSNs with strong spatial correlation, the server only needs to train 

one time of one node in the area to get the model parameters, and all nodes in the area share the 

parameters. Figure 12 shows the process. 

 

Figure 12. The process of the model solution. 

In our experiments, we use the model to compress the sensing data; when the number of data is 

120, we set CR to 10. If the type of original sensing data is float, the original data size is 120 × 4 = 480 

(byte), and the packet size after compression is 12 × 4 = 48 (byte). The energy of data transmission can 

be reduced by 90% for each node. Using the Stacked RBM-AE model to compress a data packet needs 

18,737 floating point calculations (including multiplication and addition). We train the model by 

using NVIDIA GeForce GTX 1080 Ti and Tensorflow. Training the model take 181.54 ms when the 

number of model training iterations is 200 and the number of sensing data is 120. Compressing this 

sensing data takes 0.23 ms. We also test the floating-point calculation speed of STM32F103. When the 

main frequency of the STM32F103 is 150 M, STM32F103 will take 42 instruction cycles (0.22 ms) to 
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execute a floating-point calculation. In theory, STM32F103 will take 4122 ms to calculate the encoder 

floating point calculation of the model, where the main frequency is 150 M. We utilize the parameter 

pruning method to further reduce storage energy consumption and communication energy 

consumption. Figure 13 shows the energy optimization process. Figure 14 shows the parameter 

pruning process. 

 

Figure 13. Energy optimization. 

 

Figure 14. Parameter pruning. 

We judge the importance of the parameters in the model according to the absolute value of the 

parameters [38], and then calculate the number of pruning and prune threshold, according to the 

prune ratio. The parameters in the model whose absolute value is less than the prune threshold are 

removed from the network, and then we retrain the model to restore the performance of the model. 

Algorithm 3 shows the procedure of the pruning parameters. We first sort the trained model 

weights according to the absolute value, and then multiply the prune rate and the number of weight 

parameters to get the number of parameters that we need to prune. After sorting is completed, we 

expand the weights into a 1-D vector. The numerical value is found in the vector as the prune 

threshold according to the number of prune parameters. The weights are compared with the prune 

threshold value. When the absolute value of the weights is less than the prune threshold, set the value 

to 0. We get a simplified model that initialized the model parameters by using the pruned weights. 

In order to restore accuracy, this simplified model requires retraining to fine-tune weights, because 

we prune a portion of the original model parameters [39]. We then iterate the pruning and retraining 

processes until the model performance returns to the original performance. 
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Algorithm 3: Pruning Parameters. ABS(x) indicate the absolute value for x. Sort(x) indicate 

sorting by the numerical value of x. 

Input: The model weights W, the prune rate α, the number of prune iterations iter 

While i < iter do 

Sort(ABS(W)) 

Get � which is the number of elements in W 

Get the number of W that need pruning � = � × � 

Get prune threshold thr 

if W < thr then 

W = 0 

end 

Update parameters � according to Algorithm 2 

i + + 
end 

The network of the Stacked RBM-AE model has eight layers, and each layer of the network is a 

standard RBM. We use Li to represent the � layer standard RBM in the model. The distribution of the 

Stacked RBM-AE model parameters is shown in the Table 3. As we can see from Table 3, most of the 

model parameters are located in L1, L2, L7 and L8. When we prune weights, we only need to prune 

the weights of the L1–L4, because the weights of the L5–L8 is the transposition of the L1–L4 weights. 

Table 3. The distribution of the Stacked RBM-AE model parameters. 

Layers Parameters Number Storage (Byte) Proportion (%) 

�� 12,100 48,400 32.20 

�2 5050 20,200 13.44 

�� 1275 5100 3.39 

�� 312 1248 0.83 

�� 325 1300 0.86 

�� 1300 5200 3.50 

�� 5100 20,400 13.57 

�� 12,120 48,480 32.25 

In order to explore the efficiency of pruning the weights of the different layers on the 

performance of the model, we separately prune different rates of the weights of each layer. We use 

the data of node 7 to train and test the model. During the test, we record the average value of PRD, 

QS and reconstruction error of each mini-batch of the test set. We use �� to represent the weights of 

the ��� layer. Figure 15 shows the compression performance of the model under different prune rates 

of each layer. 

When the prune rate is below 20%, pruning the weight respectively of any layer will not lead to 

the decline of the performance of the model. This means that there are redundant data in the weights 

of our model, which cannot affect the performance of the model. On the whole, the compression 

performance decreases with the increasing the prune rate. Removing too many parameters from the 

model will affect the data learning and fitting ability of the model. If we seek to increase the prune 

rate while maintaining the performance of the model, we need to choose an appropriate prune rate 

according to the model compression performance change. 
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(a) (b) (c) 

Figure 15. (a) The PRD value under different prune rates of each layer; (b) the QS value under 

different prune rates of each layer; (c) the reconstruction error under different prune rates of  

each layer. 

4. Conclusions 

In this paper, we propose a Stacked RBM-AE model to compress WSNs data by using RBM and 

AE. In order to improve compression performance, we design a model parameter adjustment 

strategy, which includes two parts: pre-training and retraining. We test the efficiency of the number 

of iterations of pre-training and retraining on the performance of the model by experiment studies. 

We also offer a solution to use the model for WSNs and discuss the computational efficiency of the 

model. Considering the calculation and communication energy consumption, we use the method of 

prune parameters to further optimize the energy consumption of our algorithm. Our experimental 

results show that our algorithm has better transfer learning ability, and has better reconstruction 

accuracy than the traditional algorithms under the same CR. The data communication energy 

consumption can be reduced by 90%. 

The sensor node usually be equipped with multiple sensors to collect different environmental 

monitoring data. This method can be extended to perform joint compression and reconstruction of 

multi-stream data. Since Gibbs Sampling and k-step divergence are used to estimate the probability 

distribution of the reconstructed data in this method, the theoretical system error is inevitably 

introduced. Exploring how to reduce the systematic error of the model is the focus of our next 

research work. VAE, GAN or other mixed deep learning models can also be used in future research 

work, which is expected to reduce the systematic error caused by the model assumptions and further 

reduce the energy consumption for WSNs. We will also look at how to use deep neural networks  

for WSNs. 
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