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Abstract: Point cloud classification is an essential requirement for effectively utilizing point cloud
data acquired by Terrestrial laser scanning (TLS). Neighborhood selection, feature selection and
extraction, and classification of points based on the respective features constitute the commonly
used workflow of point cloud classification. Feature selection and extraction has been the focus of
many studies, and the choice of different features has had a great impact on classification results.
In previous studies, geometric features were widely used for TLS point cloud classification, and only
a few studies investigated the potential of both intensity and color on classification using TLS point
cloud. In this paper, the geometric features, color features, and intensity features were extracted
based on a supervoxel neighborhood. In addition, the original intensity was also corrected for range
effect, which is why the corrected intensity features were also extracted. The different combinations
of these features were tested on four real-world data sets. Experimental results demonstrate that both
color and intensity features can complement the geometric features to help improve the classification
results. Furthermore, the combination of geometric features, color features, and corrected intensity
features together achieves the highest accuracy in our test.

Keywords: terrestrial laser scanning; point cloud; classification; intensity; feature set; supervoxel;
random forest

1. Introduction

Terrestrial laser scanning (TLS) devices have been widely used to quickly acquire 3D spatial
information of large-scale urban scenes. The classification of point clouds is a key step for utilizing the
information effectively. The common workflow of 3D point cloud classification involves neighborhood
selection, feature selection and extraction, and classification of points based on the respective
features [1]. The neighborhood selection has always been the focus of many studies. Many previous
studies focused on point-wise classification techniques, in which features for every point are calculated
by using the points within its neighborhood. The spherical neighborhood and cylindrical neighborhood
are often used. However, these neighborhoods with fix-bound radiuses may be inappropriate for TLS
point clouds because of their varying point densities. The K-nearest neighbors can provide irregular
neighborhood sizes depending on the density of its point cloud and its flexibility. However, it requires
a high computation complexity. To improve the computational efficiency, some authors have proposed
voxel- or supervoxel-based neighborhoods for feature extraction. In the study of Lim and Suter, they
first segment the point cloud into supervoxels as support regions, after which a multiscale conditional
random field is used to classify a TLS point cloud [2]. Ramiya et al. uses supervoxel-based segmentation
to segment the point cloud data first, and then uses different machine-learning algorithms to label the
point cloud [3]. Wang et al. proposes an object detection method based on supervoxel neighborhoods
with a Hough forest frame; their method have shown good results with high efficiency [4]. Plaza-Leiva
et al. utilizes voxel-based neighborhoods to extract features. In their method, the points in each voxel
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are assigned the same class. Their experimental results have proven the feasibility of voxel-based
neighborhoods in 3D point cloud classification and its high computational efficiency [5].

Feature selection and extraction has also been the research interest for many previous studies.
The features commonly used are often related to the properties of geometry [6]. Besides the geometric
information, most TLS systems also record the intensity information, which is considered to be an
important measurement of the spectral property of a scanned surface. It can also serve as an additional
feature in point cloud classification. There exist several studies on airborne laser scanning (ALS)
and mobile laser scanning (MLS), which have used intensity data for classification. Song et al. first
used intensity data for ALS point cloud classification; they conclude that intensity can be used for
ALS land-cover classification [7]. In the study of Zhou et al., the height and intensity data were
integrated for land-cover classification; the experiment results proved the effectiveness of height
and intensity data [8]. Zhang et al. used thirteen features that contain geometry, intensity, topology,
and echo characteristics to train the support vector machine (SVM) classifier for ALS point cloud
classification [9]. In most MLS studies, intensity has been used for the detection of road markings
and road signs [10–12]. However, for TLS point clouds, there are very limited studies that have used
intensity data for point cloud classification. Lim et al. combined color and intensity with geometric
features to form a feature set used for their supervised learning model [2], whereas Wang et al.
combined the median of intensity with other 27 features in a Hough Forest frame for object detection
in a TLS point cloud [4]. In their recent study, Hackel et al. refrained from using intensity information,
claiming that it does not improve the classification in their tests [13]. This may be due to the fact that
the original intensity data was affected by several factors which may have degraded the classification
performance, not to mention that intensity correction is always recommended before fully utilizing
the intensity information [14]. In addition, many TLS systems are also equipped with digital cameras
which can acquire corresponding color information for each point. Several previous studies have also
used color information for TLS point cloud classification. Li et al. used geometric features, the mean
RGB color, and the LAB values of that mean RGB in order to train a linear SVM classifier for TLS point
cloud classification [15]. Aijazi et al. incorporated RGB and intensity values on classification and found
that intensity with RGB values performs better in classification than RGB color alone [16].

In this paper, we carefully investigate the influence of several different feature sets on TLS point
classification. We first use supervoxel-based neighborhood for feature extraction considering its
computational efficiency. To the best of our knowledge, this is the first time a supervoxel is used as the
support region in a point-based classification. The features of each point within one supervoxel are
calculated using all these points inside the supervoxel; hence, every point in one supervoxel has the
same features, and all points are assigned the same class label. In order to improve both accuracy and
efficiency, a novel supervoxel segmentation method proposed by Lin et al. is used instead of using
commonly-used methods [17]. The features we investigated include geometric features, color features,
and intensity features. Moreover, the original intensity is corrected to eliminate range effect, therefore
the corrected intensity features are also extracted and used. To our knowledge, there have never been
any studies which have analyzed corrected intensity features on TLS point cloud classification. These
features are then combined together to compose different feature sets which are further applied to the
Random Forest classifier for classification. The comparative performance analysis is carried out on
four real-world data sets. Experiment results have demonstrated that both color and intensity can
complement geometric information to help improve the classification results, and geometric features
combined with color and corrected features achieve the best classification accuracy in our test.

The remainder of this paper is organized as follows: the methodology is described in Section 2,
the experiments conducted are described in Section 3 followed by a discussion, and finally, conclusions
follow in Section 4.
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2. Methodology

The general framework of this study is given in Figure 1. The original point cloud data acquired are
first over-segmented into spatially consistent supervoxels. Then, different features are extracted based
on the supervoxel neighborhood. These features mainly consist of geometric features, color features,
and intensity features. Note that before intensity feature extraction, the original intensity of the point
cloud is corrected for range effect in order to derive the corrected intensity data. Therefore, the intensity
features comprise both original and corrected intensity features. After the feature extraction, different
features are combined together to compose different feature sets, which are then used for training the
random forest classifiers in the training stage and for classification in the prediction stage. Finally, the
recall, precision, F1-score, and overall accuracy are used to evaluate the classification performance.
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2.1. Supervoxels Generation

A supervoxel groups 3D points into perceptually meaningful clusters with high efficiency.
According to the definition of supervoxel, points within a supervoxel must have similar features
and be spatially connective. Supervoxels have long been preferred as basic processing units instead
of original points in point cloud applications. Voxel cloud connectivity segmentation (VCCS) is one
of the commonly-used supervoxel generation methods [18]. However, when the density of a point
cloud varies a lot, VCCS cannot preserve the boundaries well, which leads to under-segmentation
errors and classification errors. In this paper, we used the method proposed by Lin et al., which can
provide better-preserved object boundaries and lower under-segmentation errors [17]. In their method,
they formalize supervoxel generation as a subset selection problem which involves an explicit energy
function. They also develop a simple but effective method to minimize the energy function for a subset
selection which does not need to select seed point. Moreover, this method is more computationally
efficient than most of the state-of-the-art supervoxel methods. In this study, the supervoxel was
selected as a neighborhood for feature extraction. The features of a point in one supervoxel were
calculated using all of these points in this supervoxel, meaning the features of all points within this
supervoxel were the same, and all points were assigned the same class label within one supervoxel.

2.2. Feature Sets Extraction

After supervoxel generation, different features are extracted based on the supervoxel
neighborhood. Feature selection and extraction constitute the essential part of point cloud classification,
and their performance plays a decisive role in classification results [19]. In this paper, we carefully
select three types of features for classification: geometric features, color features, and intensity features.

Before the feature extraction, intensity correction is first conducted. Intensity correction means
converting the original intensity data into a corrected value which is proportional or equal to target
reflectance [20]. The original intensity is affected by factors including the scanning geometry, the
scanner mechanism, and the surrounding environment. The scanning geometry is a major factor which
includes range and incidence angles [21]. The correction of these two effects has been the focus of
many previous studies [22–24]. Many studies also found that the intensity data of TLS does not follow
the LiDAR equation in the near range and different TLS systems may result in different intensity–range
relations [21,23–25]. Therefore, the data-driven model has been proven to be more appropriate for
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TLS intensity data correction. The effect of incidence angles is more complicated than the range effect,
because the characteristics of the scanned surface need to be considered. Most previous studies simply
assumed the scanned surface to be a perfect Lambertian surface which is not accurate, because both
diffuse and specular reflections exist in natural surfaces. The correction results may be unsatisfactory
when an inappropriate surface reflection model is used. Therefore, in this paper, only the range effect
has been considered and corrected. According to the intensity correction definition, the range corrected
intensity data IC (note: IC still relies on other factors, such as incidence angle and scanner mechanism
effects) can be derived as follow:

IC = I× f (Rs)

f (R)
(1)

where I is the original intensity, R is the distance, Rs is the selected reference distance, and f (·) is
the approximated intensity as a function of range, its specific form being derivable through certain
experiments. In Equation (1), the range effect is removed by normalizing the intensity data into a
user-defined standard range.

Formally, a point cloud can be written as P = {xi, yi, zi, Ii, Ri, Gi, Bi}, consisting of the
coordinates xi, yi, zi of the 3D point, the intensity data Ii and the RGB values Ri, Gi, Bi. The
derived supervoxel neighborhood serves as the basis for feature extraction. In this study, we
extracted three types of features, namely geometric features, color features, and intensity features.
The geometric features are mainly comprised of covariance features, which are derived from the
normalized eigenvalues λ1, 2, 3 of the 3D structure tensor [26,27]. These eigenvalues are sorted as
λ1 ≥ λ2 ≥ λ3. The covariance features are quite useful in the representation of the local geometric
shape in a certain neighborhood. Besides covariance features, three other features derived from the
supervoxel neighborhood are given by mean z value, z variance, and maximum z difference. The
considered color feature set comprised 12 features: mean R, G, and B; R, G, and B ratio; R, G, and B
variance, and maximum R, G, and B difference. The considered intensity feature set comprises three
features which involve mean intensity, intensity variance, and maximum intensity difference. All these
features are listed in Table 1. Note that the color features and intensity features are normalized to a
range between 0 and 1 before being applied to the Random Forest classifier.

Table 1. Three types of feature sets.

Geometric Features Color and Intensity Features

Linearity (λ1 − λ2)/λ1 Mean R (∑n
i=1 Ri)/n

Planarity (λ2 − λ3)/λ1 Mean G (∑n
i=1 Gi)/n

Sphericity λ3/λ1 Mean B (∑n
i=1 Bi)/n

Omnivariance (λ1·λ2·λ3)
1/3 R ratio R/ ∑n

i=1(R + G + B)
Anisotropy (λ1 − λ3)/λ1 G ratio: G/ ∑n

i=1(R + G + B)
Eigenentropy −∑3

i=1 λi· ln (λi) B ratio: B/ ∑n
i=1(R + G + B)

Sum of eigenvalues λ1 + λ2 + λ3 R variance (∑n
i=1 Ri − R)/n

Change of curvature λ3/(λ1 + λ2 + λ3) G variance (∑n
i=1 Gi −G)/n

Mean Z (∑n
i=1 Zi)/n B variance (∑n

i=1 Bi − B)/n
Z variance (∑n

i=1 Zi − Z)/n Maximum R difference Rmax − Rmin
Maximum Z difference Zmax − Zmin Maximum G difference Gmax −Gmin

Maximum B difference Bmax − Bmin
Mean intensity (∑n

i=1 Ii)/n
Intensity variance (∑n

i=1 Ii − I)/n
Maximum intensity

difference Imax − Imin

2.3. Classifier

In this paper, the Random Forest classifier was used for the classification of the TLS point
cloud [28]. A random forest provides a good trade-off with respect to both accuracy and computational
efficiency. In addition, it has been proved to be successfully applied to point cloud classifications [29,30].
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A random forest is an ensemble algorithm that creates a set of decision trees from a training set’s
randomly selected subsets. It then aggregates the votes from different decision trees to decide the final
class of the test object. It therefore has a high predictive accuracy and control over-fitting. In order to
analyze the performance of different feature sets on the classification results, we trained six random
forest classifiers. They were trained with 11 geometric features, 11 geometric features combined
with 3 original intensity features, 11 geometric features combined with 3 corrected intensity features,
11 geometric features combined with 12 color features, 11 geometric features combined with 3 original
intensity features and 12 color features, and 11 geometric features with 12 color features and 3 corrected
intensity features, respectively.

2.4. Performance Evaluation

In this paper, we used four commonly used measures for our evaluation: recall, precision, overall
accuracy, and an F1-score. Recall represents a measure of completeness or quantity, precision represents
a measure of exactness or quality, overall accuracy indicates the overall performance of the classification
result, and the F1-score is the harmonic mean of recall and precision. All four evaluation measures are
described below in Equations (2)–(5).

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Overall accuracy =
TP + FN

TP + FP + TN + FN
(4)

F1 score = 2× Recall× Precision
Recall + Precision

(5)

where TP, FN, FP, and TN denote the number of true positives, false negatives, false positives, and true
negatives, respectively.

3. Experiment Results and Discussion

3.1. Data Sets

To evaluate our approach, the point clouds of five scenes obtained by a Faro Focus3D TLS scanner
on a campus were used. Five scenes contained 2,129,780 points, 2,021,938 points, 1,378,108 points,
2,077,624 points, and 1,524,230 points, respectively. We used one scene as the training set and the other
four as testing sets. To train the classifier and evaluate the classification performance, we manually
labelled the five scenes into the following six classes: ground, façade, pole-like object (note: we use
pole for short in the following paper), tree, vegetation, and curb. The intensity values, RGB values, and
ground truth labelling of the training set and four testing sets are illustrated in Figure 2. An unbalanced
distribution of training examples per class may influence the training process [31]. Therefore, we used
class re-balancing by randomly sampling the same number of training examples per class to acquire
reduced training sets. In this study, we randomly selected a training set with 1000 training examples
per class for the training set in one scene; a total of 6000 points were selected. All the points in the
other four scenes were used as testing sets. The numbers of 3D points in six different classes of the
training set and four testing sets are listed in Table 2.
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Table 2. Number of 3D points in six different classes of training and testing sets.

Training Set Testing Set 1 Testing Set 2 Testing Set 3 Testing Set 4

Ground 387,419 285,096 450,805 234,590 579,463
Façade 1,061,658 732,092 478,830 1,006,474 322,725

Pole 5678 7230 6320 4183 4696
Tree 390,699 637,980 156,989 473,145 402,273

Vegetation 242,325 255,365 262,837 330,093 195,834
Curb 42,001 104,175 22,327 29,139 19,239
Total 2,129,780 2,021,938 1,378,108 2,077,624 1,524,230

3.2. Classification and Evaluation

The five data sets were first applied to the supervoxel generation. The resolution of supervoxels
was set to 0.5 m for all data sets. After the supervoxel generation, the training set was over-segmented
into 12,687 supervoxels, testing set 1 was over-segmented into 16,393 supervoxels, testing set 2 into
8470 supervoxels, testing set 3 into 15,240 supervoxels, and testing 4 into 12,591 supervoxels.

Afterwards, the intensity data of all training and testing point clouds were corrected for range
effects before feature extraction. The specific form of the correction equation and the experiment
conducted to derive the correction model can be found in our previous study [32]. The standard
reference range was set to 5.0 m in this experiment. The visualization of the original and corrected
intensity of all the data sets are shown in Figure 3, in which the intensity values are shown in pseudo
color. The intensity values of the same object before correction vary a lot. As we can see from Figure 3,
the intensity values are larger when the objects are closer to the scan station. After range effect
correction, the intensity variation of the same object decreases a lot and the intensity variation among
different objects increases.
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Figure 3. Original intensity (left) and corrected intensity (right) for: (a) training set, (b) testing case 1,
(c) testing case 2, (d) testing case 3, and (e) testing case 4.

Afterwards, different features were extracted based on the supervoxel neighborhood for each data
set. The Random Forest classifiers involved in our experiments were trained and tested using Matlab’s
own implementation. A total of 100 trees were used for our application. The visualization of the
classification results of the four testing sets are shown in Figure 4. For each testing set, the classification
results of six different feature sets are illustrated. The overall accuracy, precision/recall, and F1 score
values of all four testing sets for each different feature sets are listed in Tables 3 and 4, respectively. In
these tables and figures, Geo stands for geometric features, Geo & OI stands for geometric & original
intensity features, Geo & CI stands for geometric and corrected intensity features, Geo & C stands for
geometric and color features, Geo & C & OI stands for geometric, color, and original intensity features,
and Geo & C & CI stands for geometric, color, and corrected intensity features.
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Table 3. Overall accuracy (in %) of four test cases for different feature sets.

Feature Set Testing Set 1 Testing Set 2 Testing Set 3 Testing Set 4

Geo 74.6 75.1 75.2 79.0

Geo & OI 76.0 75.1 76.2 80.2

Geo & CI 78.6 76.7 76.5 80.2

Geo && C 82.9 84.0 90.2 91.9

Geo && C && OI 83.8 84.0 89.8 91.8

Geo && C && CI 83.8 84.1 90.3 92.2
Sensors 2018, 18, x FOR PEER REVIEW  9 of 18 
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Figure 4. Visualization of the classification results of four testing sets: (a) testing set 1, (b) testing set 2,
(c) testing set 3, and (d) testing set 4, obtained through six feature sets: (I) Geo, (II) Geo & OI, (III) Geo
& CI, (IV) Geo & C, (V) Geo & C & OI, (VI) Geo & C & CI. Legend for labels: ground façade pole tree
vegetation curb.
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Table 4. Precision/Recall and F1 score values (in %) of four testing sets for different feature sets.

Test Case 1 Ground Façade Pole Tree Vegetation Curb

Geo
76.2/98.4 90.2/83.6 16.6/25.6 88.1/86.8 63.9/11.3 11.0/30.8

85.9 86.8 20.2 87.4 19.2 16.2

Geo & I
76.7/97.9 93.7/83.1 15.9/20.1 86.8/91.1 70.2/12.0 12.3/33.9

86.0 88.1 17.8 88.9 20.5 18.1

Geo & CI
76.2/97.6 97.2/86.1 22.4/34.4 89.0/94.6 73.2/16.6 12.6/31.6

85.6 91.3 27.1 91.7 27.1 18.0

Geo & C
80.8/95.2 99.0/77.0 61.0/24.7 81.1/97.4 76.0/74.5 27.9/26.1

87.4 86.6 35.1 88.5 75.2 27.0

Geo & C & I
82.3/95.5 98.8/76.1 66.6/26.3 82.0/97.7 79.5/81.3 30.6/30.1

88.4 86.0 37.7 89.1 80.4 30.3

Geo & C & CI
81.5/95.8 98.9/76.0 72.9/26.3 79.4/97.9 81.1/81.1 38.0/29.1

88.1 86.0 38.6 87.7 81.1 32.9

Test Case 2 Ground Façade Pole Tree Vegetation Curb

Geo
83.9/91.0 94.8/91.1 21.1/15.8 62.8/85.8 87.8/13.6 10.3/77.7

87.4 92.9 18.1 72.5 23.5 18.1

Geo & I
80.9/93.3 97.0/88.8 42.0/14.6 58.2/92.0 89.6/10.1 12.5/78.5

86.7 92.7 21.7 71.3 18.2 21.6

Geo & CI
82.3/96.3 98.0/88.4 33.8/21.2 60.4/93.4 84.6/13.1 13.1/76.9

88.7 92.9 26.0 73.4 22.7 22.3

Geo & C
98.4/87.1 99.3/85.1 100.0/6.0 56.0/97.1 82.8/72.2 23.2/70.1

92.4 91.6 11.3 71.1 77.1 34.9

Geo & C & I
99.1/86.5 99.2/84.3 100.0/6.0 56.4/97.2 87.7/74.4 19.1/71.8

92.4 91.1 11.3 71.4 80.5 30.1

Geo & C & CI
98.9/88.5 99.3/81.8 100.0/6.0 56.1/96.4 81.8/76.3 24.2/71.5

93.4 89.7 11.3 71.0 79.0 36.2

Test Case 3 Ground Façade Pole Tree Vegetation Curb

Geo
50.6/99.8 99.1/84.8 4.5/15.9 78.0/94.1 38.5/3.8 12.5/58.6

67.2 91.4 7.0 85.3 6.9 20.6

Geo & I
49.6/99.8 99.5/86.3 5.1/15.2 79.2/95.0 46.4/4.0 13.9/59.1

66.3 92.4 7.6 86.4 7.4 22.5

Geo & CI
50.3/99.8 99.4/87.1 7.7/25.3 80.7/94.7 41.3/4.0 13.4/59.4

66.9 92.9 11.9 87.1 7.2 21.9

Geo & C
87.4/99.8 99.7/89.4 11.8/29.3 83.6/96.8 95.1/79.6 24.5/60.9

93.2 94.3 16.8 89.7 86.6 35.0

Geo & C & I
88.7/99.8 99.8/88.6 20.9/34.3 81.5/97.4 96.3/78.5 24.3/65.9

93.9 93.9 26.0 88.7 86.5 35.5

Geo & C & CI
86.8/99.8 99.8/89.3 15.6.28.4 82.5/97.0 95.1/80.3 28.3/62.8

92.9 94.2 20.2 89.1 87.1 39.0

Test Case 4 Ground Façade Pole Tree Vegetation Curb

Geo
86.8/99.2 94.9/93.8 14.6/17.4 98.0/75.7 14.4/3.7 7.9/71.8

92.6 94.4 15.9 85.4 5.9 14.2

Geo & I
86.8/99.0 96.0/94.2 15.2/17.7 97.7/80.4 20.1/3.6 8.1/73.2

92.5 95.1 16.3 88.2 6.2 14.5

Geo & CI
86.9/99.5 97.5/95.5 17.5/23.8 97.6/77.6 17.4/4.9 8.8/74.2

92.8 96.5 20.2 86.5 7.7 15.7

Geo & C
99.1/97.8 98.8/93.2 95.9/24.5 96.9/84.8 71.2/91.9 26.3/57.5

98.4 95.9 39.1 90.4 80.2 36.1

Geo & C & I
99.0/97.0 98.7/92.7 97.2/28.2 96.5/85.3 72.9/92.7 24.4/60.6

98.0 95.6 43.7 90.5 81.6 34.8

Geo & C & CI
97.9/98.2 98.6/94.7 97.7/33.9 96.2/84.9 71.5/90.2 39.1/60.1

98.0 96.6 50.3 90.2 79.8 47.4
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From the results, we can see that the overall accuracy of geometric features alone achieves the
lowest value, whereas geometric features combined with color and corrected intensity features achieves
the highest for all four test cases. The accuracy improves a little when the original intensity is combined
with geometric features. This may be due to the fact that the original intensity is affected by several
factors. After intensity correction, the accuracy has been further improved. However, compared
with intensity features, color features seem to be more helpful for classification. The overall accuracy
increases 8.3%, 8.9%, 15%, and 12.9% for testing sets 1, 2, 3, and 4, respectively, when color features are
involved, compared with 4.0%, 1.6%, 1.3%, and 1.2% when corrected intensity features are involved.
Moreover, as shown in Table 3, geometric features combined with both color and original intensity
features do not guarantee an improvement in classification. For both testing set 3 and testing set 4,
the overall accuracy decreases when original intensity features are involved, compared to when only
color features are involved. After intensity correction, the overall accuracy for three features combined
together increases a little and achieves the highest among six different feature sets. However, the
increment is rather small, which may be due to the fact that only range effect correction has been
conducted in this study. The intensity data is still affected by other factors like the incidence angle and
environment etc. Further study will be focused on a more accurate intensity correction method.

The precision values differ a lot among different classes. A façade is detected with better precision
compared to other classes, with over 90% for all three test cases. A façade has a relatively regular shape:
only a few other points are misclassified as façades. Some tree points were wrongly classified as façade
points, which may be because the tree trunks are similar in shape to some window frames on the
facades. Furthermore, some trees were rather close to facades, which also lead to the misclassification
between these two. The recall values of a tree were the lowest when only geometric features were used;
after the combination with color features, the recall values achieved the highest values. Examples of
the misclassification between façades and trees are shown in Figure 5. As we can see, when geometric
and color features were used, fewer tree points were wrongly classified as façade points, compared
with when only geometric features are used.
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Grounds also achieved relatively high recall values for all four testing sets, because they have
regular shapes and are the lowest in height among all six classes. Many curb points were wrongly
classified as ground, because curbs are connected with the ground, and curbs are also in relatively
low. In addition, the color and material of curbs and grounds in our test scenes are relatively similar,
as shown in Figure 6. Therefore, additional color and intensity features could not help distinguish
between these two. Some vegetation points were also wrongly classified as ground when only
geometric features were used. This may be because some low vegetation is similar to the ground to
some extent. When color features were added, fewer vegetation points were wrongly classified.
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Curb had relatively low precision values in all four testing sets. This is mainly because the curbs
were all connected with vegetation, and the geometric features of these two are similar to some extent.
Therefore, many vegetation points were classified as curb points, which also lead to the low recall
values of vegetation. When only geometric features were applied, lots of vegetation points were
wrongly classified as curb points, as shown in Figure 7a. Note that when intensity features were used,
the precision only slightly improved, as shown in Figure 7b,c. However, when color features were
used, the precision value greatly improved, as shown in Figure 7d–f. In addition, precision was at its
highest when geometric features were combined with color and corrected intensity features. Moreover,
when additional color and intensity features were used, the precision of vegetation also improved.
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The precision values of trees was relatively high among six classes. In testing set 1, 3, and 4,
the average precision values were all above 80%. However, the precision values in testing set 2 was
relatively low compared to other testing sets. This is mainly because the number of tree points in
testing set 2 were smaller than other testing sets. From the results of all the testing sets, we found that
additional intensity and color features could not guarantee the improvement of the precision of tree
points. For some testing sets, additional intensity and color could even decrease the precision. This
may be due to the fact that the tree leaves were similar to some vegetation in both color and intensity.
The precision values of poles varied a lot among different testing cases as well as among different
feature sets. This could be explained by the difference in poles: in four testing sets, poles included
several different objects like street lamps and road signs. The shapes of different street lamps and road
signs also varied a lot, as shown in Figure 8. Moreover, the shape of tree trunks was also similar to
some poles, which would explain why some tree points were also wrongly classified as poles.Sensors 2018, 18, x FOR PEER REVIEW  15 of 18 
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The recall values in this study varied a lot among six different classes. Among the six different
classes, the ground was detected with best recall compared to the rest classes, with over 90% on average
for all four testing sets. Because the ground is regular in shape, most ground points are classified
correctly. Façades were detected with over 80% on average for all four testing sets, respectively. Because
façades were also relatively regular in shape, they also had a great number of points. Additional
color and intensity features were not successful in improving the recall values of these objects, as their
regular shape can be classified correctly with only geometric features. Trees also achieved relatively
high recall values. For all testing sets, when only geometric features were used, many tree points were
wrongly classified as poles, due to their similar shape.

Vegetation achieved relatively low recall values for all testing sets, with around 10% when only
geometric features are used. This is mainly because vegetation is connected with curb, and they are
partly similar in terms of geometric characteristics. Therefore, a great number of vegetation points
were wrongly classified as curb points, and some were misclassified as ground points. As we can see
from Figure 9a, when only geometric features are used, lots of vegetation points were classified as
curb points. Additional intensity features did help a little in improving the classification, as seen from
Figure 9b,c, and fewer vegetation points were misclassified as ground. Note that when color features
were combined, most vegetation points were classified correctly. With additional intensity features,
the classification results further improved, as shown in Figure 9e,f.
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especially for distinguishing between vegetation and curbs. Compared with intensity features, color 
features are more useful in TLS point cloud classification. Moreover, both the intensity data before 
and after correction were analyzed in this paper. The accuracy of corrected intensity features only 
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Curbs also achieved relatively low recall values. This is mainly due to the connectivity between
curbs and ground. Moreover, in all our testing sets, the curbs were similar to the ground in both color
and materials. Therefore, additional color and intensity features may have decreased the classification
accuracy instead of improving it. Poles achieved the lowest recall value in all four testing sets. Because
in our testing sets, poles varied a lot (as shown in Figure 8), and the number of pole points was the
smallest among six classes. Because different types of pole-like structures varied a lot in color and
intensity, additional intensity and color features could not guarantee the improvement of classification
results. Many pole points were classified as tree points because of the similarity in shape between
these two. Moreover, some pole points were classified as façades, because some poles were also similar
to some window frames to some extent. Examples of misclassification of pole points are illustrated
in Figure 10.
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4. Conclusions

In this paper, we carefully analyzed the performance of six different feature sets in TLS point
cloud classification. A supervoxel neighborhood was used as a support region for feature extraction
for the first time. Three types of features were then extracted and applied for classification using the
Random Forest classifier. Experimental results demonstrate that both color and intensity features can
help complement the geometric features to help improve the classification results in our test, especially
for distinguishing between vegetation and curbs. Compared with intensity features, color features
are more useful in TLS point cloud classification. Moreover, both the intensity data before and after
correction were analyzed in this paper. The accuracy of corrected intensity features only slightly
improved in our tests. This may be because in this study only range effect correction is performed.
In further studies, a more accurate correction method will be developed for incidences of angle
correction to derive a more accurate corrected intensity, thus further improving the classification results.
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