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Abstract: The chaos phase modulation sequences consist of complex sequences with a constant
envelope, which has recently been used for direct-sequence spread spectrum underwater acoustic
communication. It is considered an ideal spreading code for its benefits in terms of large code
resource quantity, nice correlation characteristics and high security. However, demodulating this
underwater communication signal is a challenging job due to complex underwater environments. This
paper addresses this problem as a target classification task and conceives a machine learning-based
demodulation scheme. The proposed solution is implemented and optimized on a multi-core center
processing unit (CPU) platform, then evaluated with replay simulation datasets. In the experiments,
time variation, multi-path effect, propagation loss and random noise were considered as distortions.
According to the results, compared to the reference algorithms, our method has greater reliability
with better temporal efficiency performance.

Keywords: underwater acoustic communication; direct sequence spread spectrum; chaos phase
modulation sequence; partial least square regression; machine learning

1. Introduction

The underwater acoustic communication has always been a crucial research topic [1–6]. In some
special applications, high-performance communication is required, resulting that the system must
satisfy the constraints of reliability, security and efficiency simultaneously. The direct-sequence spread
spectrum (DSSS) communication is one of the most effective potential solutions to the problem of
confidential underwater acoustic communication. It spreads the frequency spectrum of the carrier
wave with a spreading code sequence, so the modulated signal is hard to be detected by a third party
within the underwater noise, possessing greater concealment [7,8].

Conventional DSSS technique is used to modulating the carrier wave with pseudo-noise (PN)
sequences, such as m-, Gold and Kasami sequences [9–11]. However, these PN sequences can
only provide finite keyings and limited code resources, (e.g., binary phase-shift modulation keying,
quadrature amplitude modulation, frequency shift keying), so the transmitted DSSS signals usually
possess binary-value and periodic characters. Estimating the modulation parameters from the signals
of this type is not very hard even with the blind methods [12–15]. For example, Figure 1a plots
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the power spectrum density reprocessing Srep of the m-sequence spread spectrum signal computed
as follows:

Srep(g) = |F [S( f )]|2 = |
∫ +∞

−∞
S( f )e−i2πg f d f |2 (1)

where S is the power spectrum of the received signal, and F refers to the Fourier Transform. Due
to the periodicity of m-sequence, regular spikes occur at the integer multiple of the sequence period
along the time axis, the period of the transmitted signals can be, therefore, accurately estimated by
measuring the interval width between two spikes [15].

(a) (b)

Figure 1. Period estimations of m- and chaos sequence spread spectrum signals with power spectrum
density (PSD) reprocessing [15]. (a) m-sequence; (b) Chaos sequence.

Over the recent twenty years, chaos theory has been incorporated into the conceptions of PN
sequences for the benefits of broad band, irregular complexity and orthogonality [16–18]. Usually,
chaos (deterministic chaos) refers to irregular, unpredictable behavior in deterministic, dissipative, and
nonlinear dynamical systems [19]. Within DSSS, it can be considered as a kind of disorder sensitive
to initial conditions, allowing to generate a large number of orthogonal chaos sequences by setting
different initial values. This method is helpful to overcome the binary-value and periodic problems
of old code sequences. As the simulation results shown in Figure 1b, adopting chaos sequence
significantly increases the difficulties of the parameter retrieving. Up till now, a series of ingenious
chaos maps have been proposed (e.g., logistic [20], tent [21], cubic [22], Chebyshev [23], Bernoulli [24],
multi-segment piecewise linear maps [25]), considerably improving communication security.

Despite of multiple advantages, adopting chaos spread spectrum into real-life underwater acoustic
communication is far from easy. The de-spreading and demodulation of chaos spread spectrum signals
at the receiver is challenged by the signal distortions caused by time and space variations of underwater
environments, reverberation, multi-path effect, low signal-to-noise ratio, etc. [26]. Matched filter is one
of the most widely used demodulators in underwater acoustic communication [27]:

sout(t) =
∫ +∞

−∞
H( f )S( f )ej2π f td f (2)

where sout is the instantaneous output of the filter, H is its transfer function and S is the spectrum
density function of the given signal s. When the channel impairment is only the white gaussian
noise, according to the Cauchy–Bunyakovsky–Schwarz inequality, the optimal matched filter is,
therefore, H( f ) = αS∗( f )e−2π f to , where α and to are, respectively, a constant value and the time
delay, implying that its impulse response is actually the replica of s. The matched filters obviously
do not have the ability to suppress the non-Gaussian-distributing noise and channel multi-path
effects. In underwater communications, it is, therefore, usually combined with the equalization
techniques or passive-phase conjugation method to mitigate the distortions form the channels of this
type [7,28–30]. Stojanovic et al. successfully realized the deep-water 204-km 660-bps, shallow-water



Sensors 2018, 18, 4217 3 of 22

89-km 1000-bps, and shallow-water 3.7-km 10-kbps underwater communications with equalization
optimizations, respectively [28]. It is claimed that a passive-phase conjugation-based communication
method achieved an average bit error ratio (BER) of 10−6 at SNR = −5 dB with simulations [7], and a
successful communication with the distance of 900 km in a deep-water experiment [31].

Yet, unlike common acoustic signal detections which distinguish the interested signal from the
ambient noise, chaos spread spectrum signal demodulation is a recognition task that is much more
complicated. It has to find out the right class of the received symbol from a large candidate set,
necessitating the target classification capacity via feature analysis. In our opinions, today’s underwater
sound communication techniques can be further improved from the following two aspects:

- High-performance symbol classification method. Though the conventional matched filters are
able to enhance the symbol energy over noise by providing a processing gain with maximal
SNRs, all of the components of the symbol sequences or vectors are unintentionally considered to
contribute equally to the model precision without feature analysis, resulting in values of the key
components that are diluted by the others. Hence, there are still some opportunities to further
improve the accuracy performance of the demodulators through feature analysis.

- Noise analysis. Submarine noise is one of the main interferences with the quality of underwater
communication. They come from a variety of sources, such as marine life, sea quakes, rain,
artificial constructions, etc. The ambient noise of transducers are highly random, and the analysis
of their statistical distribution feature helps potentially to improve the reliability of underwater
communication modalities.

For the issues mentioned above, we focus our work on the investigation of machine learning-based
chaos spread spectrum signal demodulation techniques. It is motivated by the fact that machine
learning methods handle the classification problem by making data-driven predictions or decisions
through building a statistical model from sample inputs. It provides a nice solution to statistically
analyze the data features from the given sample sets. Because this procedure is automatic, it is
especially appropriate to establish the physical models which are hard to be described using a precise
analytic function. Within underwater communications, the received signals are distorted from the
transmitted signals via the underwater sound channels with random noise interferences, so it can be
considered that they contain all of the necessary factors of the propagation model. Learning directly
from the original data with a proper approach may help to build a precise model to benefit underwater
communication techniques from signal and environment feature analysis.

This paper is devoted to the underwater acoustic communication scheme. A new proposed chaos
phase modulation method for underwater communication [32] is used to modulate the communication
symbols. The chaos phase modulation method first arose in the 1990s [33,34] and was then used in
radar systems [35,36] and high-performance multi-channel secure underwater communications [32].
With chaos phase modulation techniques, a synchronized copy of the chaotic symbol signal is generated
at the receiver side and the demodulation is performed by exploiting this replica in different methods
to recover the transmitted data, which is known as a coherent communication system [37]. Compared
to the nonherent systems, such as differential chaos shift keying, chaos phase modulation does not
have the problem of low data transmission rate, in which half of bit energy is used to transmit the
reference signal [38,39]. Because it modulates the phases of the carrier wave with chaos sequence,
which can provide a huge number of modulation keyings and code resources, it can also overcome
the problem of periodicity and binary values caused by conventional PN sequences. Furthermore,
the signals of this type have nice orthogonality, providing high distinguishebility between symbols,
which can potentially facilitate the demodulation task at the receiver end.

This paper innovatively processes the demodulation of chaos phase modulation signals as a target
recognition problem, so it can be solved using either matched filter or machine learning methods.
For the purpose of low bit error rate, a partial least square (PLS) regression-based demodulation
framework is conceived. PLS algorithm is initially a standard tool for processing a wide spectrum
of chemical data problems. Its success in chemometrics resulted in a lot of applications in other
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scientific areas including bioinformatics [40], food research [41], medicine [42], pharmacology [43],
social sciences [44], etc. Recently, this regression method has been successfully used in hyperspectral
image recognition applications in the biometric field [45,46], which effectively improve the test accuracy
by modeling the relations between training and prediction matrices. The use of PLS regression in chaos
phase modulation communications allows us to weigh the received discrete signal through statistical
analyses, further raising the accuracy of the system.

The proposed demodulation scheme is implemented with a multi-core center processing unit
(CPU). The evaluation experiments of this paper are conducted using simulation datasets, within
which the time variation, multi-path effect, propagation loss and random noise are considered as
distortions. In order to obtain unbiased results, two reference algorithms are implemented with
different optimization forms. The results demonstrate that the proposed method achieves the best
accuracy performance with high temporal efficiency within the experimental protocol of this paper.

The remainder of this paper is organized as follows: Section 2 describes the chaos phase
modulation scheme; Sections 3 and 4 present the proposed demodulation method and its parallel
implementation, respectively; Section 5 analyzes the evaluation experiment results; finally, a conclusion
is given in Section 6.

2. Message Signal Modulation

This paper modulates the phases of the communication symbols directly on the complex
exponential function [32]:

pl = exp{j2πkl} (3)

where kl ∈ [−0.5, 0.5] is the l-the element of chaos sequence. We can see that chaos phase modulation
sequences are complex sequences with randomly-distributed phases, and their envelopes are constant.

We use the multi-segment piecewise linear mapping [25,47] to generate the desired chaos sequence
k. It is an iteration procedure that can be programmatically expressed as follows:

(1) Initialize the first element of the sequence k0 with a random value, known as “seed” in
computer science;

(2) If kl > 1/2, repeat the computation kl := kl − |2ξkl | with ξ ∈ [0, 1] until the constraint is satisfied,
otherwise, go to the next step;

(3) If kl < −1/2, repeat the computation kl := kl + |2ξkl | until the constraint is satisfied, otherwise,
go to the next step;

(4) Compute the next element kl+1:

kl+1 =



2(N − ξ)kl + (N − 0.5) −1/2 6 kl < (1− N)/(2N)

2(N − ξ)kl + (N − 1.5) (1− N)/(2N) 6 kl < (2− N)/(2N)
...

2(N − ξ)kl + (−N + 0.5) (N − 1)/(2N) 6 kl < 1/2

(4)

(5) If l = L− 1, task completed, otherwise go back to the second step.

Steps (2)–(4) above correct iteratively kl to keep it in the given interval with the help of a step
coefficient ξ ∈ [0, 1]. L is the length of sequence k. Step (4) segments the interval [−0.5, 0.5] into 2N
pieces (N ∈ N+). Now we can create the chaos spreading spectrum symbol u(t):

u(t) =
L−1

∑
l=0

d(t)× g(t, l, pl) (5)
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with

d(t) = A · ej2π f0t + e−j2π f0t

2
(6)

g(t, l, pl) =

{
pl if t ∈ ( T·l

L , T·(l+1)
L ]

0 otherwise
(7)

where d(t) is the carrier wave, A is amplitude, f0 is the frequency of carrier wave, g is a shaping
function, T = Tc × L is the time length of symbol and Tc is the time length of chip. In this work, cosine
signal is used as the carrier wave.

We can write the fourier transform of u(t) as follows:

F [u(t)] =
L−1

∑
l=0

∫ +∞

−∞
d(t)× g(t, l, pl)× e−i2π f tdt (8)

=
L−1

∑
l=0

∫ T·(l+1)
L

T·l
L

d(t)× ei2π(kl− f t)dt (9)

The equation above implies that chaos phase modulation associates the frequency spectrum of
u(t) with the chaos sequence k. According to the chaos theory, chaos sequences are sensitive to the
initial conditions, even if they are approximately equal. Consequently, correlators will have a low
output unless they are highly synchronized with the inputs. That allows to create a large number of
highly orthogonal symbol candidates by changing the seeds.

Figure 2a plots the normalized autocorrelation of a chaos phase modulation signal measured by
using a classical matched filter (see Equation (2)). The correlation values of main and side lobes are
marked. We can see clearly that their ratio is around 4.1×, whereas, as shown in Figure 2b, it is hard to
distinguish the main and side lobes on the cross-correlation curves, and the maximum cross-correlation
coefficient is only 0.217, demonstrating that chaos phase modulation signals have nice orthogonality.

For the purpose of textual communication, we map the 8-bit ASCII table to chaos phase
modulation signals. Each ASCII code is represented by using a symbol with certain time length,
performing a symbol candidate set for message edition at the transmitter and signal demodulation at
the receiver.

(a)

Figure 2. Cont.
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(b)

Figure 2. Correlation of chaos phase modulation signals. (a) Autocorrelation; (b) Cross-correlation.

3. Signal Demodulation

We consider the demodulation problem as a symbol recognition one. This section describes the
proposed demodulation scheme at the receiver.

3.1. Architecture of Demodulator

Figure 3 shows the demodulation flowchart of this paper. The input signal is first resampled
and pre-processed via a band pass filter, then reshaped into the symbol matrix Xin. The rows of Xin
correspond to the received symbols u′m, and the columns to the sampling points. Thirdly, u′m are
associated to the units of a detector array, respectively. The units of detector array are essentially binary
classifiers, which score the similarity degree between u′m and the symbol candidate un. The output
of the detector array is a score matrix denoted using Yout, whose rows correspond to the symbol
candidates and the columns to the received symbols. The element of the score matrix anm represents
the similarity between un and u′m. Finally, the transmitted message is recovered through a decision
function and ASCII code mapping. This paper supposes that a higher score means better similarity;
the decision function, therefore, returns the indices of the maxima of the columns of Yout:

Mm = max{aT
m} (10)

where aT
m = [a1m, a2m, . . . , anm, . . .].

Figure 3. Overall flowchart of demodulation.

3.2. PLS-Based Detection Method

Signal detection plays an important role in the low-BER acoustic communications. One of
the most frequently used acoustic signal detection methods is the matched filter (see Equation (2)).
The underwater sound channels and ambient noise usually distort the message signals seriously,
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resulting in marked degradation in signal detection performance. Figure 4a plots the autocorrelation
between the original chaos phase modulation signal and its observation at the receiver simulated by
using the sound channel response estimated from the trail data. We can see that the main-to-side lobe
ratio goes from 4.1× (see Figure 2) down to lower than 1.94×. Whereas, the maximum cross-correlation
increases from 0.217 up to 0.42, see Figure 4b.

(a)

(b)

Figure 4. Correlation between the original chaos phase modulation signal and its underwater sound
channel output at SNR = −10 dB. (a) Autocorrelation; (b) Cross-correlation.

The simulations above demonstrate that the distinguishability of the received chaos signals
is reduced significantly during the underwater propagation. For the purpose of high accuracy
performance, we use a partial-least square (PLS) regression-based classifier as the detector array
in Figure 3.

PLS is a wide class of methods for modeling relations between sets of observed variables by means
of latent variables. It comprises regression and classification tasks, as well as dimension reduction
techniques and modeling tools. Projection of the observed data to its latent structure by means of
PLS was developed by Herman Wold and coworkers [48–50]. The underlying assumption of all
PLS methods is that the observed data is generated by a system or process which is driven by a
small number of latent (not directly observed or measured) variables. Its goal is to maximize the
covariance between the two parts of a paired dataset even though those two parts are in different
spaces. This method is essentially a machine learning one, which necessitates the training and testing
processes, simultaneously.

3.2.1. Training Process of PLS Regression

Let x be a random example for training and y its response. Either x or y is zero-mean column
vectors. In order to assess their relation with covariance, we project them onto two separate directions
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specified by unit vectors wx and wy in order to obtain two random variables wT
x x and wT

y y. Now we
present two matrices X and Y whose i-th rows are the feature vectors of corresponding examples xi
and yi. According to the nonlinear iterative PLS algorithm, PLS searches for the directions wx and wy

such that [45,51]

max
wx ,wy :||wx ||=||wy ||=1

C(wx, wy) = wT
x Cxywy =

1
m

wT
x XTYwy (11)

where Cxy = 1
m XTY is the covariance matrix of X and Y, and m is the example number. The direction

that solve the maximal covariance optimization are the first singular vectors wx = U1 and wy = V1 of
the singular value decomposition of Cxy:

Cxy = UΣVT (12)

where the value of the covariance is given by the corresponding singular value σ1.
In this paper, more than one projection direction are wanted. To do this, the same strategy of data

projecting is applied by deflation. This creates the new data matrix

X′ = X(I−wxwT
x ) (13)

Let Pj be
XT

j X jU j

XT
j UT

j U jX j
with j = 1, 2, . . . , k, where k is the projection direction number, the deflation of

X = X1 is obtained as follows:

X2 = X1(I−U1PT
1 ) , with X1 = X (14)

Considering a test point with the feature vector ϕ(x), we define ϕ̃(x) as the feature vector needed
for the regression, whose columns are ϕj(x)TU j. The new feature vector can be expressed as follows:

ϕ̃(x)T = ϕ(x)TŨ(PTŨ)−1 (15)

where Ũ = [U1, U2, U3, . . . , U j].
Now, we can start to compute the regression coefficients vector W, which performs the regression

of the variables Y in terms of XŨ. We seek a coefficient matrix B that solves the optimization

min
B
||XŨB− Y||2 = min

B
〈XŨB− Y, XŨB− Y〉 (16)

The final regression coefficients W are given by ŨB. We seek the minimum by computing the
gradient with respect to B and setting it to zero. The overall regression coefficients can be computed
as follows:

W = Ũ(PTŨ)−1CT (17)

where C is the matrix with columns cj =
YTX jU j

U jXT
j X jU j

.

The PLS regression algorithm is shown in Algorithm 1. The repeat loop computes the first singular
value by the iterative method. We can train the PLS model by assigning the training matrix Xtrain and
its responses YT

train to X and Y, respectively. The element Ytrain(n, m) of Ytrain is 1 if the m-th received
symbol u′m is matched with the n-th symbol candidate un and 0 otherwise. For a training matrix having
4 symbol candidates and two received symbols per candidate, Ytrain is as follows:

Ytrain =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 (18)
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Algorithm 1 Pseudocode of PLS Regression Algorithm.

Input: training matrix X, response variables Y, projection direction number k

Output: regression coefficients W

1: centering the data

2: for j = 1, 2, . . . , k do

3: U j ← first column of XT
j Y

4: U j ← U j/||U j||

5: repeat

6: U j ← XT
j YYTX jU j

7: U j ← U j/||U j||

8: until convergence

9: Pj ← XT
j X jU j/(UT

j XT
j X jU j)

10: cj ← YTX jU j/(UT
j XT

j X jU j)

11: X j+1 ← X j(I−U jPT
j )

12: end for

13: W ← Ũ(PTŨ)−1CT

3.2.2. Demodulation with PLS Regression

The symbol matrix to be demodulated Xin is formed of the normalized received symbol ū′m:

ū′m =
u′m − µ

σ
(19)

where ū′m is the normalized received symbol sequence and is stored as the rows of Xin, µ and σ are
the mean and standard deviation of the training matrix Xtrain. We associate Xin to the well-trained
PLS model to compute the score matrix Yout:

YT
out = Xin ×W (20)

The similarity score Yout(n, m) of u′m related to the n-th symbol candidate un is expected to be
maximal if matched, otherwise 0. The index of the maximum of the score vector of u′m (stored as the
m-th column of Yout) is considered as the estimated class of this received symbol.

4. Implementation and Optimization

The pseudocode of the demodulation algorithm of this paper is shown in Algorithm 2. In order
to facilitate the description, the decision function in Figure 3 is inlined into the top function. After
program initialization, the input signal is first filtered via an FIR filter for denoising, then segmented
and reshaped into the form of the symbol matrix Xin through the loop in Line 3. Thirdly, the PLS
regression function PlsModel() is invoked. It returns the score matrix Yout. Fourthly, f indmax()
function searches for the column maxima Yout, and return their indices, performing an index vector
ind. Finally, ind is assigned to the message generation function MesGen(). The desired message string
is generated by mapping the indices to the characters in the ASCII table.



Sensors 2018, 18, 4217 10 of 22

Algorithm 2 Pseudocode of the Proposed Demodulation Algorithm.

Input: input signal s, frequency band fb, normalization coefficients µ and σ, regression coefficients W, sampling

rate fs, symbol time length T, ASCII table ascii
Output: message str

1: initialization
2: s′ ← f ir(s, fb)

3: for i = 1, 2, . . . , m, . . . do
4: ū′i ← [s′(((i− 1)× fs × T + 1) : (i× fs × T))− µ]/σ

5: Xin(i, :)← ū′i
6: end for
7: Yout ← PlsModel(Xin, W)

8: for the i-th column of Yout, i = 1, 2, . . . , m, . . . do
9: ind(i)← f indmax(Yout(i))

10: str(i)← MesGen(ind(i), ascii)
11: end for

According to Algorithm 2, the proposed demodulation algorithm is lightweight and possesses
high parallelism. From the view point of programming, the loop in Line 3 reshapes the input signal
sequence s′ without any computational operations. PlsModel() function is essentially a matrix
multiplier. The loop of Line 8 is an ideal independent loop, whose iterations can be pipelined or
parallelized completely without initiation interval.

Hence, we optimized the original code for a multi-core CPU platform. Figure 5 shows the overall
architecture of the optimized demodulation implementation. The CPU cores are interconnected with
a shared bus. The first core of CPU masters the preprocessing, resampling, segmentation, reshaping
tasks and PLS model. When these computations are finished, the score vectors stored in Yout are
distributed to the other cores via a shared bus for ASCII mapping. The mapping task consists of
f indmax() and MesGen() functions. We parallelize them with the single instruction multiple data
(SIMD) approach, which enables us to apply the same description code (thread function) to process
different data in parallel. The thread functions formed of f indmax() and MesGen() functions are
distributed to the different CPU cores which share the memories and data bus. Since the data or
operations are independent, all of the threads are able to execute simultaneously so that the running
speed is accelerated.

Figure 5. Architecture of the optimized demodulation implementation.
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5. Experiments and Evaluations

The proposed method is evaluated with the simulation experiments. In order to obtain an
unbiased result, all the used datasets are simulated with the data measured and recorded in the sea
trail. The user-controlled parameters of the algorithm are optimized experimentally. The accurate
and computational performance of the proposed method are evaluated by comparison with the two
reference algorithms.

5.1. Dataset

The experiments of this paper are conducted by using simulation data, which are generated via
the replay simulation method presented in [52]:

s(t) =
∫ Th

τ=0
h(t, τ) · so(t− τ)dτ + sn(t) (21)

where so(t) is the transmitted signal, s is the received signal, h is the measured underwater sound
channel response, Th is the tap number of the channel response and sn is the ambient noise.

Equation (21) allows to simulate time variation, multi-path effect, propagation loss and random
noise occurred during the underwater acoustic propagations by specifying the channel response h
and ambient noise sn. The real-life underwater noise is used as the ambient noise in this work. The
sound channel response is estimated from a set of experimental data recorded by the Institute of
Acoustics of Chinese Academy of Sciences in the South China Sea. Figure 6 plots the smoothed sound
velocity profiles at the sending and receiving sites. The acoustic signal was transmitted from a fixed
source to a fixed receiver array. Table 1 displays the parameters of the experimental environment and
channel estimation. The time coherence of the experimental environment is evaluated by measuring
the normalized correlation of two 10-s chaotic signals with a time interval of 5 min. The result
value of 0.82 demonstrates that the underwater sound channels are highly correlated during the
measurement time.

Figure 6. Smoothed sound velocity profiles at the sender (left) and receiver (right).
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Table 1. Experimental parameters of underwater sound channel estimation.

Parameters Values Descriptions

Sea depth 90–100 m Minimum and maximum sea depths during the propagation.
Distance 16.5 km Both of the sender and receiver are stationary during the transmission.
Source level 200 dB -

Impulse period 2 s -
Impulse form Chaotic -
Sampling rate fs 4000 Hz -
Channel tap number Wh 400 Wh = fs × 0.1 s.
Channel estimation interval 10 ms -

In order to obtain an accurate ocean channel, three frequently used channel estimation methods
are evaluated for selection, including least mean square (LMS) [53], recursive least squares (RLS) [54]
and least squares matching pursuit (LSMP) [55] algorithms. Figure 7 plots the mean square error
(MSE) between the original channel response and the ones measured with the three methods over
the signal-to-noise ratio. It is obtained with the simulated sparse channel response and spreading
frequency signal. Finally, we selected LSMP for its high reliability and accuracy.

Figure 7. Accuracy comparison of channel estimation methods.

Figure 8 plots a channel response measured using the LSMP algorithm. It can be seen that the
histogram possesses multiple peak points, representing the different multi-path arrivals [55]. We do
not normalize it in order to keep the attenuation information. The normalized correlation coefficient
between the original probe signal and the signals simulated with Equation (21) is 0.79.

Figure 8. An example of channel response measured using LSMP algorithm.
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Now, we can start to generate the desired dataset with Equation (21). Given an 8-bit ASCII code,
there are 256 symbol candidates u; for each one, we generate six sessions of simulated signals u′.
The dataset, therefore, contains 256 candidates ×6 sessions = 1536 simulated symbols.

5.2. Parameter Configuration

The subject of this experiment is to determine the following two parameters of the proposed
algorithm: the time length of the symbol T and the projection direction number of PLS regression
k. To do this, three versions of datasets are generated with different symbol time length: T = 0.3,
0.6 and 1 s. Next, the proposed method is evaluated with different projection direction numbers.
3 randomly-selected sessions are used for training and the rests for test. The final experiment results
are computed by averaging the results of three independent executions.

We seek the optimal value of k by maximizing the recognition rate of the systems experimentally.
The recognition rate is defined as the ratio of the correct classification counts and the number of
input test symbols. This criterion has been widely used to evaluate the classification performance in
pattern recognition field. Figure 9 plots the recognition rate curves of the three dataset versions over
k. As expected, the recognition rate raises with the increasing of the k linearly at the beginning then
slows down. It can be seen that the curves of T = 0.3 and T = 0.6 trend towards to stability when
k = 40, whereas T = 1 when k = 65. Meanwhile, the optimal recognition rates are obtained when k
is 42, 55 and 70 for the three dataset versions, respectively. That is, the optimal recognition rates are
90.36%, 92.58% and 99.74% when T is equal to 0.3, 0.6 and 1 s with SNR = −8 dB.

Additionally, it is found also that the dataset with larger symbol time length leads to better
accuracy. This is because the larger T is, the more time gains can be achieved in the slow-time-varying
environment. This experiment demonstrates that the symbols with the period of 1 s lead to an accuracy
of 99.74%, to nearly 100%, in a low signal-to-noise ratio environment (SNR = −8 dB).

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. Recognition rate over the number of projection directions: SNR = −8 dB and f s = 4000 Hz.
(a) T = 0.3 s; (b) T = 0.6 s; (c) T = 1 s

5.3. Demodulation Accuracy Evaluation

The experiment of this subsection evaluates the accuracy performance of the proposed method by
comparing it with two reference algorithms, including traditional matched filter [7] and a three-layer
back propagation (BP) neural network [56]. Bit error rate is used as the criterion of accuracy
performance. Both of the reference algorithms can be directly inserted into the scheme described in
Section 3.1.

We compare the three demodulators with all of the three versions of the datasets: three of the
six sessions for training, and the rests for testing. That is, for each data version, either the training or
testing dataset has 256 symbol candidates × three sessions = 768 simulated symbols. For the purpose
of unbiased evaluation, the simulated symbols are randomly divided into two groups. The average bit
error rate of three repetitions with different training and testing data is used as the evaluation criterion
of the demodulation accuracy performance.

Figure 10 compares the accuracy performance between the proposed method and the reference
algorithms with the three versions of datasets. First of all, we can see that PLS regression always
possesses the lowest bit error rates. For the three dataset versions, when SNR is around −2, −6
and −6.5 dB, the BERs of PLS reach 1.0%, whereas the matched filter and BP network are 22.24%,
36.05%, 6.44%, and 16.79%, 40.33%, 39.87%, respectively. Additionally, PLS achieves an error-free
demodulation results with the three datasets at SNR = 0,−5 and− 5 dB, out of the available range of
the y-axis with logarithmic scale. This demonstrates that the proposed method has the best accuracy
performance with the experiment protocol of this paper.

(a)

Figure 10. Cont.
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(b)

(c)

Figure 10. Accuracy comparison results with bit error ratios: f s = 4000 Hz. (a) T = 0.3 s, k = 40;
(b) T = 0.6 s, k = 55; (c) T = 1 s, k = 70.

In our case, the communication symbols are modulated with multi-segment piecewise linear
mapping, which are essentially a set of pseudo-random sequences, implying that the predictors
(elements of the symbol vector) are somehow correlated, resulting in a multicollinearity problem.
The multicollinearity problem is a phenomenon where one predictor variable in a multiple regression
model can be linearly predicted from the others with a substantial degree of accuracy, resulting in
model distortions [57]. Mathematically, a set of variables is perfectly multicollinear if one or more
exact linear relationships exist among some of the variables:

β0 + β1x1 + β2x2 + · · ·+ βixi = 0 (22)

where βi are constants and xi is the i-th element of the symbol vector u′n. We quantify the
multicollinearity of the simulated dataset by using condition indices (CIs) [58]:

CIi =

√
λmax

λi
(23)

where λmax is the maximum eigenvalue of the symbol set, and λi is its i-th eigenvalue. Belsey et al. [59]
suggest that when the value of CI is higher than 10, data dependencies are starting to affect the
regression estimates. Figure 11 plots the condition indices of a 0.3-s symbol set, in which 30.42% of the
elements are collinear with the others.
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Figure 11. Condition indices of the 0.3-s symbol set.

Unlike the reference algorithms, PLS models the fundamental relations between the training
and response matrices by modeling their covariance structure. More precisely, a PLS model will try
to find the multidimensional direction in the space of training matrix that explains the maximum
multidimensional variance direction in the space of response matrix. The PLS family of methods is,
therefore, particular suited for multicollinearity problem, providing better accuracy performance than
the others.

As for the BP networks, the matched filters achieve better accuracy than when the SNR is low.
In our opinion, this is caused by the fact that the power of the noise components is higher than the
transmitted signals within low SNR environment (SNR < 0 dB), whereas the given training examples
are too sparse, resulting that the BP networks are drowned by the strong ambient noise and can hardly
capture the useful feature information even if they are well converged. Yet, if the signal-to-noise
ratio exceeds certain thresholds (in the case of this evaluation they are −1, 0 and −2 dB for the
three datasets), the networks will provide better accuracy than matched filter. Additionally, the PLS
models are trained by using the same datasets with the BP networks; it demonstrates, therefore, that
incorporating variable relationship analysis into the regression problem can improve the capacity of
the regressors in terms of handling the sparse training datasets.

Finally, the accuracy performance of the matched filters significantly rises with the increasing of
the symbol time length T. For example, the bit error rates of the matched filters are around 14%, 11%
and 0% at SNR = 0 dB. As mentioned in Section 5.2, the dinsguishability of the symbols varies in
function of its length due to the time gain. According to our further test, with the same experimental
protocol, both matched filter and PLS regression achieve the 0% BER at SNR = −5 dB when T = 1.5 s.
However, it should be noted that the communication rate is inversely proportional to T, so the method
of this paper is more appropriate when requiring a high communication rate.

5.4. Practicability Analysis

Collecting high-density qualitied underwater acoustic data is technically difficult for today’s
acoustic engineering. In this subsection, the environment and sample quality compatibility is evaluated
to investigate whether the training datasets could be sparse to a certain extent. The evaluations
are performed by testing the well-trained PLS models using the datasets with strange underwater
sound channels and different SNRs. To do this, we have 50% of the testing symbols simulated via
strange channels (not included in the training channels). The time interval between the two channel
measurements is around 5 minutes, and their normalized correlation is around 0.8. The evaluation
result is shown in Table 2, in which the rows correspond to the training datasets and the columns to
the testing datasets.



Sensors 2018, 18, 4217 17 of 22

Table 2. BER (%) between the training and testing datasets with different underwater sound channel
response and SNRs (dB): T = 0.6 s, k = 55 and fs = 4000 Hz, the rows correspond to the training
datasets and the columns to the testing datasets.

SNR

BER SNR
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−10 44.61 33.57 22.77 21.21 13.78 8.98 6.91 4.52 4.52 3.98 2.76
−9 30.78 25.09 10.32 9.87 6.31 5.92 3.33 2.51 0,91 0.69 0.54
−8 27.14 14.12 9.75 5.01 3.82 2.01 1.21 0.82 0.51 0.42 0.21
−7 15.34 7.82 4.98 4.57 1.27 0.98 0.39 0.26 0.13 0.00 0.00
−6 10.52 4.21 2.61 1.55 0.26 0.13 0.00 0.00 0.00 0.00 0.00
−5 6.45 3.13 1.27 0.52 0.26 0.13 0.00 0.00 0.00 0.00 0.00
−4 4.33 1.01 0.13 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
−3 3.78 0.26 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−2 2.21 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−1 1.88 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.91 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Comparing the diagonal of Table 2 with the simulation results of Figure 10b which trains and
tests with the same sound channel, we can see that a strange channel somehow reduces the accuracy
performance of the demodulator, but this impact is tiny, and the demodulator reaches the BER of
0% at SNR = −4 dB, which is still much better than either BP networks or matched filters. This
demonstrates that the proposed method has the ability to resist the channel variant. Meanwhile, both
of the SNRs of the training and testing datasets positively affect the accuracy of the demodulator. Poor
training data do not necessarily result in high BERs, and vice versa. Hence, the performance of our
demodulator is not seriously affected by the gap between the training and testing datasets, implying
that the training data can be collected with few constraints.

5.5. Temporal Efficiency Evaluation

This subsection evaluates the temporal efficiency performance of the proposed demodulator
by comparing it with the matched filter and BP network. This paper theoretically analyzes the
efficiency performance of all the algorithms with asymptotic time complexity (also known as time
complexity) [60]:

T (n) = O( f (n)) = η f (n) (24)

where n is the scale of the problem to be solved and f (n) is a function having the same order of
magnitude with T (n), which makes their ratio η is a non-zero constant.

The pseudocode of the demodulation scheme shown in Figure 3 is given in Algorithm 2, in which
Line 7 is replaced by using the matched filter or BP network to perform the comparisons. The time
complexity of this demodulation scheme Ttotal can be expressed as:

Ttotal = TFIR + Tnorm + T∗ + TDec (25)

with

TFIR = m× T × fs × nord (26)

Tnorm = m× T × fs (27)

TDec =
3
2
×m× n (28)

where TFIR, Tnorm and TDec are the time complexities of FIR filter, normalization operation and decision
function, T∗ with ∗ = “PLS”, “MF” or “BP” is the time complexity of the selected demodulator, nord
is the order of the FIR filter, m is the symbol number of the input message, n = 256 is the number of
symbol candidates, and fs = 4000 Hz is the sampling rate.
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For each symbol, according to the algorithms presented in Section 3, the PLS model runs in
polynomial time (An algorithm is said to be of polynomial time if its running time is upper-bound
by a polynomial expression in the size of the input for the algorithm, i.e., mathcalT(≈x≈fn) =

O(≈x≈fnκ) for some positive constant κ [60,61].): TPLS = n× T × fs. Similarly, the time complexity
of the matched filter is TMF = n× T2 × f 2

s . As for the forward propagation of a BP network, when the
size of a hidden layer is n− 1, its time complexity is TBP = (n− 1)× T× fs + n2. With the experiment
protocol of this paper, PLS model clearly has the lowest time complexity, whereas matched filter
the highest.

Table 3 lists the implementations of the proposed and the two reference algorithms. They are
implemented by using the multi-core CPU platform presented in Section 4. The indices “_ori” and
“_opt” refer to the original and optimized implementations, respectively. The detection step of the
matched filter (see Equation (2)) and the message generation steps of all the three algorithms are
parallelized. The running speed measurements cover all the accelerated steps, including detection
and decision. The CPU used is Intel(R) Corel(TM) i7-6700 CPU 3.4 GHz. The ratio of the running
time, known as acceleration ratio, is used as the efficiency evaluation criterion, and the running time
of mf_ori with T = 0.3 s (72.8 ms per symbol) is set as the measuring basis.

Table 3. Description of multi-core CPU implementations.

Names Algorithms Optimzations

mf_ori Matched filter None
mf_opt Multi-thread parallelization

bp_ori BP network None
bp_opt Multi-thread parallelization

pls_ori PLS regression None
pls_opt Multi-thread parallelization

Figure 12 displays the acceleration ratios of all the implementations. Firstly, we can see that
the implementations based on machine learning methods are much more efficient than the matched
filters. Their running speed gaps are hundreds of times. With matched filters, the received symbol
is correlated with the replicas of the original symbols point by point along the time axis, which is
quite time-costly. By contrast, the PLS model and the forward propagation process of BP networks
are essentially matrix/vector multiplication operations with low computation intensity. So, even if
the running speed has been multiplied through multi-thread optimization, their temporal efficiency
performance are still not on the same order of magnitude.

Figure 12. Running speed comparison results: fs = 4000 Hz.
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Secondly, comparing with the original implementations, the optimized implementations are
accelerated by around three times. In this experiment, a four-core CPU is used, so the speed-up
should have been four times higher than measured values (in theory). This is caused by the following
two reasons:

a the implementations are partly optimized instead of completely parallelized. The multi-thread
optimizations of pls_cpu and bp_cpu cover only the message generations without detection steps;

b the shared memory architecture is constrained by the von Nuemann bottle neck, the memory
access conflicts may be occurred when multiple thread functions are invoked simultaneously.

Depending on the efficiency evaluation result, the time costs of all the implementations are lower
than T, satisfying the constraints of real-time processing. Therefore, the communication rateR is only
constrained by T. Given that a symbol represents a bit stream of 8-bits with ASCII code, R can be
estimated as (8×m)/(m× T + d/cs) in theory, where m is the received symbol number or the size of
the transmitted message, d is the distance between the sender and receiver and cs is the underwater
sound speed.

6. Conclusions

This paper presents a novel machine learning available demodulation scheme for underwater
communication applications based on the chaos phase modulation spread spectrum techniques.
Thanks to the characteristic of a large number of phase-shift keying, it is more appropriate for
confidential communication applications. Compared to the reference algorithms, experiments
demonstrate that the proposed approach possesses higher accuracy performance with low SNR
and high communication rate. The main originalities and contributions of this paper include:

- The proposed demodulation scheme handles the signal demodulation as a target recognition
problem, allowing us to incorporate advanced classification methods into it, benefiting from
the recent progresses of pattern recognition techniques. Because machine learning methods
are able to statistically analyze the symbol features and noise characters, it can provide better
demodulation accuracy performance than matched filters with shorter symbol sequences. That is,
if the same accuracy performance is desired, the conventional matched filters need long symbol
sequences in order to get enough time gains, so adopting machine learning methods, especially
PLS regression, can considerably improve the underwater communication applications in terms
of communication rates;

- It is found that the chaos-spreading spectrum signals have the characteristic of multicollinearity
which may potentially impact the performance of certain classifiers negatively. Fortunately,
the algorithm family of PLS can somehow overcome this disadvantage by modeling the
relationships between the predictor and response variables, even with a sparse training dataset;

- The running cost of the proposed approach is very low. The detection steps of the proposed
scheme costs only several milliseconds with the experiment protocol of this paper, which even
can be ignored during the overall demodulation procedure, so it possesses high temporal
efficiency performance;

- The proposed demodulation algorithm can be easily transplanted to other hardware platforms
for different purposes. The detection process of the proposed algorithm is actually an operation
of matrix production, which can be easily implemented and optimized by using any currently
available computing platforms.

Meanwhile, some issues exist still. Firstly, the spatial variations and frequency-shift characteristic
of underwater sound propagations are not considered in the simulation; some more evaluations with
real-life experiment data are strongly required in future studies. Secondly, the experiment of this
paper demonstrates that PLS regression has better accuracy performance than BP networks. However,
it cannot be concluded that PLS regression is always the best classifier for all the three mentioned
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methods, because the training set of this paper is sparse, far away from the requirement of deep
learning. In the future work, we aim to attempt to further improve the evaluation experiment with
the standard of deep learning. Thirdly, the PLS-based demodulator is able to resist some variation of
communication channel, but it should be noted that the underwater sound channels sometimes rapidly
vary in real-life applications. The training frequency of the PLS model will, therefore, be studied and
a solution with real-time learning will be investigated. Finally, the parallel implementation of the
training process of the proposed algorithm is not discussed in this paper. Some optimization properties
within the instruction and data levels with other refined development tools, i.e., MPI for multi-core
CPUs or CUDA for GPUs, still exist and are worth being investigated further .
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