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Abstract: Movie highlights are composed of video segments that induce a steady increase of
the audience’s excitement. Automatic movie highlights’ extraction plays an important role in
content analysis, ranking, indexing, and trailer production. To address this challenging problem,
previous work suggested a direct mapping from low-level features to high-level perceptual categories.
However, they only considered the highlight as intense scenes, like fighting, shooting, and explosions.
Many hidden highlights are ignored because their low-level features’ values are too low. Driven by
cognitive psychology analysis, combined top-down and bottom-up processing is utilized to derive the
proposed two-way excitement model. Under the criteria of global sensitivity and local abnormality,
middle-level features are extracted in excitement modeling to bridge the gap between the feature
space and the high-level perceptual space. To validate the proposed approach, a group of well-known
movies covering several typical types is employed. Quantitative assessment using the determined
excitement levels has indicated that the proposed method produces promising results in movie
highlights’ extraction, even if the response in the low-level audio-visual feature space is low.

Keywords: affective computing; movie exciting degree; excitement modeling; movie highlights’ extraction

1. Introduction

Human–computer interactions (HCI) are crucial for user-friendly interactions between human
users and computer systems. HCI is not only requested to provide effective input/output, it is
also expected to understand the intentions of users and the environment for better service-oriented
interactions. These have raised new challenges beyond conventional multimodal HCI, including audio,
images, video, and graphics [1–3]. Recently, thanks to emerging sensors and sensing techniques, HCI has
been further developed for immersive and affective communication between human users and computer
systems. Examples can be found in virtual reality-based experiences, electroencephalogram-enabled
brain–computer interfaces, and smart interactions between humans and robots. In this paper,
we propose a new method to understand highlight affective segments in movies, which is useful
for further sensor and HCI techniques. The proposed technology used to develop such a sensor is
automatic video content analysis, which aims to reveal both the objective entities and hidden subjective
feelings or emotions from movies. It overcomes the problems caused by the explosively-increasing
repository of online movies. It can select movies more easily from a large video database than a typical
viewer could.

The concerned research problems and used methodologies cross several technical fields, ranging
from cinematographic [4], cognitive psychology [5,6] to video content analysis.
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In the last two decades, video content analysis has attracted considerable attention, and relevant
approaches can be divided into two categories. The first is objective content analysis, which aims
at extracting “fact”-based information, including content extraction [7–9], audio-visual affective
extraction [10–14], event detection [15,16], etc. The second is affective video analysis, where feelings
or emotions within the clip are analyzed [17,18]. In some contexts, an efficient method is needed to
determine the more or less exciting parts of a movie. This is called video highlights’ analysis, which
also belongs to the second category [19].

Most relevant work in video analysis is based on realistic imaging modalities, represented
by photographs along time and related events of (real-world) objects [16]. There exists a rough
correspondence between objects/events and video content. Generally, low-level audio-visual features
in videos are first extracted, which are then employed to detect and understand the objects and/or
events on the basis of a certain ground truth database [20–24].

For affective video analysis [25–30], however, this process is quite different, mainly because
the feelings and emotions involved are abstractive high-level semantics. Due to the difficulty in
defining objective models to describe the subjective affective value, relevant research is rare and recent.
Early work was based on a bottom-up method, which relies on a direct mapping from low-level
features to affective semantic meanings. In Reference [31], a 2D valence-arousal emotional space was
presented for affective video content analysis. In Wang and Cheong [32], fusion of audio and visual
features followed by a support vector machine (SVM) inference engine were proposed for affective
information extraction. The combination of psychology and cinematography knowledge for affective
video analysis can be found in References [20,32–34].

Due to the relatively simple structure and clear semantics contained, highlights’ extraction from
sports, music, and news videos have been intensively studied [19,35–37]. Existing work mainly
focused on event-based approaches, where modeling from features to events is required [35,38].
However, work on highlights’ extraction from generic videos under more complex structures and
contents, such as movies, is still rare and limited. In Reference [39] of Xu et al., a hierarchical
structure for emotion categories by using arousal- and valence-related features was introduced, which
shows better performance for action and horror films than for drama and comedy. In Reference [3],
an affective framework was proposed from audiovisual and film grammar features to movie scenes’
recommendation.

Normally, movie highlights mean the most exciting or memorable parts of a movie. However,
the definition of exciting may vary for different kinds of movies. For example, the intensive motion
segments in action movies tend to arouse the excitement of viewers, while in horror movies, even the
abnormal still and quiet clips are very exciting for the audience. Apart from video content analysis,
research problems of concern and methodologies in use for movie highlights’ extraction are also related
to other technical fields, ranging from cognitive psychology [5,6] to cinematographic [4]. As a result,
the problem of movie highlights’ extraction is rather challenging, simply because existing work in
affective video analysis cannot be directly applied to it.

Of all the videos, as opposed to sports and news, movies are the most complex in structure
and variability of content. Though it is relatively easy to predefine and determine certain events
for specified videos, such as goal events in soccer, the disadvantage of event-based approaches is
obvious. It is infeasible to take into account all highlight-related events for a movie in advance.
As such, an unconventional model and approach beyond conventional event-based video analysis
is required in this context. An early attempt by Hanjalic [19] used a group of local features to derive
the high-level affective curve in emotion space for highlights’ extraction in sports video. Then,
Reference [2] introduced their connotative properties and connotative space for affective description
and classification.

When the human cognitive model is absent, there is a huge gap in conventional video content
analysis for direct mappings from low-level features to high-level affective meanings. In this paper,
a cognitive psychology-based perceptual model is proposed to bridge this gap. With huge data
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collected from a group of well-known movies, the model is applied for highlights’ extraction and
perceptual analysis and understanding of movie videos. The realistic psychological reaction of the
audience is obtained in a user survey. It is worth noting that the expected excitement curve of a movie
should not be confused with the actual excitement response from individuals. While the latter is
highly subjective and context dependent, the former is relatively objective, as it represents the average
response of a movie audience. With experiments conducted on thousands of movie segments, the
proposed model demonstrated how highlights are successfully extracted from movies, whilst the gap
between low-level features and the high-level perceptual space of excitement is reduced.

The remaining part of this paper is organized as follows. Section 2 introduces our motivations
and contributions. Section 3 presents the overall methodology in implementing the proposed model,
including middle-level feature extraction, excitement time curve determination, and revealing the
expected excitement level of the audience to the stimulus of the audio-visual effects’ variation.
Experimental results and analysis are discussed in Section 4, with some concluding remarks drawn in
Section 5.

2. Our Motivations and Contributions

Based on the description above, a prototype-based feature is proposed to measure how a specific
event is different from its normal level. With this feature, the proposed approach can find out not
only events with obvious high feature values, as done in Reference [31], but also segment with highly
abnormal feature values. As the extraction of the excitement level in a video is relative to cognitive
psychology, existing models need to be psychologically justifiable. Our work is inspired by the
following three main principles:

• The cognitive psychology research framework should produce more reasonable results.
• In the bottom-up processing within the framework, a simple prototype approach-based local

feature should be adopted instead of superposition of the features’ values.
• To enable top-down processing, the global expectation and sensitivity of the film should

be estimated.

Based on the three principles above, the main contributions of this paper can be summarized as
below and are detailed in the next section.

• A hybrid cognitive psychology model in combing bottom-up and top-down processing is
proposed to mimic the excitement time curve of a film;

• A set of new global and local features measures the average sensitivity and abnormality of
low-level features;

• A sensitivity adaptive algorithm to extract the excitement time curve of a film.

3. Overall Methodology

For movie highlights’ extraction, modeling of the excitement time curve is emphasized to fulfill
the task in deriving global sensitivity and local abnormality values from the values of low-level
features computed in a film [31]. Figure 1 illustrates the cognitive psychology-based framework for the
implementation of the proposed automatic highlights’ extraction model. Firstly, low-level audio-visual
features are extracted from a film, from which the global and local middle-level features are deduced
for both top-down and bottom-up processing. Finally these middle-level features are fused together
to obtain the excitement time curve and determine highlights by using a cutoff line. The criteria for
model development and the proposed middle-level features are introduced in detail as follows.

3.1. Criteria for Developing Middle-Level Features

As excitement is a concept in psychology categories, its features need to be psychologically
justifiable. Two criteria to reflect its correspondence to the psychology of people watching a film are
introduced below.
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The first criterion, global attribute, ensures that the values of some middle-level features obtained
in the film are global descriptions for the whole film. This criterion projects our psychological
characteristics before watching a film. The second criterion, local abnormality, accounts for the degree
of how different the events are from their normal situation. It enables that not only the drastic events
(such as fighting, explosions, screaming, etc.), but also the suspenseful ones, even with no obvious high
values of low-level features, can be detected. The two criteria actually correspond to the top-down and
bottom-up processing in the proposed framework.

Figure 1. Proposed cognitive psychology framework-based model.

3.2. Feature Selection

To date, many specific audio-visual features have been proposed to map videos to emotional
dimensions of the audience. The most popular cues are motion intensity, cut density, and sound
energy [19]. Although these three features reflect various patterns of many film grammars employed by
directors to emphasize their work emotionally, new features are desirable to obtain more sophisticated
results. In recent work, the facial expression of actors in a film was used to determine the emotional
categories [40]. Other useful low-level features include color energy, lighting key, etc. [32,41,42],
and deep learning methods [43–46]. However, these audio-visual features are still insufficient to
deal with various patterns in a film, and their stabilities and universalities have not been thoroughly
validated. Although only three basic features are used in this paper, the main contribution is that we
probe new middle-level features in the field of cognitive psychology instead of testing new low-level
audio-visual features. Nevertheless, exploring new features for the proposed framework is still an
open option for future investigation.

As shown in Figure 1, the top-down processing in the framework is a composite of global
expectation and global sensitivity. These two global features may bear relations to the psychology
of the audience before they watch a film. The reason we propose these global features is that many
researchers tend to use low-level features to map the high-level emotional dimension. However,
these approaches are data-driven or bottom-up processing, which ignores the global expectation and
sensitivity level of the audience to the film. For instance, the audience will normally be more expectant
of and sensitive to the motion visual effects than other cues in an action movie. Another case, normally
when we are watching a horror film, the sound effects should arouse in us more terrible feelings than
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other types of movies. On the contrary, in most dramas, neither the motion cues, nor the sound effects
are more expected by and sensitive for the audience than the plot.

Another middle-level feature proposed in this paper is local abnormality, as shown in the
bottom-up processing of Figure 1. This feature measures the degree of deviation between the low-level
features’ values and their normal levels. The prototype method of the cognitive psychology field is the
theoretical basis of this idea, and the motivation for which we propose this feature is that: as described
in the previous sections, it is still a very difficult problem to extract the exact excitement time curve for
the various editing schemes of a video.

As early work has argued, the expected variations in a user’s excitement included in the video can
be modeled as a function of various content-unrelated video features [19,31]. However, these reported
literature works assume that the excitement level is proportional to the values of motion, cut rate,
and sound energy. Though this assumption works well in sports videos, this is not always the case in
movies. For examples, a hero is holding his breath and hiding himself from an enemy, who is already
very close to him. There is no obvious motion or sound effects in this scene, but the audience may
still feel very excited. We have no interest in the way of detecting specific event patterns, but there
is still a useful cue that an exciting event can be regarded as an abnormal situation compared to the
normal one. To understand this definition, an example is shown in Figure 2. All three pictures show
talking events, but Figure 2b, which illustrates two people talking normally, can be regarded as a
normal situation or a prototype, and Figure 2a,c, which describes estranged and quarrel situations,
are abnormal situations. As shown in Figure 2, the sound energy values of situations in Figure 2a–c
reveal a more visible difference between these events. The deviation of these events’ low-level feature
is called the local abnormality feature in this paper and is adopted as the local middle-level feature to
calculate the affective dimension.

Figure 2. Different situations of people communicating and their probable sound feature curves, which
include unconcerned behavior (a), normal talking (b), and quarreling (c).

3.3. Model for the Excitement Time Curve

As described in Reference [31], the proposed method starts by considering the function Gi(k),
which models the changes in the excitement dimension over the frame K as revealed by the feature i.
The expected variations in a user’s excitement H(k) while watching a video should be composed of N
basic components Gi(k), as formulated in Equation (1).

H(k) = F(Gi(k), i = 1, ..., N) (1)
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However, as described in previous sections, this formulation presents a simple bottom-up
processing, which does not take the global user’s psychology factors into account. Moreover, the above
model considers only the situation that the excitement level is proportional to the features’ value,
which only works in sport videos, but is not always the case in movies.

Let the parameters Ei and Si be the global features of the average user’s expectation of and
sensitivity to feature i, respectively. Consider the function Di(k) that models the changes in the
deviation of feature i to its corresponding expectation (or prototype) over the frame K in a movie.
Then, we model the excitement time curve H(k) in general as a function of N components Di(k) and a
set of global parameters in Equation (2).

H(k) = F̃(Ei, Si, Di(k), i = 1, ..., N) (2)

Here, the function F̃ serves to select different weights to integrate the contributions of all
components Di(k) in the whole processing of calculating H(k) along a video according to Ei and
Si. Then, we will elaborate how to search for the appropriate form of the function Equation (2) and
evaluate it on a number of test sequences.

3.3.1. Low-Level Features

Function Di(k) is based on components Gi(k), so we first introduce the selection of low-level
features. Although we think that in the proposed model, any low-level feature can be selected, which
represents the stimuli that will likely influence the affective state of a user while watching a movie,
only the psychophysiological experiments’ validated low-level features are adopted in this paper.
They are sound energy e(k), motion intensity m(k), and shot cut rate c(k). These features are expected
to cause the change of the excitement level of the user while watching a movie. We use the same
method in Reference [31] to extract their values.

To test the relation between the low-level features and specific events, we extracted the features’
time curves from two segments of famous films, and each curve was filtered by a Kaiser window for
the smooth effects, as shown in Figure 3.

As labeled in Figure 3a, this scene consists of four events, including people walking,
people checking the corridor, people fighting, and people leaving. Among these events, fighting
is more attractive to users for the drastic action and frequent shot cutting. Another example of movie
scenes as shown in Figure 3b has more complex events. This scene describes a story in which the hero
runs to the theater to stop a potential explosion, but fails ultimately. The close-up of fire in the event of
fire spreading caused a high level of motion intensity level. At the end of the segment, the explosion
event accompanies a huge volume of sound.

Two conclusions can be drawn from the test: (a) there is definitely a relation between the low-level
features and high-level excitement dimension; (b) different movies involve different sensitivities in the
types of low-level features’ values, so more flexible middle-level features are needed.
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(a)

(b)

Figure 3. Low-level feature time curves of two short segments.

3.3.2. Global Expectation and Sensitivity Features

People subconsciously show different expectations and sensitivities to different types of
audio-visual features in watching different types of movies [10]. For examples, in action movies,
the motion strength tends to be more stimulating than other effects. In horror movies, sound effects
play an important role in the user’s emotion. We aim at obtaining global features of the whole movie
that reveal the sensitivity between the user’s excitement level and different features. We start modeling
the sensitivity by defining the global expectation feature Ei responding to feature i.

Ei =

n
∑

k=1
Gi(k)

n
, i = 1, ..., N (3)

Here, n is the total frame number of a movie. This feature is the average value of the feature in
a movie. We also regard it as the specific feature value of a normal event or a prototype. Then, we
calculate two variances in Equations (4) and (5).

Vi =
(Gi(k)− Ei)

2

n
(4)

V′i =
(Gi(k′)− Ei)

2

n′
(5)
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Here, k′ is the frame index where Gi(k′) > Ei and n′ is the total number of k′. Vi represents the
variance of feature i in a film, and V′i represents the variance of feature i, whose value is larger than Ei.
Then, we define the global sensitivity feature Si in the Formulation (7).

Ri =
V′i
Vi

, i = 1, ..., N (6)

Si =

{
Ri, i f Ri ≤ 1.0
1.0, i f Ri > 1.0

(7)

The feature Si represents the activity level of feature i in a movie. Its maximum value is 1.0, which
means that this feature is high in activity in the film and that the audience should be most sensitive
to it.

3.3.3. Local Abnormality Feature

In Section 3, we introduce the prototype method in the cognitive psychology research framework.
Inspired by a similar idea, we propose a local abnormality feature to measure how far a feature deviates
from the prototype while the feature changes along the film. Consider the local abnormality feature
Ai(k) over the frame K as revealed by the feature i defined as:

Ai(k) = |Gi(k)− Ei| (8)

Here, the global expectation Ei is regarded as the prototype of feature i. The absolute value of a
difference value is used here, because we consider that the deviation degree of the audio-video effects
accounts for the rising emotion level of the user. This is different from References [19,31], where the
excitement level was always in a direct proportion to the feature values. For example, in an action
movie, a hero may defeat his enemy by a violent attack. On the contrary, he may assassinate an
enemy quietly and slowly. Both of the events will evoke the audience’s excitement emotion. However,
two cases show completely different audio-visual feature values. Figure 4 shows examples of these
situations. The picture is captured from the film “Gladiator”.

3.3.4. Excitement Model

The excitement time curve H(k) is fused by multiple stimuli represented by the audio-visual
feature time curve Gi(k). To obtain a more accurate result, the proposed cognitive framework and
middle-level features will be taken into account. For top-down processing, the global sensitivity feature
will affect the global effect of a low-level feature; for bottom-up processing, the local abnormality
feature measures the deviation degree between an event and the prototype. The whole computing
process is described as follows:

1. Considering the time stamp k, compute the values of the components Gi(k) computed at that
time stamp;

2. Calculate global expectation Ei and sensitivity Si as in Equations (3) and (7);
3. Compute the local abnormality Ai(k), as in Equation (8);
4. Using the fusion model to obtain a excitement time curve, the model is defined as follows:

G′i(k) = Gi(k)wi(k), i = 1, ..., N (9)

where:

wi(k) =
si
2
(1 + er f (

Ai(k)
σ

)) (10)

and:
er f (x) =

2√
π

∫ x

0
e−t2

dt (11)
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The parameter σ is the spread factor determining the steepness of the curve. The weighting
function Equation (10) ensures that any event that is abnormal and whose audio-visual effects are
very sensitive for the user will be detected. On the contrary, normal events will be ignored.

5. After obtaining the filtered time curves G′i(k), we fuse them as follows to obtain the excitement
time curve H(k).

H(k) = ∑i ηiG′i(k) (12)

Parameters ηi are weighting factors of fusion G′i(k) with ∑i ηi = 1.
6. To make the curve smooth, the excitement time curve H(k) is filtered by a Kaiser window k(ι, β),

as shown in the following.
H̃(k) = k(ι, β)× H(k) (13)

7. By applying a cutoff line to the excitement time curve H̃(k), only those segments whose values
are higher than the value of cutoff line will be extracted as highlights.

(a)

(b)

Figure 4. Examples of two exciting events with different feature curves. The low-level feature curves
(right column) are extracted from two minutes of neighbor segments, which are centered on the frames
corresponding to the screenshots on the right, respectively. (a) Two gladiators are fighting; (b) the
enemy is using a poisonous snake to murder targets.

4. Experiment

4.1. Data Collection and Experiment Setup

In our movie highlights’ extraction testing dataset, in total, 20 famous movies were selected for
testing, which covers several major movie genres including action, horror, war, disaster, drama, etc.
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Examples of the screenshot of each movie are shown in Figure 5. In order to extract the highlights in
the dataset of the 20 movies, we invited a number of testers to participate in the project. Each testee
manually recorded the highlight time point when viewing the movies clips. Figure 6 shows the process
of data collection.

The global sensitivities’ results are shown in Figure 7. It can be seen that most movies are very
sensitive with respect to sound effect. This has also been corroborated in Reference [32], as audio
cues are often more informative than visual ones. On the other hand, motion cues are normally more
sensitive than cut density, because motion cues carry more information to indicate content changes
and the excitement of movie clips, even with limited cuts contained.

4.2. Case Study

In order to evaluate the performance of the proposed method, we extracted the excitement time
curve on all 20 movies and studied them according to a group of predefined events within these films.
For benchmarking purposes, our results were comparatively analyzed with Hanjalic’s algorithm [19].
A detailed discussion on three famous movies, “Gladiator (2000)”, “Saving Private Ryan (1998)”, and
“The Shining (1997)”, are presented below; these were selected as they are well-known and reflect a
high diversity of genres of movies.

Figure 5. Key-frames from the testing database.
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Figure 6. The process of dataset collection.

For each of the three selected movies, the excitement time curve is extracted and plotted in
Figure 8. By specifying the predefined events in these excitement time curves, the corresponding
excitement levels associated with such events were identified. Ideally, the excitement level for these
events should be high to enable them to be included as highlights.

Figure 7. The global sensitivity feature values of 20 movies.
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(a)

(b)

(c)

Figure 8. Excitement time curves extracted from three films including “Gladiator” (a), “Saving Private
Ryan” (b), and “The Shining” (c).

4.2.1. Detecting Violent Events

Violent events contain higher feature values with a higher weight factor for fusion processing,
which forms obvious peaks on the curve. In Figure 9, most peaks are labeled with corresponding
events manually. It can be concluded from the results that our method performed at the same level as
Hanjalic’s to detect the violent events like fighting in the abattoir, gunplay, some horrible scenes, etc.
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Figure 9. Comparison results with unsupervised extraction of video highlights via robust recurrent
auto-encoders [27]. The red columns are the highlight values calculated by using the proposed method,
and the blue columns are the results of [27]. It can be noticed that the proposed method can find more
highlight segments.

4.2.2. Detecting Exciting Events with Low Feature Values

Though both the proposed approach and Hanjalic’s [19] yielded consistent high peaks in
excitement curves for violent event detection, there were some notable differences in the curves
at the same frame index. For clarity, these positions are labeled with capital letters in Figure 8,
corresponding to several key events in the three movies. These events are summarized in Tables 1–3
along with the description and the emotional feeling of the event.

Table 1. Gladiator.

No. Time Periods Description Affect

A 0:11:30–0:12:28 A very horrifying battle scene is shown with
slow motion and deep music. Horrifying

B 1:38:11–1:38:57 Hero is hiding an arrow head in his hand
and wants to kill the evil king. Tension

C 2:24:19–2:26:11 Enemy put a snake in a bed
to assassinate target quietly. Dangerous

D 2:38:07–2:42:58
When hero killed the evil king, all the
audience turns to quiet suddenly, and

the hero sees a vision of his family, then dies.
Happy, anxious, and very sad

Table 2. Saving Private Ryan.

No. Time Periods Description Affect

A 0:51:04–0:53:03 Teammate is shot by sniper, and all soldiers are
hiding without movement and sound. Dangerous

B 0:55:10–0:56:20 Our sniper killed enemy the sniper covertly and quietly. Tension

C 2:21:56–2:26:54 A soldier is too scared to
speak and walk and cries when an enemy passes him. Dangerous

D 2:35:12–2:37:15 Hero is dying and leaving his last words. Sad
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Table 3. The Shining.

No. Time Periods Description Affect

A 0:28:32–0:30:22 The kid is riding a bike along an empty long corridor. Strange
B 0:36:19–0:38:16 The kid sees a terrible phantom, and he cannot cry or run away. Scared

C 0:42:58–0:44:15 The kid is playing in an empty hall alone;
suddenly, a door is opened, but is nobody there. Dangerous

D 0:48:32–0:51:45 The leading man dropped into the illusion that
he is drinking in a bar, and he is talking to himself. Strange

E 0:56:48–1:00:36 The leading man is kissing a beauty, but he
catches a glimpse that she is a zombie. Horrible

F 1:20:24–1:23:45 The leading man wants to get close to
the leading lady quietly and kill her. Dangerous

G 1:35:19–1:37:28 The kid is holding a dagger and standing
beside the sleeping leading lady. Horrible

Actually, all these events can provoke various kinds of excitement. The difference above
indicated that the proposed combined cognitive psychology model outperformed [19] in extracting
these events even with insignificant audio-visual effects. Additionally, sudden slow motion and
unusual silent effects are adopted by movie directors to reflect by contrast the excitement level of
certain events. In these cases, our proposed approach performed particularly better at generating
consistent and continuous excitement curves. Examples can be found for the sampled event points in
Figure 8, including Event A for “Gladiator”, Events A–C for “Saving Private Ryan” and Event C for
“The Shining”. In contrast, Hanjalic’s approach [19] had a near-zero response for these events.

All scenes in these tables have different types of emotional effects on the audience. Whatever the
emotional types are, they can arouse our excitement level. Normally, these scenes do not show an
obvious increase of the low-level features that were employed is this paper, which is the reason their
excitement levels were very low in Hanjalic’s result. As for the proposed method, we could detect the
abnormalities of the events, which led to the improvement of our results.

4.2.3. Curve Continuity Discussion

During the process of some exciting events of movies, the director may employ some special
effects to achieve more impactive effects on the audience’s emotion, like deep sound, slow motion, and
low cut density. Normally, this segment is part of a whole exciting event. For example, at Position A of
“Gladiator” shown in Figure 8, this is the end part of a horrifying war and presents several battle scenes
with slow motion and deep background music; so are the A, B and C positions of “Saving Private Ryan”
and C position of “The Shining”. To mimic the excitement level of a movie, the proposed method
showed more continuity inside the curve of the whole event than Hanjalic’s, whose curve showed
that the whole event curve was almost divided into two segments. Furthermore, our results contained
almost no zero values. This is reasonable because film is elaborated with a compact story line. It is
not possible that the audience’s excitement level could decrease to zero. Finally, it can be concluded
that the experimental results demonstrate the effectiveness of the proposed method in extracting the
excitement level of the audience.

4.2.4. Comparison Result

Table 4 shows the results of the proposed method running on the eight movies. According to the
results, it can be concluded that the proposed method significantly improved the accuracy of movie
highlights’ detection, especially for horror movies.
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Table 4. Compared results.

No. Movie Names GT Our Hanjalic

M1 Gladiator 15 13 11
M2 Titanic 12 10 9
M3 The Perfect Storm 17 13 13
M4 Silent Hill 18 16 10
M5 The Shining 16 14 9
M6 Troy 29 24 24
M7 Brave heart 20 18 16
M8 Saving Private Ryan 27 25 24

5. Conclusions

In this paper, a two-way movie highlights model is proposed for more realistic simulation of
the human perception of excitement levels. Combining with top-down and bottom-up processing,
two criteria, global sensitivity and local abnormality are introduced for the development of
middle-level features. According to various sensitivity levels of individual viewers to different
low-level audio-visual features, the fused results can be adjusted in the prototype-based approach
within our proposed model. The proposed approach generates an excitement time curve by the fusion
of several low-level video features, each of which corresponds to the changes in the user’s excitement
as a reaction to the stimulus of movies. It reduces the gap between low-level audio-visual features and
high-level affective semantic analysis of movies.
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