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Abstract: Compressed sensing (CS) theory has attracted widespread attention in recent years
and has been widely used in signal and image processing, such as underdetermined blind source
separation (UBSS), magnetic resonance imaging (MRI), etc. As the main link of CS, the goal of
sparse signal reconstruction is how to recover accurately and effectively the original signal from an
underdetermined linear system of equations (ULSE). For this problem, we propose a new algorithm
called the weighted regularized smoothed L0-norm minimization algorithm (WReSL0). Under the
framework of this algorithm, we have done three things: (1) proposed a new smoothed function called
the compound inverse proportional function (CIPF); (2) proposed a new weighted function; and (3) a
new regularization form is derived and constructed. In this algorithm, the weighted function and the
new smoothed function are combined as the sparsity-promoting object, and a new regularization form
is derived and constructed to enhance de-noising performance. Performance simulation experiments
on both the real signal and real images show that the proposed WReSL0 algorithm outperforms other
popular approaches, such as SL0, BPDN, NSL0, and Lp-RLSand achieves better performances when
it is used for UBSS.

Keywords: image reconstruction; nullspace measurement matrix; regularized least squares problem;
smoothed L0-norm; sparse signal recovery; UBSS; weighted function

1. Introduction

The problem that UBSS [1,2] needs to address is how to separate multiple signals from a small
number of sensors. The essence of this problem is to solve the optimal solution of the undetermined
linear system of equations (ULSE). Fortunately, as a new undersampling technique, compressed
sensing (CS) [3–5] is an effective way to solve ULSE, which makes it possible to apply CS to UBSS.

The model of CS is shown in Figure 1. According to this figure, it can be see that CS boils down to
the form,

y = Φx + b, (1)

where Φ = [φφφ1, φφφ2, ..., φφφn] ∈ Rm×n is a sensing matrix with the condition of m � n and φφφi ∈ Rm,
i = 1, 2, ..., n, which can be further represented as Φ = ψψψϕϕϕ, while ψψψ is a random matrix, and ϕϕϕ is
the sparse basis matrix. y ∈ Rm is the vector of measurements. Moreover, b ∈ Rm denotes the
additive noise.
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Figure 1. Frame of compressed sensing (CS).

To solve the ULSE in Equation (1), we try to recover the sparse signal x from the given {y, Φ} by
CS. According to CS, this problem is transformed into solving the L0-norm minimization problem.

(P0) arg min
x∈Rn

‖x‖ 0, s.t. ||Φx− y||22 ≤ ε. (2)

where ε denotes error. This rather wonderful attempt is actually supported by a brilliant theory [6].
Based on this theory, in the noiseless case, it is proven that the sparsest solution is indeed a real signal
when xxx is sufficiently sparse and Φ satisfies the restricted isometry property (RIP) [7]:

1−δK ≤
||Φx||22
||x||22

≤ 1+δK, (3)

where K is the sparsity of signal x and δK ∈ (0, 1) is a constant. In Equation (2), the L0-norm is
nonsmooth, which leads an NP-hard problem. In practice, two alternative approaches are usually
employed to solve the problem [8]:

• Greedy search by using the known sparsity as a constraint;
• The relaxation method for the P0.

For greedy search, the main methods are based on greedy matching pursuit (GMP) algorithms,
such as orthogonal matching pursuit (OMP) [9,10], stage-wise orthogonal matching pursuit
(StOMP) [11], regularized orthogonal matching pursuit (ROMP) [12], compressive sampling matching
pursuit (CoSaMP) [13], generalized orthogonal matching pursuit (GOMP) [14,15], and subspace pursuit
(SP) [16,17] algorithms. The objective function of these algorithms is given by:

arg min
x∈Rn

1
2
‖Φx− y‖ 2

2 , s.t. ‖x‖ 0 ≤ K. (4)

As shown in the above equation, the features of GMP algorithms can be concluded as:

• Using sparsity as prior information;
• Using the least squares error as the iterative criterion.

The advantage of GMP algorithms is that the computational complexity is low, but the
reconstruction accuracy is not high in the noise case.

At present, the relaxation method for P0 is widely used. The relaxation method is mainly divided
into two categories: the constraint-type algorithm and the regularization method. The constraint-type
algorithm can also be divided into L1-norm minimization methods and smoothed L0-norm
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minimization methods. The representative algorithm of the former is the BPalgorithm [18], and
the latter is the smoothed L0-norm minimization (SL0) algorithm. For the SL0 algorithm, the objective
function can be expressed as:

(PF) arg min
x∈Rn

Fσ(x), s.t. ||Φx− y||22 ≤ ε.

lim
σ→0

Fσ(x) = lim
σ→0

n
∑

i=1
fσ(xi) ≈ ‖x‖ 0.

(5)

where Fσ(x) is a smoothed function, which approximates the L0-norm when σ→ 0. Compared with
L1 or Lp, a small σ is selected to make the function close to L0-norm [8]; therefore, Fσ(x) are closer to
the optimal solution.

Based on the idea of approximation, Mohimani used a Gauss function to approximate the
L0-norm [19], which is described as:

fσ(xi) = 1− exp(−
x2

i
2σ2 ). (6)

According to the equation, we can know:

fσ(xi) ≈
{

1 if xi � σ

0 if xi � σ.
(7)

when σ is a small enough positive value, the Gauss function is almost equal to the L0-norm.
Furthermore, the Gauss function is differentiable and smoothed; hence, it can be optimized by
optimization methods such as the gradient descent (GD) method. Zhao proposed another smoothed
function: the hyperbolic tangent (tanh) [20],

fσ(xi) =
exp( x2

i
2σ2 )− exp(− x2

i
2σ2 )

exp( x2
i

2σ2 ) + exp(− x2
i

2σ2 )
. (8)

This smoothed function makes a closer approximation to the L0-norm than the Gauss function,
as shown in [19], with the same σ; hence, it performs better in sparse signal recovery. Indeed, a large
number of simulation experiments confirmed this view.

Another relaxation method is the regularization method. For CS, sparse signal recovery in
the noise case is a very practical and unavoidable problem. Fortunately, the regularization method
makes the solution of this problem possible [21,22]. The regularization method can be described as a
“relaxation” approach that tries to solve the following unconstrained recovery problem:

(Pυ) arg min
x∈Rn

1
2
‖Φx− y‖ 2

2 + λυ(x), (9)

where λ > 0 is the parameter that balances the trade-off between the deviation term ‖Φx− y‖ 2
2 and

the sparsity regularizer υ(x). The sparse prior information is enforced via the regularizer υ(x), and a
proper υ(x) is crucial to the success of the sparse signal recovery task: it should favor sparse solutions
and make sure the problem Pυ can be solved efficiently in the meantime.

For regularization, various sparsity regularizers have been proposed as the relaxation of the
L0-norm. The most popular algorithms are the convex L1-norm [22,23] and the nonconvex Lp-norm to
the pth power [24,25]. In the noiseless case, the L1-norm is equivalent to the L0-norm, and the L1-norm is
the only norm with sparsity and convexity. Hence, it can be optimized by convex optimization methods.
However, according to [8], in the noisy case, the L1-norm is not exactly equivalent to the L0-norm,
so the effect of promoting sparsity is not obvious. Compared to the L1-norm, the nonconvex Lp-norm



Sensors 2018, 18, 4260 4 of 24

to the pth power makes a closer approximation to the L0-norm; therefore, Lp-norm minimization has a
better sparse recovery performance [8].

In view of the above explanation, in this paper, a compound inverse proportional function (CIPF)
function is proposed as a new smoothed function, and a new weighted function is proposed to promote
sparsity. For the noise case, a new regularization form is derived and constructed to enhance de-noising
performance. The experimental simulation verifies the superior performance of this algorithm in signal
and image recovery, and it has achieved good results when applied to UBSS.

This paper is organized as follows: Section 2 introduces the main work of this paper. The steps of
the ReRSL0algorithm and the selection of related parameters are described in Section 3. Experimental
results are presented in Section 4 to evaluate the performance of our approach. Section 5 verifies the
effect of the proposed weighted regularized smoothed L0-norm minimization (WReSL0) algorithm in
UBSS. Section 6 concludes this paper.

2. Main Work of This Paper

In this paper, based on the PF in Equation (9), we propose a new objective function, which is given by:

arg min
x∈Rn

WHσ(x), s.t. ||Φx− y||22 ≤ ε. (10)

According to this equation, We not only propose a smoothed function approximating the L0-norm,
but also propose a weighted function to promote sparsity. This section focuses on the relevant contents
of W = [w1, w2, ...wn]T and Hσ(x).

2.1. New Smoothed Function: CIPF

According to [26], some properties of the smoothed functions are summarized in the following:
Property: Let f : R→ [−∞,+∞] and, define fσ(r) ≈ fσ(r/σ) for any σ > 0. The function f has

the property, if:

(a) f is real analytic on (r0, ∞) for some r0;
(b) ∀r ≥ 0, f

′′
(r) ≥ −ε0, where ε0 > 0 is some constant;

(c) f is convex on R;
(d) f (r) = 0↔ r = 0;
(e) lim

r→+∞
f (r) = 1.

It follows immediately from Property that { fσ(r)} converges to the L0-norm as σ→ 0+, i.e.,

lim
σ→0+

fσ(r) =

{
0 if r = 0
1 otherwise.

(11)

Based on Property, this paper proposes a new smoothed function model called CIPF, which
satisfies Property and better approximates the L0-norm. The smoothed function model is given as:

fσ(r) = 1− σ2

αr2 + σ2 . (12)

In Equation (12), α denotes a regularization factor, which is a large constant. By experiments,
the factor α is determined to be 10, which is a good result of the simulation. σ represents a smoothed
factor, and when it is smaller, it will make the proposed model closer to the L0-norm. Obviously,

lim
σ→0

fσ(r) =

{
0, r = 0
1, r 6= 0

or approximately fσ(r) ≈
{

0, | r| � σ

1, | r| � σ
is satisfied. Let:

Hσ(x) =
n

∑
i=1

fσ(xi) = n−
n

∑
i=1

σ2

αx2
i + σ2

(13)
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where Hσ(x) ≈ ||x||0 for small values of σ, and the approximation tends to equality when σ→ 0.
Figure 2 shows the effect of the CIPF model approximating the L0-norm. Obviously, the CIPF

model makes a better approximation.
In conclusion, the merits of the CIPF model can be summarized as follows:

• It closely approximates the L0-norm;
• It is simpler in form than that in the Gauss and tanh function models.

These merits make it possible to reduce the computational complexity on the premise of ensuring the
accuracy of sparse signal reconstruction, which is of practical significance for sparse signal reconstruction.
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Figure 2. Different functions used in the literature to approximate the L0-norm; some of them are
plotted in this figure, and the L0.5-norm is displayed for comparison. CIPF, compound inverse
proportional function.

2.2. New Weighted Function

Candès et al. [27] proposed the weighted L1-norm minimization method, which employs
the weighted norm to enhance the sparsity of the solution. They provided an analytical result
of the improvement in the sparsity recovery by incorporating the weighted function with the
objective function. Pant et al. [28] applied another weighted smoothed L0-norm minimization method,
which uses a similar weighted function to promote sparsity. The weighted function can be summarized
as follows:

• Candès et al.: wi =

{
1
|xi |

xi 6= 0

∞ xi = 0
;

• Pant et al.: wi =
1

|xi |+ζ
, ζ is a small enough positive constant.

From the two weighted functions, we can find a phenomenon: a large signal entry xi is weighted
with a small wi; on the contrary, a small signal entry xi is weighted with a large value wi. By analysis,
the large wi forces the solution x to concentrate on the indices where wi is small, and by construction,
these correspond precisely to the indices where x is nonzero.

Combined with the above idea, we propose a new weighted function, which is given by:

wi = e−
|xi |
σ , s.t. i = 1, 2, ..., n. (14)

As for Candès et al., when the signal entry is zero or close to zero, the value of wi will be very
large, which is not suitable for computation by a computer. Although Pant et al. noticed the problem
and improved the weighted function to avoid it, the constant ζ depends on experience. Actually,
the proposed weighted function can avoid the two problems. Moreover our weighted function can
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be satisfied with the phenomenon. When the small signal entry xi can be weighted with a large wi
and a large signal entry xi can be weighted with a small wi, this can make the large signal entry and
small signal entry closer. In this way, the direction of optimization can be kept as consistent as possible,
and the optimization process tends to be more optimal. Therefore, the proposed weighted function
can have a better effect.

3. New Algorithm for CS: WReSL0

3.1. WReSL0 Algorithm and Its Steps

Here, in order to analyze the problem more clearly, we rewrite Equation (10) as follows:

arg min
x∈Rn

WHσ(x), s.t. ||Φx− y||22 ≤ ε.

where Hσ(x) = I− σ2

αx2+σ2 (I ∈ RN is a unit vector) is a differentiable smoothed accumulated function.

The weighted function W = e− |x|σ . Therefore, we can obtain the gradient of CIPF, which is written as:

GGG =
∂Hσ(x)

∂x
=

2ασ2x

(αx2 + σ2)
2 (15)

According to Equation (15), as in [28], we can obtain:

WGWGWG =

(
e−
|x|
σ

)T 2ασ2x

(αx2 + σ2)
2 (16)

Solving the problem of ULSE is to solve the optimization problem in Equation (10). As for this
problem, there are many methods, such as split Bregman methods [29–31], FISTA [32], alternating
direction methods [33], gradient descent (GD) [34], etc. In order to reduce the computational complexity,
this paper adopts the GD method to optimize the proposed objective function.

Given σ, a small target value σmin, and a sufficiently large initial value σmax, after referring to the
annealing mechanism in simulated annealing [35], this paper proposes a monotonically-decreasing
sequence {σt|t = 2, 3, ..., T}, which is generated as:

σt = σmaxθ−γ(t−1), s.t. t = 1, 2, 3, ..., T. (17)

where γ =
logθ(σmax/σmin)

T−1 , θ is a constant that is larger than one, and T is the maximum number of
iterations. Using such a monotonically-decreasing sequence can avoid the case of too small of a σ

leading to the local optimum.
Similar to SL0, WReSL0 also consists of two nested iterations: the external loop, which begins

with a sufficiently large value of σ, i.e, σmax, responsible for the gradually decreasing strategy in
Equation (17), and the internal loop, which for each value of σ, finds the maximizer of Hσ(x) on
{x|||AAAx− y||2 ≤ ε}.

According to the GD algorithm, the internal loop consists of the gradient descent step, which is
given by:

x̂ = x + µddd, (18)

where ddd = ggg and µ denotes a step size factor. This part is similar to SL0, followed by solving
the problem:

arg min
x∗∈Rn

||x∗ − x̂||22, s.t.||Φx∗ − y||22 ≤ ε (19)



Sensors 2018, 18, 4260 7 of 24

where x∗ denotes the optimal solution. By regularization, this form can be converted to another form
as follows,

arg min
x∗∈Rn

||x∗ − x̂||22 + λ||Φx∗ − y||22. (20)

where λ is the regularization parameter, which is adapted to balance the fit of the solution to the data
y and the approximation of the solution to the maximizer of Hσ(x). Weighted least squares (WLS) can
be used to solve this problem, and the solution is:

x∗ =

[ [
In

Φ

]H [
In 0
0 λIm

] [
In

Φ

] ]−1[
In

Φ

]H [
In 0
0 λIm

] [
x̂
y

]
. (21)

By calculation, Equation (21) is equivalent to:

x∗ =
(

In + λΦHΦ
)−1 (

x̂ + λΦHy
)

(22)

where In and Im are both identity matrices of size n × n and m × m, respectively. Therefore,
we can obtain:

x∗ − x̂ =
(
In + λΦHΦ

)−1 (x̂ + λΦHy
)
− x̂

=
(
In + λΦHΦ

)−1 (x̂ + λΦHy−
(
In + λΦHΦ

)
x̂
)

=
(
In + λΦHΦ

)−1 (x̂ + λΦHy− x̂− λΦHΦx̂
)

=−
(
λ−1In + ΦHΦ

)−1
ΦH (Φx̂− y)

According to the above analysis and derivation, we can get:

x∗ = x̂−
(

λ−1In + ΦHΦ
)−1

ΦH (Φx̂− y) (23)

The initial value of the internal loop is the maximizer of Hσ(x) obtained for σmax. To increase the
speed, the internal loop is repeated a fixed and small number of times (L). In other words, we do not
wait for the GD method to converge in the internal loop.

According to the explanation above, we can conclude the steps of the proposed WReSL0 algorithm,
which are given in Table 1. As for σ, it can be shown that function Hσ(x) remains convex in the region
where the largest magnitude of the component of x is less than σ. As the algorithm starts at the original
value x(0) = ΦΦΦH(ΦΦΦΦΦΦH)−1y, the above choice of σ1 ensures that the optimization starts in a convex
region. This greatly facilitates the convergence of the WReSL0 algorithm.

Table 1. Weighted regularized smoothed L0-norm minimization (WReSL0) algorithm using the
GD method.

• Initialization:
(1) Set L, µ = σ/(2α), x̂(0) = ΦH(ΦΦH)−1y.

(2) Set σmax =
√

α max |x|, σmin = 0.01, and σt = σmaxθ−γ(t−1), where γ =
logθ(σmax/σmin)

T−1 , and T is the
maximum number of iterations.
• while t < T, do

(1) Let σ = σt.
(2) Let x = x̂(t−1).
for l = 1, 2, ..., L

(a) x← x− µ
(

e− |x|σ
)T 2ασ2x

(αx2+σ2)2 .

(b) x← x−
(
λ−1In + ΦHΦ

)−1
ΦH (Φx̂− y)

(3) Set x̂(t−1) = x.
• The estimated value is x̂ = x̂(t).
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3.2. Selection of Parameters

The selection of parameters µ and σ will affect the performance of the WReSL0 algorithm; thus,
this paper discusses the selection of these two above parameters in this section.

3.2.1. Selection of Parameter µ

According to the algorithm, each iteration consists of a descent step xi ← xi −
µ
(

e− |xi |
σ

)
2ασ2xi

(αxi
2+σ2)

2 , 1 ≤ i ≤ n, followed by a projection step. If for some values of i, we have

|xi| � σ, then the algorithm does not change the value of xi in that descent step; however, it might be
changed in the projection step. If we are looking for a suitably large µ, a suitable choice is to make the
algorithm force all those values of x satisfying |xi| . σ toward zero. Therefore, we can get:

xi − µ

(
e−
|xi|
σ

)
2ασ2xi

(αxi
2 + σ2)

2 ≈ 0 (24)

and: (
e−
|xi|
σ

)
xi→0−−−→ 1 (25)

Combining Equations (24) and (25), we can further obtain:

xi − µ
2ασ2xi

(αxi
2 + σ2)

2 ≈ 0 (26)

By calculation, we can obtain:

µ ≈
(
αxi

2 + σ2)2

2ασ2
xi→0−−−→ σ2

2α
(27)

According to the above derivation, we have come to the conclusion that µ ≈ σ2

2α . Therefore, we can
set µ = σ2

2α .

3.2.2. Selection of Parameter σ

According to Equation (17), the descending sequence of σ is generated by σt = σmax

(
σmin
σmax

) t−1
T−1 (it

is obtained through simplification of Equation (17)). Parameter σmin and parameter σmax should be
appropriately selected. The selection of σmin and σmax is discussed below.

For the initial value of σ, i.e., σmax, here, let x̃ = max{|x|}; suppose there is a constant b, in order
to make the algorithm converge quickly; let parameter σmax satisfy:

Hσ(x̃) = 1− σ2
max

αx̃2 + σ2
max
≤ b⇒ σmax ≥

(√
1− b

b
α

)
x̃. (28)

From the equation, we can see that constant b satisfies 1−b
b ≥ 0; thus 0 < b ≤ 1, and here, we

define constant b as 0.5. Hence, σmax =
√

α max{|x|}.
For the final value σmin, when σmin → 0, Hσmin(x) → ||x||0. That is, the smaller σmin, the more

Hσmin(x) can reflect the sparsity of signal x, but at the same time, it is also more sensitive to noise;
therefore, the value σmin should not be too small. Combining [19], we choose σmin = 0.01.

4. Performance Simulation and Analysis

The numerical simulation platform is MATLAB 2017b, which is installed on a computer with a
Windows 10, 64-bit operating system. The CPU of the simulation computer is the Intel (R) Core (TM)
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i5-3230M, and the frequency is 2.6 GHz. In this section, the performance of the WReSL0 algorithm is
verified by signal and image recovery in the noise case.

Here, some state-of-the-art algorithms are selected for comparison. The parameters are selected to
obtain the best performance for each algorithm: for the BPDNalgorithm [36], the regularization
parameter λ = σN

√
2log(n); for the SL0 algorithm [19], the initial value of smoothed factor

δmax = 2 max{|x|}, the final value of smoothed factor δmin = 0.01, scale factor is set as step size
L = 5, and the attenuation factor ρ = 0.8; for the NSL0algorithm [20], the initial value of smoothed
factor δmax = 4 max{x}, the final value of smoothed factor δmin = 0.01, the step size L = 10, and
the attenuation factor ρ = 0.8; for Lp-RLSalgorithm [24], the number of iterations T = 80, the norm
initial value p1 = 1, the norm final value pT = 0.1, the initial value of regularization factor ε1 = 1,
the final value of regularization factor εT = 0.01, and the algorithm termination threshold Et = 10−25;
for the WReSL0 algorithm, the initial value of smoothed factor σmax =

√
c max{|x|}, the final value

of smoothed factor σmin = 0.01, the iterations T = 30, the step size L = 5, and the regularization
parameter λ = 0.1. All experiments are based on 100 trials.

4.1. Signal Recovery Performance in the Noise Case

In this part, we discuss signal recovery performance in the noise case. We add noise b to
the measurement vector y; moreover, b = δNΩ, Ω is randomly formed and follows the Gaussian
distribution of N (0, 1). For signal recovery under noise conditions, we evaluate the performance of
algorithms by the normalized mean squared error (NMSE) and the CPU running time (CRT). NMSE
is defined as ||x− x̂||2/||x||2. CRT is measured with tic and toc. In order to analyze the de-noising
performance of the WReSL0 algorithm in context closer to the real situation, we constructed a certain
signal as an experimental object in the experiments in this section. The signal is given by:

x1 = α1 sin(2π f1Tst)

x2 = β1 cos(2π f2Tst)

x3 = α2 sin(2π f3Tst)

x4 = β2 cos(2π f4Tst)

XXX=x1+x2+x3+x4

(29)

where α1 = 0.2, α2 = 0.1, β1 = 0.3, and β2 = 0.4. f1 = 50 Hz; f2 = 100 Hz; f3 = 200 Hz;
and f4 = 300 Hz. Here, t is a sequence with t = [1, 2, 3, ..., n], and Ts is sampling interval with the value
of 1

fs
. fs is the sampling frequency with the value of 800 Hz. The object that needs to be reconstructed

can be expressed as:
yyy = ΦΦΦxxx + δNΩ. (30)

where xxx ∈ Rn is a sparse signal in the frequency domain, and it is the Fourier transform expression
of XXX , yyy ∈ Rm. Here, let n = 128, m = 64. Moreover, Φ can be represented as Φ = ψψψϕϕϕ; here, ψψψ

is a randn matrix generated by a Gaussian distribution, and ϕϕϕ is a sparse basis matrix generated
by Fourier transform. Here, ϕϕϕ can be given by Fourier In×n , and In×n is a unit matrix. This target
signal XXX is sparse in Fourier space; hence, the signal XXX can be recovered from given {yyy, Φ} by CS
recovery methods.

Figure 3 shows the signal recovery effect. Obviously, BPDN and SL0 do not perform well, while
NSL0, Lp-RLS and the proposed WReSL0 perform quite well. This verifies that the regularization
mechanism has a good de-noising effect. Figure 4 shows the frequency spectrum of the recovered
signal by the selected algorithms. The spectrum of the signal recovered by our proposed WReSL0
algorithm is almost the same as the original signal, while other algorithms fail to achieve this effect.
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Figure 3. Signal recovery effect by BPDN, SL0, NSL0, Lp-RLS, and weighted regularized smoothed
L0-norm minimization (WReSL0) when noise intensity δN = 0.2. (a) signal recovery by the BPDN
algorithm; (b) signal recovery by the SL0 algorithm; (c) signal recovery by NSL0 algorithm; (d) signal
recovery by the Lp-RLS algorithm; (e) signal recovery by the WReSL0 algorithm.
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Figure 4. Frequency spectrum analysis of the original signal and the signal recovered by BPDN, SL0,
NSL0, Lp-RLS, and WReSL0 when noise intensity δN = 0.2. (a) original signal; (b) signal recovery by the
BPDN algorithm; (c) signal recovery by the SL0 algorithm; (d) signal recovery by the NSL0 algorithm;
(e) signal recovery by the Lp-RLS algorithm; (f) signal recovery by the WReSL0 algorithm.

Table 2 shows the CRT of all algorithms. The n changes according to a given sequence
[170, 220, 270, 320, 370, 420, 470, 520]. From the table, for any n, SL0 has the shortest computation
time, followed by WReSL0, NSL0, and Lp-RLS, and BPDN has the longest computation time.
The BPDN algorithm is generally implemented by the quadratic programming method, and the
computational complexity of this method is very high, thus resulting in a large increase in the overall
computation time of the algorithm. Furthermore, in Lp-RLS, the iterative process adopts the conjugate
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gradient method with high complexity, while NSL0 and WReSL0 do not. Compared with NSL0,
WReSL0 is more prominent in the decrease of computation time.

Table 2. Signal CPU running time (CRT) analysis for BPDN, SL0, NSL0, Lp-RLS, and the proposed
WReSL0 with signal length changes according to the sequence [170,220,270,320,370,420,470,520] when
δN = 0.2.

Signal Length (n)
CPU Running Time (Seconds)

BPDN SL0 NSL0 Lp-RLS WReSL0

170 0.195 0.057 0.091 0.194 0.063
220 0.289 0.139 0.230 0.350 0.142
270 0.495 0.229 0.426 0.505 0.291
320 0.767 0.320 0.639 0.712 0.509
370 1.059 0.456 0.926 0.982 0.892
420 1.477 0.613 1.133 1.491 1.017
470 1.941 0.796 1.478 2.118 1.344
520 2.619 1.038 2.089 2.910 1.882

The performance of each algorithm under different noise intensities is shown in Figure 5.
When δN = 0, SL0 outperforms other algorithms, but with the increase of δN , the effect of SL0
becomes worse and worse. This result further illustrates that the traditional constrained sparse
recovery algorithm does not have the performance of anti-noising. For BPDN, NSL0, Lp-RLS, and
WReSL0, they all applied the regularization mechanism, and they are indeed superior to SL0 in the
noise case. Therefore, the proposed WReSL0 in this paper has the best de-noising performance.
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10-6

10-5

10-4
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10-1

N
M

S
E
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Lp-RLS
WReSL0

Figure 5. NMSE analysis by BPDN, SL0, NSL0, Lp-RLS, and WReSL0 when noise intensity δN changes
according to the sequence [0, 0.1, 0.2, 0.3, 0.4, 0.5].
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4.2. Image Recovery Performance in the Noise Case

Real images are considered to be approximately sparse under some proper basis, such as the
DCT basis, DWT basis, etc. Here, we choose the DWT basis to recover these images. We compare
the recovery performances based on the four real images in Figure 6: boat, Barbara, peppers, and
Lena. The size of these images is 256× 256; the compression ratio (CR; defined as m/n) is 0.5; and the
noise δN equals 0.01. We still choose SL0, BPDN, NSL0, and Lp-RLS to make comparisons. For image
recovery, the object of image processing is given by:

YYY = ΦX +BBB (31)

Here, YYY, XXX, BBB are matrices, and among these, YYY,BBB ∈ Rm×n, XXX ∈ Rn×n. In order to meet the basic
requirements of CS, we perform the following processing:

YYYi = ΦXXXi +BBBi s.t. i = 1, 2, ..., n. (32)

where YYYi, XXXi, BBBi are the column vectors of YYY, XXX, BBB, respectively. BBBi = δNΩΩΩ, ΩΩΩ obeys the Gaussian
distribution N (0, 1).

To perform image recovery, we valuate it by the peak signal to noise ratio (PSNR) and the
structural similarity index (SSIM). PSNR is defined as:

PSNR = 10 log(2552/MSE) (33)

where MSE = ||x− x̂||22, and SSIM is defined as:

SSIM(p, q) =
(2µp + µq + c1)(2σpq + c2)

(µ2
p + µ2

q + c1)(σ2
p + σ2

q + c2)
. (34)

Among these, µp is the mean of image p, µq is the mean of image q, σp is the variance of image
p, σq is the variance of image q, and σpq is the covariance between image p and image q. Parameters
c1 = z1L and c2 = z2L, for which z1 = 0.01, z2 = 0.03, and L is the dynamic range of pixel values.
The range of SSIM is [−1, 1], and when these two images are the same, SSIM equals one.

(a) Original Boat (b) Original Barbara (c) Original Peppers (d) Original Lena

Figure 6. Original images: (a) boat; (b) Barbara; (c) peppers; (d) Lena.

Figure 7 shows the recovery effect of boat and Barbara with noise intensity δN = 0.01. For boat and
Barbara, the recovered images by SL0 and BPDN have obvious water ripples, while recovered images
by other algorithms have no such water ripples. Similarly, for peppers and Lena, the recovered images
by SL0 and BPDN are blurred compared with the recovered images by other algorithms. The NSL0,
Lp-RLS, and WReSL0 algorithms are also effective at noisy image recovery. For the NSL0, Lp-RLS, and
WReSL0 algorithms, their recovery effects are very similar. In order to further analyze the advantages
and disadvantages of the algorithms, we analyze the PSNR and SSIM of the images recovered by these
algorithms, and the results are shown in Tables 3 and 4. By observation and analysis, Lp-RLS performs
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better than NSL0, and at the same time, WReSL0 outperforms Lp-RLS. Hence, the WReSL0 proposed
by this paper is superior to the other selected algorithms in image processing.

(a) Recovered Boat

(b) Recovered Barbara

(c) Recovered Peppers

(d) Recovered Lena

Figure 7. Image recovery effect by the BPDN, SL0, NSL0, Lp-RLS, and WReSL0 algorithms with noise
intensity δN = 0.01. In (a–d), from left to right, are: image recovered by the BPDN, SL0, NSL0, Lp-RLS,
and WReSL0 algorithms.

Table 3. PSNR and SSIM analysis of recovered images (boat and Barbara) by SL0, BPDN, NSL0, Lp-RLS,
and WReSL0.

Items
Barbara Boat

PSNR (dB) SSIM PSNR (dB) SSIM

SL0 27.983 0.981 26.959 0.969
BPDN 28.834 0.984 27.376 0.971
NSL0 31.296 0.991 31.247 0.988

Lp-RLS 31.786 0.992 31.797 0.989
WReSL0 32.244 0.993 32.369 0.991
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Table 4. PSNR and SSIM analysis of recovered images (peppers and Lena) by SL0, BPDN, NSL0,
Lp-RLS, and WReSL0.

Items
Peppers Lena

PSNR (dB) SSIM PSNR (dB) SSIM

SL0 28.677 0.982 30.334 0.987
BPDN 29.542 0.985 29.875 0.983
NSL0 31.373 0.991 32.639 0.993

Lp-RLS 33.757 0.994 34.051 0.995
WReSL0 34.231 0.996 34.653 0.997

5. Application in Underdetermined Blind Source Separation

The problem of UBSS stems from cocktail reception, which is shown in Figure 8. Suppose the
source signal matrix S(t) = [s1(t), s2(t), ..., sm(t)]T , the mixed matrix (Sensors) A is m× n (m � n)
matrix, the Gaussian noise G(t) = [g1(t), g2(t), ..., gm(t)]T is generated by Gaussian distribution, and
the observed mixed signal matrix X(t) = [x1(t), x2(t), ..., xn(t)]T ; therefore, the general mathematical
models of UBSS can be summarized as:

X(t) = AS(t) + G(t) (35)

Source  Signal 

S1 

Source  Signal 

S2

Source  Signal 

S3

Sensor A1

Sensor A2

Recovered  Signal  

S1 

Recovered  Signal  

S2 

Recovered  Signal  

S3 

Figure 8. Schematic diagram of cocktail reception signal mixing.

In fact, each signal has L data collected; therefore, X ∈ Rm×L, A ∈ Rm×n (m� n), S(t) ∈ Rn×L,
and G ∈ Rm×L, and G can be represented as δNW (W obeys N (0, 1)). The purpose of UBSS is to use
the mixed signal matrix x(t) to estimate the sof the source signal matrix s(t). In fact, this is the process
of solving the underdetermined linear system of equations (ULSE). For this problem, we can use the
two-step method to solve it, which is shown in Figure 9.

Clustering CS

X(t) A(t) S(t)

Figure 9. Schematic diagram of two-step method for UBSS.

From Figure 9, firstly, we get the mixed matrix by the clustering method and then use CS
technology to separate the signal, so as to restore the original signal.
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5.1. Process Analysis of CS Applied to UBSS

5.1.1. Solving the Mixed Matrix by the Potential Function Method

In this section, we choose the potential function method to solve the mixed matrix A. To verify
the performance of the proposed WReSL0 algorithm better, we choose four simulated signals and four
real images to organize experiments in this section.

Suppose there are four source signals, which are:

s1(t) = 5 sin(2π f1t)

s2(t) = 5 sin(2π f2t)

s3(t) = 5 sin(2π f3t)

s4(t) = 5 sin(2π f4t)

S = [s1(t), s2(t), s3(t), s4(t)]T

(36)

where f1 = 310 Hz, f2 = 210 Hz, f3 = 110 Hz, and f4 = 10 Hz. The length of each source signal
si (i = 1, 2, 3, 4) is 1024, and the sample frequency is 1024 Hz. These four signals are shown in Figure 10.

The four source images are the classic standard test images: boat, Barbara, peppers, and Lena,
which are in Figure 6.

Suppose there are two sensors that receive signals and another two sensors that receive images.
Mixed matrices A and B are set as:

A =

[
A1

A2

]
=

[
0.9930 0.9941 0.1092 0.9304
0.2116 0.0757 0.9647 0.3837

]

B =

[
B1

B2

]
=

[
0.9354 0.9877 −0.6730 0.1097
0.3535 0.07846 0.7396 0.9940

] (37)

By this mixed matrix and added Gaussian noise (δN = 0.1), we can get the two mixed signals,
which are shown in Figure 11, and the two mixed images, which are shown in Figure 12. Then, we can
get the estimated mixed matrix Â and B̂ by clustering by the potential function method [37]. As shown
in Figure 13, the potential function method can cluster well. By clustering, we get the estimated values
of A and B, as follows:

Â =

[
Â1

Â2

]
=

[
0.9792 0.9969 0.1097 0.9239
0.2028 0.0785 0.9940 0.3827

]

B̂ =

[
B̂1

B̂2

]
=

[
0.9478 0.9431 −0.6483 0.1130
0.3476 0.0765 0.7075 0.9979

] (38)
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(a) Source signal s1
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(b) Source signal s2
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(c) Source signal s3
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(d) Source signal s4

Figure 10. Source signal.

0 100 200 300 400 500 600 700 800 900 1000

Sample

-5

-4

-3

-2

-1

0

1

2

3

4

5

A
m

p
lit

u
d

e

(a) Mixed signal x1
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(b) Mixed signal x2

Figure 11. Mixed signal by sensors.

(a) Mixed image I1 (b) Mixed image I2

Figure 12. Mixed image by sensors.
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(a) Potential function of mixed signals
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(b) Mixed signals’ polar coordinate scatter plot
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(c) Potential function of mixed images
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(d) Mixed images’ polar coordinate scatter plot

Figure 13. Clustering analysis.

By calculation, the error of solving the mixed matrix is ||A−Â||F
||A||F

× 100% = 1.763% and ||B−B̂||F
||B||F

×
100% = 3.64%. This error range is much smaller than the classical k-means and fuzzy c-means, thus
laying a foundation for the reconstruction of compressed sensing.

5.1.2. Using CS to Separate Source Signals

The next problem is to get S(t) from known A(t) andX(t). Here, we solve this problem by CS.
The solution process is similar to the image reconstruction process. The difference is that the sparse
basis used here is the Fourier basis. Then, we apply the proposed RWeSL0 algorithm to this process.
First, we transform the obtained x(t) into column vectors:

x(t) = [x1(t), x2(t)]T ⇒ x̃(t) =

[
x1(t)
x2(t)

]
(39)
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Then, we use the Fourier (for the sparse signal) or DWT (for the image) basis for sparse
representation and extend the matrix and the valuated mixed matrix to obtain the sensing matrix.

Ã = Â⊗ IL×L, or B̃ = B̂⊗ IL×L

Ψ = Fourier(IL×L)/
√

L, or Ψ = DWT(IL×L)/
√

L

Ψ̃ =


Ψ 0 ... 0
0 Ψ ... ...
... ... ... 0
0 ... 0 Ψ


Φ = ÃΨ̃, or Φ = B̃Ψ̃

(40)

For this equation, ⊗ denotes the Kronecker product sign, Fourier(·) represents the Fourier
transform, and DWT represents the discrete wavelet transform. Therefore, the CS-UBSS model
can be described as:

X̂(t) = Ã(t)S(t) + G(t)

= Ã(t)Ψ̃Θ(t) + G(t)

= ΦΘ(t) + G(t)

or

X̂(t) = B̃(t)S(t) + G(t)

= B̃(t)Ψ̃Θ(t) + G(t)

= ΦΘ(t) + G(t)

(41)

where Θ is the Fourier transform or DWT of S(t), so Θ is a sparse signal. As for UBSS in the images,
firstly, each image matrix needs to be transformed into a row vector, then the four row vectors form a
matrix S(t). At the same time, the sparse basis in Equation (40) needs to be replaced by DWT.

Then, we can recover the source signal by CS. In summary, the above can be described as the
flowchart in Figure 14.

C l u s t e r i n g  b y 

potential function 

method and get the 

mixed matrix    or                                          for signal

                                         for image

Expanding matrix 

by equation (41)

Mixed signal matrix     for signal

for image

According to           and          ,

 recovered  source signal by CS

Figure 14. Flowchart of UBSS by CS.
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5.2. Performance Analysis of the WReSL0 Algorithm Applied to UBSS

5.2.1. The Effect of the WReSL0 Algorithm Applied to UBSS

In this section, we evaluate the effect of the WReSL0 algorithm applied to UBSS by the separation
of signals and spectrum analysis.

The effect of the separation of signals is shown in Figure 15: the source signals are well separated,
and the separation signals and the original signals are very similar. Figure 16 displays the error
between the original source signal and the recovered source signal. It indicates that the error between
the original source signal and the recovered source signal is fairly small, and the WReSL0 algorithm
can better deal with the problem of UBSS. In addition, We get the time-frequency diagram of the
restored signal by short-time Fourier transform. Figure 17 is the time-frequency diagram. From this
figure, we find that each signal has the same frequency as the original signal, and it also validates the
rationality of the proposed algorithm for UBSS.
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(a) Separation signal ŝ1
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(b) Separation signal ŝ2
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(c) Separation signal ŝ3
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(d) Separation signal ŝ4

Figure 15. Separation signal.
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(a) Error signal ŝ1 − s1
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(b) Error signal ŝ2 − s2

Figure 16. Cont.
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(c) Error signal ŝ3 − s3
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(d) Error signal ŝ4 − s4

Figure 16. Separation signal error analysis.
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Figure 17. Separation signals’ frequency spectrum. Subfigures (a–d) show the frequency spectrums of
separation signals ŝ1, ŝ2, ŝ3, and ŝ4.

5.2.2. Performance Comparisons of the Selected Algorithms

Here, we use the SL0, NSL0, and Lp-RLS algorithms and the classical shortest path method
(SPM) [38] to make a comparison in different noise cases. In order to analyze the situation of signal
recovery clearly, we apply average SNR (ASNR) (for the signal) and average peak SNR (APSNR)
(for the image) to evaluate. Let the original source signal be si and the recovered source signal be ŝi,
so ANSR is defined as:

ASNR = 1
n

n
∑

i=1
SNRi

SNRi = 20 log ||ŝi−si ||2
||si ||2,

(42)

and PSNR is defined as:
APSNR = 1

n

n
∑

i=1
PSNRi

PSNRi = 10 log 2552×M×N
||ŝi−si ||2

(43)

where M and N are the width and height of the image.
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The ASNR comparisons are shown in Table 5. From the table, we can see that ASNR attenuates
sharply when δN increases from 0.15–0.2. The reason is that the error of the valuated mixed matrix Â
increases obviously, which leads those CS recovery algorithms to perform poorly. In fact, from this
table, our proposed RWeSL0 algorithm performs well when δN is less than 0.15, and when δN is greater
than 0.15, the Lp-RLS algorithm performs best, followed by our proposed RWeSL0 algorithm.

The APSNR comparisons are shown in Table 6. In this table, It is clear that APSNR is not high,
and it drops greatly when δN increases from 0.15–0.2. From Figure 18, we can see that these separated
images seem to be enveloped in mist, which leads to a low APSNR. Therefore, we will try our best to
improve this problem in the future.

In summary, the CS technique can be used in UBSS and performs well especially for the signal
recovery. Our proposed WReSL0 algorithm can perform well in UBSS for the signal recoverywhen the
noise is small; and regarding image recovery, we will develop this in the future.

Table 5. Average SNR (ASNR) analysis for separated signals by SPM, SL0, NSL0, Lp-RLS, and the
proposed WReSL0 with δN changing according to sequence [0,0.1,0.15,0.18,0.2] with 100 runs.

Oise Intensity (δN ) Error of Â(%)
ASNR (dB)

SPM SL0 NSL0 Lp-RLS WReSL0

0 1.763 45.443 41.576 42.324 38.412 39.993
0.1 1.763 36.788 35.278 36.034 37.091 39.295
0.15 1.763 31.407 30.754 32.930 35.332 38.975
0.18 112.6 26.355 24.063 25.437 28.305 26.650
0.2 126.3 11.201 9.974 12.358 17.549 15.581

Table 6. APSNR analysis for separated images by SPM, SL0, NSL0, Lp-RLS, and the proposed WReSL0
with δN changing according to the sequence [0,0.1,0.15,0.18,0.2] with 100 runs.

Noise Intensity (δN ) Error of B̂(%)
APSNR (dB)

SPM SL0 NSL0 Lp-RLS WReSL0

0 3.64 16.447 19.211 20.035 16.372 18.483
0.1 3.64 15.639 16.305 17.327 15.407 17.849
0.15 3.64 13.407 14.754 14.930 14.932 17.351
0.18 133.2 9.355 11.063 11.437 10.305 11.650
0.2 142.4 5.201 5.974 6.358 3.549 5.581

(a) Separated Boat (b) Separated Barbara (c) Separated Peppers (d) Separated Lena

Figure 18. Separated images: (a) boat; (b) Barbara; (c) peppers; (d) Lena.

6. Conclusions

In this paper, we propose the WReSL0 algorithm to recover the sparse signal from given
{y, Φ} in the noise case. The WReSL0 algorithm is constructed under the GD method, in which
the update process of x in the inner loop adopts the regularization mechanism to enhance the
de-noising performance. As a key part of the WReSL0 algorithm, a weighted smoothed function



Sensors 2018, 18, 4260 22 of 24

WT Hσ(x) is proposed to promote sparsity and provide the guarantee of robust and accurate signal
recovery. Furthermore, We deduced the value of µ and the initial value σmax to ensure the optimization
performance of the algorithm. Performance simulation experiments on both real signals and real images
show that the proposed WReSL0 algorithm performs better than the L1 or Lp regularization methods
and the classical L0 regularization methods. Finally, we apply the proposed WReSL0 algorithm to
solve the problem of UBSS and also make comparisons with the classical SPM, SL0, NSL0, and Lp-RLS
algorithms. Experiments show that this algorithm has some advanced performance. In addition, we
would also like to apply the the proposed algorithm to other CS applications such as the RPCA [39],
SAR imaging [40], and other de-noising methods [41].
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