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Abstract: Environment perception is one of the major issues in autonomous driving systems.
In particular, effective and robust drivable road region detection still remains a challenge to
be addressed for autonomous vehicles in multi-lane roads, intersections and unstructured road
environments. In this paper, a computer vision and neural networks-based drivable road region
detection approach is proposed for fixed-route autonomous vehicles (e.g., shuttles, buses and other
vehicles operating on fixed routes), using a vehicle-mounted camera, route map and real-time vehicle
location. The key idea of the proposed approach is to fuse an image with its corresponding local
route map to obtain the map-fusion image (MFI) where the information of the image and route map
act as complementary to each other. The information of the image can be utilized in road regions with
rich features, while local route map acts as critical heuristics that enable robust drivable road region
detection in areas without clear lane marking or borders. A neural network model constructed upon
the Convolutional Neural Networks (CNNs), namely FCN-VGG16, is utilized to extract the drivable
road region from the fused MFI. The proposed approach is validated using real-world driving scenario
videos captured by an industrial camera mounted on a testing vehicle. Experiments demonstrate
that the proposed approach outperforms the conventional approach which uses non-fused images in
terms of detection accuracy and robustness, and it achieves desirable robustness against undesirable
illumination conditions and pavement appearance, as well as projection and map-fusion errors.

Keywords: drivable road region detection; autonomous vehicles; map-fusion image; FCNs

1. Introduction

Environment perception is a critical technical issue for autonomous vehicles and significant
progress has been made during the past decade. In particular, road detection is one of the key aspects
of environment perception, since identifying key elements of the road (such as road markings and
lane borders) and drivable road regions is essential for providing valid road information to support
decision-making and to navigate the vehicle on roads [1].

In the area of autonomous driving systems, various environment perception systems have been
designed based on different perceptions sensors (monocular/stereo camera, LiDAR and radar, etc.),
among which LiDAR and camera are the most commonly used sensors for environment perception.
Although LiDAR has been applied to perception tasks in several autonomous vehicle systems and
demonstrated its effectiveness in experimental tests [2,3], its application in drivable road detection
is still limited by its disadvantages such as high cost, low resolution and lack of texture information.
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Cameras are preferable to LiDAR in road detection due to their low cost, light weight, high resolution
and simplicity in installation and configuration.

For camera-based perception systems, the objective of drivable road region detection is to
identify a region of pixels that indicates the drivable (or navigation-free) area in a given image
captured by the camera, and examples of applications of camera in road/lane detection can be found
in [4–9]. The real-world autonomous driving scenarios pose significant challenges to camera-based
perception systems, due to the following factors: (1) Unstructured road environments: road markings
and lane borders are not always available, and the marking/borders may be too vague to be
identified; (2) variable illumination conditions: the images may contain shadows and other undesirable
illumination conditions; (3) road curvatures: the camera’s field-of-view may not capture the entire
region needed due to curved road segments; (4) ununiform pavement appearance and occlusions: the
road pavement in the image may contain variable texture and color, and the objects in the camera’s
field-of-view may cause occlusions in the image. Despite the progress made in the road detection
systems, the robust and effective detection of drivable regions in variable and challenging road
environments remains a major challenge to be addressed.

To address the above issues for autonomous vehicles, this paper proposes a drivable road region
detection approach using a monocular vehicle-mounted camera. This research focuses particularly
on autonomous vehicles that have access to route maps (e.g., shuttles, buses and other vehicles
operate on predefined fixed routes). Taking advantage of the route map and the vehicle location
information, the proposed approach extracts from the full route map a local map which corresponds to
the current processed image captured by the camera, which is then fused with the projected image to
obtain a map-fusion image (MFI). The MFIs enable robust drivable region detection in the presence of
undesirable illumination conditions, ununiformed pavement appearance, occlusions and absence of
road/lane marking. In addition, for multi-lane scenarios, the lane navigation information (the lane
which the vehicle is supposed to operate in) can also be provided in the MFI. The road detection
approach is built upon the Fully Convolutional Network (FCN)-VGG16 framework which is trained
using the MFIs. Therefore, the drivable road regions in each MFI are identified using the trained
FCN-VGG16. The proposed approach is validated using video data collected from real-world scenarios,
and experimental results show that the proposed approach achieves high accuracy and robustness in
drivable road region detection in various driving scenarios and outperforms contemporary approach.

The remainder of this paper is organized as follows: Section 2 reviews the existing approaches for
road detection. Section 3 formulates the drivable road detection problem. Details of the proposed road
detection approach is presented in Section 4. Experimental results based on real-world scenarios are
presented and analyzed in Section 5, and the paper is finally concluded in Section 6.

2. Related Works

In general, drivable road region detection can be classified as a road detection problem. During the
past decade, various computer vision-based approaches have been proposed to address road detection
problem for autonomous vehicle systems, and they can be generally divided into three categories.
One straightforward paradigm detects the road regions by extracting the lane markings and road
boundaries. This category of approaches utilizes conventional image processing techniques to extract
the road boundaries by using image features such as edge, position and color [4–9]. After that, the
boundaries are fitted (linear models [6,7] and high-order curves/splines are used for straight and
curved road segments [8], respectively), and the area between the identified lane markings and/or
boundaries is considered as the drivable road region. The conventional approaches have the primary
advantage of offering the opportunity to evaluate specific performance criteria and factors that affect
the performance, such as descriptors used. However, these approaches are sensitive to illumination
variation and occlusion, and their performance may degrade significantly when dealing with roads
with vague or discontinuous lane markings. Another category of approaches detects roads by analyzing
texture features and attempting to find the inhomogeneity between road area and backgrounds in the
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image [10–14]. To specify texture information in the image, Gabor Filter [10,13] and discrete cosine
transform [14] are commonly used in this type of road detection approaches and they can achieve
desirable performance. Although this type of approaches performs well on rural, single-lane roads,
their performance is undesirable when detecting drivable region on multi-lane roads. In general,
the conventional approaches described above achieve desirable road detection performance only in
specific scenarios and are less effective in more complex driving environments. For instance, the lane
on the opposite direction of a two-way road may be incorrectly identified as drivable road region by
the marking/boundary-based road detectors. In addition, there are usually multiple driving directions
in intersection regions and it is difficult to identify correct drivable road regions only from boundaries
and texture information. Therefore, the application of the conventional marking/boundary-based and
texture-based approaches to real-world driving scenarios are still very limited due to their limitations.

As alternatives to the conventional approaches, machine-learning based semantic segmentation
approaches have emerged as effective tools [15] in computer vision area, and due to their high
precision and efficiency, they have been applied to a number of autonomous driving systems [16–19]
in recent years. Semantic segmentation approaches can achieve pixel-level precision and demonstrate
effectiveness in many road detection applications, and typical semantic segmentation algorithms
are built upon CNNs, as proposed in [20–24]. A more recent example of such approaches is the
Vanishing Point Guided Network (VPG-Net) [23] which can detect road under complex environmental
condition. However, such CNN-based models typically process images using a local block as the
input, which requires high computational cost. The performance of machine-learning-based approach
are heavily affected by the dataset used to train the network and the size of required dataset may
increase dramatically if the network is required to adapt to various use cases. In order to improve
the efficiency of CNNs, the Fully Convolutional Networks (FCNs) is proposed in [25], which can
recover the class of each pixel from abstracted features in the image. Since it is proposed, a number
of research works have focused on making extensions and improvements to FCNs and applying the
approach in the field of autonomous driving systems [26–28]. One of the most preferred variants is the
MultiNet [28] which is a codec structure model based on FCNs and VGG [27], and it can accomplish
joint classification, detection and semantic segmentation via a unified framework. The encoder of
MultiNet is designed to extract the features from image, while the decoder is responsible for multiple
tasks such as road detection. In the applications of road detection, the training parameters can be
initialized with pre-trained VGGs to speed up the training speed, and the road region is detected
using FCNs. MultiNet demonstrates appealing performance both in structured and unstructured
road with a desirable trade-off between accuracy and training cost. Therefore, taking advantage of
the machine-learning based frameworks, the approach proposed in this paper uses an FCN-VGG16
framework to identify drivable road region from map-fusion images.

On the other hand, real-world contains many complex driving scenarios that may be difficult to
be handled by systems with single perception data source. As described previously, for intersections
containing multiple lanes and multiple driving directions, it can be difficult to determine which
direction the vehicle should be driving on by using solely the information of images. Therefore,
fusing information from multiple sources is a preferable choice to improve the performance of road
detection. [29] proposes a lane marking detection framework that fuses GPS data, vehicle velocity and
lane map, and it demonstrates good performance in structured road scenarios. Similarly, GPS data
and image are fused for localization and decision making in [30]. Inspired by the previous research,
the vehicle location data and route map data are used to generate local route maps in the proposed
framework. The vehicle location data can either be obtained from vehicle-mounted GPS or other
data feeds such as point cloud map-matching of LiDAR data. We fuse a local route map and its
corresponding image captured by vehicle-mounted camera into a map-fusion image (MFI), which
provides high level heuristics for the drivable region detection.
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3. Problem Formulation

Drivable road region detection can be considered as a subtask of road detection which involves
all key elements in the road environment. Without considering the pedestrians, vehicles and other
obstacles, the drivable road region can be defined as the specific road area that the vehicles are
supposed to drive in. For the monocular camera-based systems, the data precepted from the driving
environment are the images captured by the vehicle-mounted camera. As shown in Figure 1a, a typical
image of the driving environment can be divided into three parts: the background area, the drivable
area and the non-drivable road area. Given an image I (Figure 1a) captured by the camera at certain
timestamp t, the definitions used in drivable road region detection are as follows:

S—the set of all pixels in the image I, S = {p|p ∈ I}
Sb—the set of pixels in the background area (or non-road area)
Sr—the set of pixels in the road region
Sd—the set of pixels in the drivable road region
Sud—the set of pixels in the non-drivable road region.

The relationship between the above sets is as follows (Figure 1b):

S = Sb ∪ Sr, (1)

Sb ∩ Sr = ∅, (2)

Sr = Sd ∪ Sud, (3)

Sd ∩ Sud = ∅, (4)

Given the above definitions, the monocular camera-based road region detection problem can be
formulated as follows:

Definition 1 (Drivable Road Region Detection). Given a set of pixels S in an image I, extract the pixels of
Sd from S.

In this paper, the objective of drivable road region detection is to extract the drivable regions in
the captured images that correspond with the pre-specified route. In addition, for vehicles operating
on fixed routes, note that the drivable road regions include regions of both single road segments
and intersections.
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Figure 1. Definition of drivable region detection: (a) Regions in an image captured by the camera;
(b) Relationship between the regions.

4. Drivable Road Region Detection

The overall framework of the proposed approach is depicted in Figure 2. Our approach consists
of three primary processes: (1) Image pre-processing: the original images captured by the camera are
swapped into bird’s-eye view images using Inverse Perspective Mapping approach. (2) Map fusion:
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the homogenous local route map of the processed image is extracted from a global route map with
the assistance of vehicle location data, and it is then fused with the image to generate a map-fusion
image (MFI). (3) Drivable road region detection: a FCNs-based deep neural network (FCN-VGG16) is
utilized to detect drivable road region from the MFIs. Note that the FCN-VGG16 are also trained using
datasets of MFI images. Details of each process are presented in the following subsections.
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Figure 2. Overall Framework of the drivable road region detection based on map-fusion and
monocular camera.

4.1. Inverse Perspective Mapping

Vehicle-mounted cameras are typically installed in a way that the lens face toward the
forward-driving direction of the vehicle. As depicted in Figure 3a, images captured by the
vehicle-mounted camera are normally in the front-view, which is more suitable for certain detection
applications such as pedestrian detection [31] and traffic-sign detection [32]. However, for drivable
road region detection tasks, images in front-view contain a lot of redundant information which may
affect the effectiveness of the detection algorithm. Compared with the front view, the bird’s-eye view
is more preferable in drivable region detection applications as the image contains less redundant
information, and the lane markings become roughly parallel [4] (Figure 3b).

Without loss of generality, the road regions can be assumed to be homographic planes in road
detection scenarios. Therefore, we can easily map the original images into bird’s eye view using
Inverse Perspective Mapping (IPM). The IPM can be considered as an image projection process and
in our application, the pixels in the original images can be projected to the bird’s eye-view images
using a mapping matrix (projection matrix). In our application, a multiple-point correspondence-based
method is used to estimate the mapping matrix Ĥ:

pi = Hp′i, (i = 1, 2, . . . n) (5)

p = Ĥp′, (6)

where p′ and p represent the homogeneous coordinates of pixels in the original image I′ (p′ ∈ I′) and
the projected image I (bird’s-eye view) (p ∈ I), respectively. The mapping matrix Ĥ can be estimated
in two-steps: First, select two sets of pixels pi

′ and pi (i = 1, 2, . . . , n) from I′ and I, respectively, and
the optimal estimate (Ĥ) of the mapping matrix H can be calculated based-on Equation (5). Once Ĥ
is determined, all pixels of the front-view image I′ can be projected into a bird’s-eye view image I
using the estimated Ĥ (Equation (6)). (Note that the IPM is used in our approach to reduce redundant
information instead of trying to ensure the lane markings are parallel.)
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Note that the above described estimation of projection matrix Ĥ is a pre-calibration procedure,
and the IPM process in our system uses the fixed Ĥ calculated via the pre-calibration. As a matter
of fact, the roll and pitch movements of the vehicle can cause variations of Ĥ, and therefore, a more
accurate way of IPM is to adjust Ĥ based on the measurement of the vehicle’s roll and pitch in real-time.
However, considering that the vehicle performs minor roll and pitch movements at low speeds in
regular driving environments, the proposed drivable road detection approach can achieve robustness
against such movements and small IPM error (see Section 5.4). Therefore, it is reasonable to use a fixed,
pre-calibrated Ĥ in our application.

4.2. Map-Fusion Image Generation

Figure 4 depicts the process of map-fusion image generation. The overall process consists of four
steps which are described in the following subsections.
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4.2.1. Map-Fusion Image Generation

For vehicles driving on fixed routes (e.g., shuttles, buses and school buses) or vehicles with
pre-established high-precision maps, the route maps provide critical heuristics for the environment
perception and navigation of vehicles. A route map is defined as a map that consists of roads/lanes,
navigation points and driving directions of the routes that the vehicle is supposed to operate on.
In our system, the route map is presented and stored in the form of straight and curved segments
(Figure 4), and each point in the route map represents a certain geographical location of the vehicle in
the corresponding segment. In addition, for fixed routes, there is only one forward driving direction
for the vehicle in a straight road segment or intersection, and this driving direction information is also
included in the route map. The global map can be generated using various data sources such as GPS
maps and high-precision 2D maps. For the framework proposed in this paper, a satellite map with
geo-location information (i.e., GPS coordinates) is used to generate the global route map (Figure 4).

4.2.2. Local Map Extraction

When the vehicle operates on the route which is pre-specified in the global route map, a local route
map that corresponds with the road region in the current image from the camera is extracted from the
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route map every time an image is captured by the vehicle-mounted camera. In the proposed framework,
the matching between the local route map and images is based on GPS data from the vehicle-mounted
GPS module. For each frame of image and GPS coordinates, we search its corresponding position and
localize the corresponding region in the global route map using GPS coordinates. After that, a local
route map with a look-ahead length of 20 m can be extracted from the global route map, using the
current position of the vehicle (according to the installation position of the camera, the equivalent
height of each bird’s-eye-view image is approximately 20 m above the road surface, leading to a
look-ahead distance of 20 m). Note that vehicle location from other data feeds (e.g., LiDAR point cloud
matching) can also be utilized in the proposed approach.

The synchronization of the images and GPS data is a major issue in local route map extraction,
as the update rates of the vehicle-mounted camera and the GPS module may be different. In our
approach, it is appropriate to use the GPS data of which the timestamp is closest to that of the image,
under the assumption that the vehicle would not move a long distance within milliseconds.

4.2.3. Map-Image Fusion

After the local map is extracted, the image is fused with the corresponding local route map to
generate a map-fusion image (MFI), where the road image contains the primary information, and
the local route data provide heuristic navigation information of the autonomous vehicle, including
location, specified lane and driving direction.

As depicted in Figure 4, in the map-fusion image, the original bird’s view image is overlaid with
line or curved segment representing the pre-defined route of vehicle specified in the corresponding
local route map (Figure 4). The midpoint of the bottom border of the image represent the position of
the vehicle at the moment the image is captured. Therefore, the origin of the line/curvature in the local
map is aligned with the midpoint of the bottom border of the image. Experiment results indicate that
the color and width of the line have slight effect on the detection results. Therefore, in our application,
we use green-colored (RGB: 0, 255, 0) lines with a width of 2 pixels to represent the route in the MFI for
the subsequent drivable road region detection process. However, for visualization purposes, broad red
lines are used to represent the route in Figure 4.

4.3. FCN-VGG16 for Drivable Road Region Detection

4.3.1. Neural Network Model

As described in previous subsections, CNNs demonstrate desirable performance in various
detection tasks due to its high efficiency and storage-saving characteristics. The neural network model
used in this research follows an extension of the CNN model, namely the MultiNet, which is an
end-to-end model firstly proposed in [28]. The MultiNet is a multi-task framework and the semantic
segmentation model FCN-VGG16 of MultiNet is adopted in the proposed framework for drivable
road region detection. The FCN-VGG16 model consists of two major components, a CNN encoder
and a segmentation decoder. As an encoder in our framework, a pre-trained VGG16 network which
consists of 13 convolutional layers is used to extract features from the MFI images. For the decoder
module, the extracted features are processed by a cascade of convolutional layers and up-sampling
layers to generate the output. A set of 1 × 1 convolutional layers is responsible for generating a low
resolution segmentation. After that, three transposed convolution layers performs up-sampling of
the low-resolution segmentation. Finally, skip layers composed by 1 × 1 convolutional layers extract
high-resolution features and output the image with detected drivable road regions. The architecture of
the FCN-VGG16 model is depicted in Figure 5.
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Figure 5. Segmentation model based on FCN-VGG16 [28]. Figure 5. Segmentation model based on FCN-VGG16 [28].

4.3.2. Selection of Loss Function

The Cross-entropy function is widely used as loss function in neural networks as it can effectively
avoid the gradient vanishing problem. Therefore, loss function adopted in the training process of the
FCN-VGG16 model is a cross-entropy function which is defined as follows:

Loss(P, G) =
1
|I|∑i∈I

(GilogPi), (7)

where I denotes the MFI inputs, |I| represents the size of the image, i represents a pixel in the MFI,
Gi is the ground truth of i, and Pi is the predicted binary value of i. If i falls in the predicted drivable
region, the value of Pi is set to 1, otherwise Pi equals to 0. Gi is calculated in a similar way.

5. Experimental Study

5.1. Experiment Platform

The proposed map-fusion and FCN-VGG16-based drivable road region detection was tested
using real-world driving scenario videos captured by a camera (Figure 6a) mounted on an 18-meter
bus (Figure 6b). Parameters of the vehicle-mounted are listed in Table 1. To obtain a desirable field
of view, the camera was installed down the center of the upper border of the windshield and below
the headliner of the bus. Testing drive was conducted on a 4.3 km testing track which consists of 4
intersections, and videos of the testing drive and the corresponding GPS data were recorded to test the
drivable road region detection algorithm.
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Table 1. Parameters of the vehicle-mounted camera.

Parameters

Model Daheng MER-125-30-UC
CCD sensor Sony® ICX445
Resolution 1292 × 964
Frame rate 30 fps

Lens Basler 4 mm fixed focus length

To reduce the training time of the FCN-VGG16 model, we normalize the converted IPM images to
a resolution of 224 × 448 (The original resolution is 1292 × 964, see Table 1). The experiments were
conducted on a PC with one Intel® Core i5-3570 CPU and one NVIDIA® 1080Ti GPU. With a learning
rate of 0.00001, it took 3.5 h to train the FCN-VGG16 network for 30000 times using the MFI images.

5.2. Evaluation Metric

The Pixel Accuracy (PA) [15] is used as the metric for evaluating the proposed approach.
Since drivable road region detection can be regarded as a single-class semantic segmentation task, the
calculation of PA can be simplified as follows:

PA =
ptp

p f p + ptp + p f n
, (8)

where, ptp, p f p and p f n represent the number pixels of true positive, false positive and false negative
cases detected by the algorithm, respectively. Therefore, high Pixel Accuracy value indicate that the
algorithm achieves good performance in detecting drivable road regions.

5.3. Evaluation of Detection Accuracy

A dataset of 270 frames is selected from the recorded video to evaluate the performance of the
proposed approach. The dataset includes straight road segments, curved segments and intersections.
For comparison purposes, the algorithm is tested using both map-fusion images (MFI) and raw images
(without map-fusion). The PA of detection results are calculated for each frame in both cases.

The route line added to the MFI can be considered as artificial lane-markings. Therefore, the choice
of color and width of the route line may affect the drivable road region detection results. The color of
the route line should be distinct from the color of the road region in the image, and the width of the
line is relevant to the intensity of the high-level intervention. We test different choices of colors and
widths of the lines in local maps to demonstrate the effect of MFI in drivable road region detection.
The performance (PA) of different choice of line colors and widths for each frame are depicted in
Figure 7 (The cases using raw images without map-fusion are marked as ‘no line’).

As shown in Figure 6, the testing site contains two intersections and turning sections without
lane markings, and they correspond with the first 100th frames, and the sections from the 160th
to 203th frames of the dataset (the other sections correspond with regular straight road segments),
respectively. As can be seen from Figure 7, the PA value of detection is quite low at intersections and
turning segments (curve marked as ‘no line’) due to the absence of lane markings, and there is little
information for the algorithm to determine the drivable road region. Therefore, the route line in the
map-fusion image provides important heuristics for drivable road region detection.

As for the route line, experiment results demonstrate mild difference using different choices of
line colors and width, as shown in Figure 6. Experiment results also suggest using colors that are
distinctive from the color of road surface, such as green and red. In our experiment, we chose to use
the green color and the width of 2 pixels for the route line in the MFI (please note that the route lines
are rendered in red in the subsequent figures just for clarity of visualization purposes).
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By calculating the average PA value of all frames in the dataset, the average performance in
detecting accuracy of FCN-based detection algorithm using raw images and our map-fusion-based
algorithm is evaluated and listed in Table 2. The evaluation results indicate that the proposed
approach outperforms conventional FCN-based detection algorithm in terms of detection accuracy
(PA). Examples of detection results are depicted in Figure 8, which contains typical scenarios such as
intersections, straight roads and turning sections, and the detected drivable road regions are marked
in green. In contrast to conventional FCN-based detection algorithm, the proposed approach can
still effectively detect drivable road detections even in intersections and turning segments where
lane-markings are absent.

Table 2. Average detection accuracy.

Approach PA

FCN without MFI 0.811
MFI and FCN-VGG16 0.917
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5.4. Evaluation of Robustness

The complex road scenarios of the testing site include absence of lane/road markings, illumination
variation, disturbances in road surface appearance and the presence of various road users (other
vehicles, pedestrians, bicycles and other road users). In addition, errors introduced by the IPM
conversion and local route map extraction process may also lead to detection deviations.
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The robustness of our approach was evaluated using the above complex road environments.
Examples of the testing results are shown in Figures 9–11. As described in Section 5.3, the proposed
approach demonstrates desirable robustness in the absence of road/lane markings (Figure 8). Figure 9
depicts examples of typical illumination variation scenarios including heavy shadows and variations
of illumination direction. As can be seen from the figure, the proposed approach achieves desirable
robustness in such scenarios, while conventional border or feature-based approaches may fail.
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Figure 10 demonstrates examples of incorrect local route maps (Figure 10a) and IPM conversions
(Figure 10b) due to errors. As can be seen from the figures, the drivable road region can still be detected
by our approach even when the route lines are placed in totally incorrect positions of the image. These
results indicate that the combination of map-fusion and FCN-VGG16 can improve the robustness of
drivable road detection in complex road environments.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 

 

Figure 10 demonstrates examples of incorrect local route maps (Figure 10a) and IPM conversions 

(Figure 10b) due to errors. As can be seen from the figures, the drivable road region can still be 

detected by our approach even when the route lines are placed in totally incorrect positions of the 

image. These results indicate that the combination of map-fusion and FCN-VGG16 can improve the 

robustness of drivable road detection in complex road environments.  

 
(a) 

 
(b) 

Figure 10. Robustness against conversion and fusion errors: (a) Detection results in the presence of 

local map extracting deviation; (b) Detection results in the presence of IPM errors. 

Figure 11 shows the detection results of the proposed approach in the presence of undesirable 

road surface appearance. Still, our approach demonstrates robustness against large pavement cracks 

(Figure 11a) and inconsistent pavement colors (Figure 11b). 

 
(a) 

 
(b) 

Figure 11. (a) Detection results in the presence of large cracks; (b) Detection results in the presence of 

inconsistent pavement colors. 

Figures 9 and 10 present the performance of drivable road region detection in the presence of 

undesirable factors induced by illumination and road appearance. In most real-world driving 

scenarios, another aspect of the complexity of road environments is that the road region is usually 

shared by various road users such as other vehicles, pedestrians, and motorcycles, etc. We tested the 

propose drivable road region detection approach in various scenarios with other road users, as shown 

in Figures 12–14 (for visualization purposes, these figures are shown in the front-view). Figure 12 

presents the scenario with single, continuously moving pedestrian. The pedestrian walked across the 

lane the ego vehicle was driving in and away from the testing vehicle. As can be seen from Figure 12, 

the proposed approach can correctly and continuously extract drivable road regions as the distance 

between the pedestrian and the ego vehicle increased.  

 

Figure 12. Detection results in the presence of single, continuously-moving pedestrian. 

Figure 13 shows detection results of various scenarios with different types of road users other 

than pedestrians (from left to right: other vehicle, motorcycle and bicycle). As can be seen from  

Figure 13, the road users are of different types and sizes, with different distances and orientation 
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local map extracting deviation; (b) Detection results in the presence of IPM errors.

Figure 11 shows the detection results of the proposed approach in the presence of undesirable
road surface appearance. Still, our approach demonstrates robustness against large pavement cracks
(Figure 11a) and inconsistent pavement colors (Figure 11b).
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Figures 9 and 10 present the performance of drivable road region detection in the presence
of undesirable factors induced by illumination and road appearance. In most real-world driving
scenarios, another aspect of the complexity of road environments is that the road region is usually
shared by various road users such as other vehicles, pedestrians, and motorcycles, etc. We tested the
propose drivable road region detection approach in various scenarios with other road users, as shown
in Figures 12–14 (for visualization purposes, these figures are shown in the front-view). Figure 12
presents the scenario with single, continuously moving pedestrian. The pedestrian walked across the
lane the ego vehicle was driving in and away from the testing vehicle. As can be seen from Figure 12,
the proposed approach can correctly and continuously extract drivable road regions as the distance
between the pedestrian and the ego vehicle increased.
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Figure 12. Detection results in the presence of single, continuously-moving pedestrian.

Figure 13 shows detection results of various scenarios with different types of road users other than
pedestrians (from left to right: other vehicle, motorcycle and bicycle). As can be seen from Figure 13,
the road users are of different types and sizes, with different distances and orientation relative to the
ego vehicle. As the FCN-VGG16 network was trained using image datasets containing various road
users in different scenarios, the proposed approach can effectively identify drivable road regions when
different types of road users share the lane the ego vehicle was driving in.
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Figure 13. Detection results in the presence of various types of other road users.

Testing results in the presence of multiple and various road uses are shown in Figure 14. Figure 14a
shows the scenario with a pedestrian and a motorcycle in the lane of the ego vehicle. The pedestrian
walked across the lane and toward the ego vehicle, while the motorcycle drove in the same direction
as the ego vehicle did with changing distances. Similar to the case shown in Figure 12, the proposed
approach can continuously identify drivable road region as the two road users moved in the view of
the camera. Figure 14b include more complex, multiple-road users driving scenarios that are common
in real-world road environments. In such scenarios, the lane can be shared by multiple road users of
different types, and they may drive in different directions. In addition, the opposite lane is usually
occupied by other road users at the same time. As can be seen from Figure 14b, our approach can
effectively deal with such scenarios and the testing results indicate that the proposed approach has the
potential to be applied to autonomous vehicle systems operating in real-world driving scenarios.
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6. Conclusions

This paper proposes a robust drivable region detection approach based on a monocular
vehicle-mounted camera for autonomous vehicles. The proposed approach takes advantage of the
heuristics from the route map and vehicle location data and fuses the local route map to generate
map-fusion images to improve the robustness of detection. The map-fusion images provide significant
heuristics (e.g., heading, location, specified driving direction and lane of the vehicle) for drivable road
region detection in complex road environments such as turning segments and intersections in the
absence of road/lane markings. In order to extract drivable road regions, the map-fusion images are
segmented using an FCN-based neural network which is trained also using a dataset consist of selected
map-fusion images. The proposed approach is validated using real world videos captured by a camera
mounted on a testing bus. Experiment results show that the proposed approach achieves desirable
detection accuracy using an industrial camera, and it demonstrates robustness in complex driving
scenarios involving absent road/lane markings, undesirable illumination conditions and pavement
appearance, as well as various road users. Evaluation results also indicate that the proposed approach
outperforms conventional FCN-based algorithm using raw images in terms of detection accuracy.

The future work will focus on the incorporation of other vehicle location data feeds such
as LiDAR point-cloud matching. More comprehensive investigation is also required to further
improve robustness of the proposed drivable road region detection approach. The implementation
and integration of the drivable-road detection approach to an autonomous driving system will be
investigated. In addition, more testing will be conducted to further evaluate the performance of the
proposed approach in more real-world driving scenarios.
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