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Abstract: Several studies have analyzed human gait data obtained from inertial gyroscope and
accelerometer sensors mounted on different parts of the body. In this article, we take a step further
in gait analysis and provide a methodology for predicting the movements of the legs, which can be
applied in prosthesis to imitate the missing part of the leg in walking. In particular, we propose a
method, called GaIn, to control non-invasive, robotic, prosthetic legs. GaIn can infer the movements
of both missing shanks and feet for humans suffering from double trans-femoral amputation using
biologically inspired recurrent neural networks. Predictions are performed for casual walking related
activities such as walking, taking stairs, and running based on thigh movement. In our experimental
tests, GaIn achieved a 4.55◦ prediction error for shank movements on average. However, a patient’s
intention to stand up and sit down cannot be inferred from thigh movements. In fact, intention causes
thigh movements while the shanks and feet remain roughly still. The GaIn system can be triggered by
thigh muscle activities measured with electromyography (EMG) sensors to make robotic prosthetic
legs perform standing up and sitting down actions. The GaIn system has low prediction latency and
is fast and computationally inexpensive to be deployed on mobile platforms and portable devices.

Keywords: human activity recognition; gait analysis; human gait inference; wearable sensors;
limb amputation; lower limbic prosthesis; machine learning; recurrent neural networks

1. Introduction

The increasing availability of wearable body sensors has led to novel scientific studies on human
activity recognition and human gait analysis [1–3]. Human activity recognition (HAR) usually focuses
on activities related to or performed by legs, such as walking, jogging, turning left or right, jumping,
lying down, going up or down the stairs, sitting down, and so on. Human gait analysis (HGA),
in contrast, focuses not only on the identification of activities performed by the user, but also on how
the activities are performed. This is useful in exoskeleton design, sports, rehabilitation, and health care.

The walking gait cycle of a healthy human consists of two main phases: a swing phase that
lasts about 38% and a stance phase that lasts about 62% of the gait cycle [4]. A good gait is related
to a minimal mechanical energy consumption [5]. An unusual gait cycle can be evidence of disease;
therefore, gait analysis is important in evaluating gait disorders, neurodegenerative diseases such as
multiple sclerosis, cerebellar ataxia, brain tumors, etc. Multiple sclerosis patients show alterations in
step size and walking speed [6]. The severity of Parkinson’s disease and stroke shows a high correlation
with stride length [7]. Wearable sensors can be used to detect and measure gait-related disorders,
to monitor patient’s recovery, or to improve athletic performance. For instance, EMG sensors can be
used to evaluate muscle contraction force to improve performance [8,9] in running [10] and other sport
fields [11]. Emergency fall events can be detected with tri-axial accelerometers attached on the waist of
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elderly people [12]. Accelerometers installed on the hips and legs of people with Parkinson’s disease
can be used to detect freezing of gait and can prevent falling incidents [13–16].

Exoskeletons can provide augmented physical power or assistance in gait rehabilitation. In the
former case, exoskeletons can be used to help firefighters and rescue workers in dangerous
environments, nurses to move heavy patients [17], or soldiers to carry heavy loads [18].
Rehabilitation exoskeletons can be used to provide walking support for elderly people or can be
applied in the rehabilitation of stroke or spinal cord injury [19,20]. The neuromuscular disease Cerebral
Palsy, which affects the symmetry and the variability of the walking, represents the pathology that
mainly needs the usage of exoskeletons/prostheses to rehabilitate the walking [21].

We introduce a new methodology, termed human gait inference (HGI), for predicting what would
be the movements of amputated leg parts (thigh, shank, or foot) for causal walking-related activities
such as walking, taking stairs, sitting down, standing up, etc. Limb losses occur due to (a) vascular
disease (54%), including diabetes and peripheral arterial disease, (b) trauma (45%), and (c) cancer (less
than 2%) [22]. Up to 55% of people with a lower extremity amputation due to diabetes will require
amputation of the second leg within 2–3 years [23]. In the USA, about 2 million people live with limb
loss [22].

In this article, we propose a gait inference system, called GaIn, for patients suffering at most
double trans-femoral amputation. Our idea is based on the high correlation between the movements
of the leg parts of people without functional gait disorder during usual activities. Figure 1 shows a
nonlinear correlation between the thigh and shank angles (of the same leg) during several gait cycles
measured during walking related activities. The angles of the thigh and shank are measured to the
horizontal line. Consequently, it is possible to infer the movements of the lower legs (both shanks
and feet) based on the movements of both thighs using machine learning methods. The GaIn system
could be installed on microchip-controlled robotic leg prostheses that could be attached to patients in
a non-invasive way to infer the movements of the lower limbs, as illustrated in Figure 2. Therefore,
the GaIn system could help patients suffering partial or double lower limb amputation to move and
walk alone.

(A)

110 100 90 80 70
Thigh angle

150

140

130

120

110

100

90

80

Sh
an

k 
an

gl
e

Walking
Going down
Standing

(B)

110 100 90 80 70
Thigh angle

150

140

130

120

110

100

90

80

Sh
an

k 
an

gl
e

Walking
Going down
Standing

(C)

110 100 90 80 70
Thigh angle

140

120

100

80

Sh
an

k 
an

gl
e

Walking
Running

(D)

110 100 90 80 70 60
Thigh angle

140

130

120

110

100

90

80

Sh
an

k 
an

gl
e

Walking
Going up
Standing

(E)

120 110 100 90 80 70 60
Thigh angle

140

130

120

110

100

90

80

Sh
an

k 
an

gl
e

Walking
Going up
Standing

(F)

120 110 100 90 80 70 60
Thigh angle

150

140

130

120

110

100

90

80

Sh
an

k 
an

gl
e

Walking
Standing

Figure 1. Correlations between shank and thigh movement over several gait cycles in different activities.
The angles of the thigh and shank are measured to horizontal line (see Figure 2). Plots A–F show
various examples.
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Figure 2. Concept of robotic prosthetic legs for patients suffering from double trans-femoral
amputation. Circles show the location of EMG sensors and boxes show the location of accelerometers
and gyroscopes.

The HGI methodology and our GaIn system are different from exoskeletons. GaIn and HGI
provide methods to infer the movements of the missing lower leg parts (shanks and feet), which are
directly controlled by the remaining parts of the patient’s legs (thigh). In contrast, rehabilitation
exoskeletons often replay a reference gait trajectory prerecorded on healthy users, which might result
in an unsuitable gait for the patient [1,19,24]. The patients’ own efforts are not taken into account.
However, the exoskeletons for augmented physical strength incorporate data obtained from the whole
legs of healthy users [1].

The GaIn controller consists of two components: activity recognition and gait inference. The first
component recognizes whether the patient is sitting, standing, or moving. In a sitting position,
GaIn does not allow any gait inference, so the legs remain motionless. However, when thigh muscle
activity is detected, the controller performs a standing up activity. When the patient is standing
and starts swinging one of his legs, then GaIn activates the gait inference procedure. Because the
human movement is produced with neural mechanisms in the motor cortex of the human brain or
spinal neural circuits [25], we believe the neurally inspired artificial neural networks could be suitable
models for gait inference. Therefore, GaIn uses recurrent neural networks for inferring human gait.
In addition, we designed GaIn to be fast and computationally inexpensive, performing low prediction
latency. In our opinion, these features are necessary in order to be applied on mobile devices where
energy consumption matters [26]. We note that turning during walking involves rotating the torso,
hip, and the thighs at hip joints but not the shanks [27]; therefore, our analysis does not examine
turning strategies.

The GaIn system to be efficiently used in portable systems should meet the
following requirements:

1. Low prediction latency.
2. Smooth, continuous activity recognition within a given activity and rapid transition in between

different activities.
3. Fast and energy efficiency.

The first requirement ensures that the model is of low latency; therefore, activity prediction
can be made instantly based on the latest observed data. Therefore, bidirectional models, such as
bidirectional long short-term memory (LSTM) recurrent neural networks (RNN) [28] or dynamic
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time warping (DTW) [29] methods, are not appropriate for our aims for two main reasons: first,
these bidirectional methods require a whole observed sequence before making any predictions,
which would therefore increase their latency. Second, the prediction they make on a frame is based
on subsequent data. Standard hidden Markov models (HMMs) have become the de facto approach
for activity recognition [30–33], and they yield good performance in general. However, they do so
at the expense of increased latency in prediction because Viterbi algorithms use the whole sequence,
or at least some part of it, in order to estimate a series of activities (i.e., hidden states), and their time
complexity is polynomial. Therefore, in our opinion, HMMs are not adequate for on-the-fly prediction
because the latency of these methods can be considered rather high.

The second point is to ensure that an activity recognition method provides consistent prediction
within the same activity, but changes rapidly when the activity has changed. Lester et al. [32] have
pointed out that single-frame prediction methods such as decision stumps or support vector machines
are prone to yielding scattered predictions. However, human activity data are time series data in
nature, and subsequent data frames are highly correlated. This tremendous amount of information
can be exploited simply by sequential models such as HMM and RNN, or by incorporating the
sliding-window technique to single-frame methods (e.g., nearest-neighbor). In fact, the authors in [31]
have pointed out that the continuous-emissions HMM-based sequential classifier (cHMM) performs
systematically better than its simple single-frame Gaussian mixture model (GMM) counterpart (99.1%
vs. 92.2% in accuracy). Actually, the proposed sequential classifier wins over all its tested single-frame
competitors (the best single-frame classifier is the nearest mean (NM) classifier which achieves up
to 98.5% in accuracy). This highlights the relevance of exploiting the statistical correlation from
human dynamics.

Continuous sensing and evaluating CPU-intensive prediction methods rapidly deplete a mobile
system’s energy. Therefore, the third point requires a system to be energy-efficient enough
for mobile-pervasive technologies. Several approaches have been introduced for this problem.
Some methods aim to keep the number of necessary sensors low by adaptive selection [34] or based
on the activity performed [35–37], for accurate activity prediction. Other approaches aim to reduce
the computational cost by feature selection [38], feature learning [39], or proposing computationally
inexpensive prediction models such as C4.5, random forest [40], or decision trees [41].

In this article, our methodology and experimental results are purely computational. Building and
testing a prototype of such robotic, prosthetic legs for patient suffering from double trans-femoral
amputation is the subject of our ongoing research. We expect that the patients may feel discomfort
at the beginning but will become acclimated after a short adjustment period. We hope the prosthesis
will be a useful tool in combating disability discrimination as is called for under several human
rights treaties, such as the Rights of Persons with Disabilities convention by the United Nations [42]
and Equality Acts [43,44] in jurisdictions worldwide. These also mandate access to goods, services,
education, transportation, and employment. We expect the GaIn tool will be effective in helping
patients tackle common obstacles such as stairs, uncut curb in urban areas.

The rest of the article is organized as follows. The next section gives a detailed description of the
GaIn system. Section 3 describes the data collection and the performance evaluation methods used in
our study. It also describes the feature extraction steps from the data obtained from the EMG and the
motion sensors. In Section 4, we present our experimental results and discuss our findings. Finally,
we conclude our study in the last section.

2. GaIn System

2.1. An Overview

The GaIn control system consists of two major parts. First, the controller recognizes the current
activity of the user, and, second, it performs the necessary gain inference.



Sensors 2018, 18, 4146 5 of 20

For the activity recognition, the GaIn system relies on a pair of triaxial accelerometer and
gyroscope sensors installed symmetrically over the rectus femoris muscle (on thighs) 5 cm above
the knee on the right and left legs, and on a pair of EMG sensors over the vastus lateralis (on both
thighs) connected to the skin by three electrodes. For sensor locations, see Figure 2. The data from the
accelerometers and gyroscopes are converted to angles and angular speed using the method described
by Pedley [45]. Depending on the current recognized activity, the GaIn controller can perform the
following actions:

• When the user is sitting, the controller does not allow any gait inference and the legs remain
motionless. If an adequate amount of electrical activity from both thigh muscles is recognized by
the EMG sensors on both thighs, then the system performs a standing up procedure.

• When the user is standing, then the controller can (i) keep the user in a standing position, (ii) start
gait inference if one leg starts swinging, or (iii) perform a sitting down procedure if the electrical
activity of both thigh muscles is suddenly high and both thighs have a similar position.

• When the user is walking, running, or taking stairs, then the controller performs gait inference
using a recurrent neural network or goes to a standing position.

Figure 3 shows the possible transitions between different activities. For instance, if the user is
walking, then the system cannot perform a sitting down activity without first stopping and standing,
while, if the user is sitting, then the GaIn cannot infer walking-related activities without first standing
up and standing.

Walking Standing

Sitting down

Standing Up

Sitting

Figure 3. Activity transition graph of the GaIn controlling system.

2.2. Activity Recognition Method

For activity recognition, we used the RapidHARe model [26], which is a computationally
inexpensive method for providing a smooth and accurate activity prediction with low prediction
latency. It is based on a dynamic Bayesian network [46], illustrated in Figure 4, and the most likely
activity st being performed at time t with respect to a given data observed in a context window
vt, vt−1, . . . , vt−K of length K is formulated by:

ŝt = argmaxst

{
K

∏
k=0

P(vt−k | st)

}
, (1)

where P(vt−k | st) denotes the probability of the activity st w.r.t a given observed data vt−k.
Conditional probabilities P(. | .) are modeled with Gaussian mixture model (GMM) and the parameters
were trained using the Expectation–Maximization (EM) method [47]. The training of GMMs was
straightforward because our training data were segmented. For the full derivation of the model,
we refer the reader to our previous work [26].

Activities st−2 st−1 st

vt−2 vt−1 vtObserved data

. . .

. . .

Figure 4. Illustration of an unfolded dynamic Bayesian network w.r.t a given activity series.
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2.3. Gait Inference Method

The shank movement prediction was modeled with recurrent neural networks (RNNs) [48] with
long-short term memory (LSTM) units [49]. Figure 5 shows the typical structure on an RNN. RNNs are
universal mathematical tools for modeling statistical relationships in sequential data. While standard
RNN cells are prone to the so-called forgetting phenomenon, LSTM cells aim to circumvent this
shortcoming, as we describe below.

(A) yt

ht

vt

(B) y1 y2 y3 ... yt

h1 h2 h3 ... ht

v1 v2 v3 ... vt

Figure 5. Illustration of a folded (A) and an unfolded (B) recurrent neural network structure.

LSTM cells use two types of memory units to represent the past information of sequential data:
one to capture short-term dependencies denoted by h and the other to capture long-term dependencies
called state c. State c runs through the whole time and an LSTM performs four steps to update its
data using so-called gates. The gates are: input gate, forget gate, input modulation, and output gate.
The structure of an LSTM cell is shown in Figure 6. One of the main advantage of LSTMs is that each
gate is differentiable, so their operations can be learned from data. The gates and the data manipulation
steps are defined as follows:

• The forget gate calculates which information should be removed from state ct based on the hidden
unit ht−1 and the current input xt. It is defined formally as ft = σ(W f [vt, ht−1] + b f ), where σ

denotes the sigmoid function. The output ft can be considered as a bit vector, which indicates the
components of the state vector c to be forgotten. For instance, fti ≈ 1 indicates that the value of
the ith component of ft will be kept and fti ≈ 0 indicates that the value of that component will
be forgotten.

• The input gate controls which information from the input should be kept and stored in the state
vector ct at time step t. It is formally defined as it = σ(Wi[vt, ht−1] + bi) and can be interpreted as
a binary mask vector.

• The input modulation gate calculates a new candidate state vector c̃t = tanh(Wg[vt, ht−1] + bg).
• The new state vector ct is then calculated by ct = ft · ct−1 + it · c̃t.
• The output gate decides which parts of the cell state go to the output. It is calculated by

ot = σ(Wo[vt, ht−1] + bo).
• The new hidden state ht is formed from the new cell state whose values are first pushed between
−1 and 1 using the tanh function, and then multiplied by the values of the output gate. Formally,
ht = ot · tanh(ct).

• Finally, the emission or the output of the cell (i.e., in our case, the predictions for the position of
the shank) is calculated using yt = tanh(Wyht + by).
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yt

ct−1 . + ct

tanh.

.ft it c̃t ot

ht−1

vt

ht[vt, ht−1]

Figure 6. Structure of LSTM cell. The operators ·, +, [., .], and tanh in boxes represent element-wise
multiplication, addition, concatenation, and tanh operations on vectors, respectively.

In the above, σ denotes the sigmoid function, ‘·’ represents element-wise or Hadamard product of
vectors, [., .] denotes vector concatenation, Ws denote weight matrices, and bs denote the corresponding
biases whose values are to be learnt from data.

In our work, the observed data vt is a four-component vector, in which each component
corresponds to the angle and the angular speed of the left and right thighs, respectively. The angular
data were calculated from two triaxial gyroscopes and accelerometer sensors located on the right and
left thighs using the methods described by Pedley [45]. The RNN was trained to predict the angles of
both shanks.

We do not recommend bidirectional RNNs or Hidden Markov models (HMMs) for gait inference.
These methods require the whole observed sequence before making any predictions for intermediate
time frames. In other words, bidirectional methods use data from the future to make a prediction in
the present. This would increase the prediction latency [26].

The feet angle and position was not the subject of prediction because novel feet prostheses have
good mechanical systems for feet positioning without any information [50].

3. Methods and Data Sets

3.1. Data Sets

In our experiments, we used the human gait data from the HuGaDB database [51]. The data is
freely available at https://github.com/romanchereshnev/HuGaDB. This dataset consists of a total
of five hours of data from 18 participants performing eight different activities. These participants
were healthy young adults: four females and 14 males with an average age of 23.67 years (standard
deviation [STD]: 3.69), an average height of 179.06 cm (STD: 9.85), and an average weight of 73.44
kg (STD: 16.67). The participants performed a combination of activities at normal speed in a casual
way, and there were no obstacles placed in their way. For instance, starting in the sitting position,
participants were instructed to perform the following activities: sitting, standing up, walking, going up
the stairs, walking, and sitting down. The experimenter recorded the data continually using a laptop
and annotated the data with the activities performed. This provided us a long, continuous sequence
of segmented data annotated with activities. In total, 1,077,221 samples were collected. Table 1
summarizes the activities recorded and provides other characteristics of the data.

https://github.com/romanchereshnev/HuGaDB
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Table 1. Characteristics of data and activities.

Activity Time Sec
(min) Percent Samples Description

Walking 5354 (89) 29.24 314,949 Walking and turning at various speeds on a flat surface
Running 1120 (18) 6.12 65,917 Running at various paces
Going up 2297 (38) 12.54 135,127 Taking stairs up at various speeds
Going down 2036 (33) 11.12 119,819 Taking the stairs down at various speeds and steps
Sitting 1407 (23) 7.69 82,819 Sitting on chair; floor not included
Sitting down 309 (5) 1.69 18,180 Sitting on chair; floor not included
Standing up 350 (5) 1.91 20,603 Standing up from a chair
Standing 5436 (90) 29.69 319,807 Static standing on a solid surface
Total 18,312 (305) 100.0 1,077,221

During data collection, MPU9250 inertial sensors and electromyography sensors made in
the Laboratory of Applied Cybernetics Systems, Moscow Institute of Physics and Technology
(www.mipt.ru) were used. Each EMG sensor has a voltage gain of about 5000 and a band-pass
filter with bandwidth corresponding to a power spectrum of EMG (10–500 Hz). The sample rate of
each EMG-channel is 1.0 kHz, the analog-to-digital converter (ADC) resolution is 8 bits, and the input
voltages is 0–5 V. The inertial sensors consisted of a three-axis accelerometer and a three-axis gyroscope
integrated into a single chip. Data were collected with the accelerometer’s range equal to ±2 g with
sensitivity 16.384 least significant bits (LSB)/g and the gyroscope’s range equal to ±2000◦/s with
sensitivity 16.4 LSB/◦/s. All sensors were powered with a battery, which helped to minimize electrical
grid noise.

Accelerometer and gyroscope signals were stored in int16 format. EMG signals were stored in
uint8. In our experiments, all data were scaled to the range [−1, 1].

In total, six pieces of inertial sensors (three-axis accelerometer and three-axis gyroscope) and
two EMG sensors were installed symmetrically on the right and left legs with elastic bands. A pair
of inertial sensors were installed over the rectus femoris muscle 5 cm above the knee, another pair
of sensors around the middle of the shin bone at the level where the calf muscle ends, and a third
pair on the feet on the metatarsal bones. Two EMG sensors were connected to the skin by three
electrodes over the vastus lateralis muscle. The EMG sensors additionally provided two more features.
This installation provided 36 signal sources, 18 signal sources were from the accelerometers (2 legs × 3
sensors × 3 axes), 18 signals were from the gyroscopes (2 legs × 3 sensors × 3 axes), and two signals
were from the EMG (2 sensors). For the sensor locations, we refer the reader to see [51].

The sensors were connected through wires with each other and to a microcontroller box,
which contained an Arduino electronics platform with a Bluetooth module. The microcontroller
collected 56,350 samples per second on average, with a standard deviation of 3.2057, and then
transmitted them to a laptop through a Bluetooth connection. Data acquisition was carried out
mainly inside a building. Data were not recorded on a treadmill. We note that walking contains
turning but unfortunately the annotation does not indicate this information.

We note that some data in HuGaDB contained corrupted signals and, typically, several gyroscope
measurements were overflown and hence trimmed. We discarded these data from our experiments
and Table 1 summarizes information on data we actually used.

3.2. Feature Extraction Methods

First, raw data obtained from the gyroscope and accelerometer sensors were filtered with moving
average using a window of 100 samples. This was performed to remove the bias drift of inertial
sensors [52].

www.mipt.ru
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The gait inference method is based on the thigh angle and angular speed data in the sagittal plane.
The initial angle degrees for thigh and shank are calculated based on the accelerometer data and Earth
gravity [45]. Formally, the start angle of the thigh (θ) is calculated with

θstart = arctan

(
Ty√

T2
x + T2

z

)
, (2)

where Tx, Ty, and Tz denote the values of the accelerometer sensors located on thigh. Similarly, the start
angle of the shank (φ) is calculated via

φstart = arctan

(
Sy√

S2
x + S2

z

)
, (3)

where Sx, Sy, and Sz denote the values of the accelerometer sensors located on shank. The angular
velocities are from the gyroscope data. Let ωT(t) and ωS(t) be angular velocities of thigh and shank at
time t, respectively. The angles of thigh θ(t) and shank φ(t) at time t can be calculated as follows [45]:

θ(t) = θstart +
∫

ωT(t)dt, (4)

φ(t) = φstart +
∫

ωS(t)dt. (5)

For every time frame t, the standard deviation (std) of the gradients of the EMG signals was
calculated from the previous 5 and 10 measurements and were used for sitting down and standing
up intention recognition, respectively. Formally, let ε(t) denote the EMG signal data at time t.
The feature for the variance of the gradients of the EMG signals in the last w time steps is formulated
as vw(t) = STDi=0...w{∂ε(t− i)}. For sitting down intention recognition, we use a feature to measure
the variance of the differences of the accelerometer data between the two thighs in the last 10 data
frames. It is formulated as dx(t) = STDi=0...10{|TL

x (t− i)− TR
x (t− i)|} for the x-axis.

3.3. Model Implementation Details

The GaIn system (a) recognizes activities and intentions and (b) infers gait. We used a RapidHARe
module to recognize standing up intention in the sitting position from the EMG sensor data.
The intention was modeled with 10 Gaussian components, while sitting was modeled with one
Gaussian component. We used another RapidHARe model to recognize sitting down intention during
standing or walking activities from EMG sensor data and the differences of the accelerometer data.
The intention was modeled with 5, while all others were modeled with two Gaussian components,
respectively. We used a third RapidHARe module to recognize sitting, standing, and walking-related
activities using one Gaussian component for each. All models used 20 long context windows.

For gait inference, the RNN consisted of 50 LSTM hidden units in one hidden layer. The learning
objective for the RNN was to minimize the squared error between the predicted and the true shank
angle. For the training, the input sequential data were chunked into 15 long data segments. Table 2
summarizes the features we used in each module.
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Table 2. Features used in GaIN. All features were scaled between 0 and 1.

Model Features Window Length

Gait inference

Left thigh angle θL(t),

15Right thigh angle θR(t),
Left thigh angular speed ωL

T(t),
Right thigh angular speed ωR

T (t).
Standing up EMG sensor data variance from the left thigh vL

5 (t), 20
EMG sensor data variance from the right thigh vR

5 (t) .

Sitting down

EMG sensor data variance from the left thigh vL
10(t),

20EMG sensor data variance from the right thigh vR
10(t),

Variance of the differences on x-axis accelerometer data dx(t),
Variance of the differences on z-axis accelerometer data dz(t).

Sitting-Standing

x-axis accelerometer data from left thigh: TL
x ,

20x-axis accelerometer data from right thigh: TR
x ,

z-axis accelerometer data from left thigh: TL
z ,

z-axis accelerometer data from right thigh: TR
z .

The classification methods were implemented using the Python scikit-learn package (version
0.18.1). The RNN/LSTM was implemented with Keras library (version 2.1.2) using TensorFlow
framework as backend (version 1.4.0). Training and testing were carried out on a PC equipped with
Intel Core i7-4790 CPU, 8 Gb DDR-III 2400 MHz RAM, and Nvidia GTX Titan X GPU. Training and
testing on all data took roughly three hours.

3.4. Evaluation Methods

The performance of our GaIn method was evaluated using a supervised cross-validation
approach [53]. In this approach, data from a designated participant were held out for tests, and the
rest of the data from the 17 participants were used for training. Thus, this approach gives a reliable
estimation of how well the GaIn system would perform for a new patient whose data have not been
seen before. In our experiments, we repeated this test for every user in the dataset and averaged
the results.

The error of the gait inference was measured by the absolute value of the difference between the
true and the predicted shank angles. The activity recognition was evaluated with Precision = TP

TP+FP
and Recall = TP

TP+FN metrics, where TP, FP, and FN denote the number of the true positive,
false positive, and false negative predictions, respectively. In addition, we calculated and reported
the F1 score, which is a combined score of the recall and the precision measures, defined as
F1 = 2 Precision·Recall

Precision+Recall .

4. Results and Discussion

Our overall results on the gait inference can be seen in a video at https://youtu.be/aTeYPGxncnA,
while two screenshots are shown in Figure 7. Many videos have been generated on different data
recorded on different participants, but we did not see visually notable differences in the videos.
The reason we chose this example particularly is that this data contains a variety of activities during a
relatively short time.

https://youtu.be/aTeYPGxncnA
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(A) (B)

Figure 7. Screenshots of GaIn during gait inference.Around 56 data frames add up to one second.
See the full video at: https://youtu.be/aTeYPGxncnA.

Figure 8 shows the inference for continuous series of standing up, sitting down, and a few
walking-related activities. Note that the standing up and the sitting down activities are inferred based
on the variance of the gradients in the EMG signals obtained from both thigh muscles (shown with
green lines), and that the shank degrees (shown with black lines) are irrelevant here. The lower part
of the figure indicates the true activities performed by the participant, while the upper part indicates
the recognized activities. We note that the length of the sitting down and standing up activities in
the figures is irrelevant here because the length would depend on how the robotic prosthetic legs
performed these movements once the patient’s intention was recognized. The shank movement
inference during walking-related activities is based on the thigh angles (not shown), and the EMG
sensor data is ignored here. To help guide the reader, we have also indicated the current walking type
by the color of the background, but GaIn does not take this information into account.
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Figure 8. Gait inference and activity recognition using GaIn. The first part (from 4.2 s to 20 s) shows
sitting-related predictions, while the second part (from 21 s) shows shank movement inference for
walking related activities. During the first part, the sitting down and standing up intentions are
recognized based on the EMG signal variance (green) while the shank angles (black) are irrelevant
here—while, in the second part, the shank movement inference for walking is calculated from the thigh
angles (not shown) and the EMG signals are disregarded here. The walking type is indicated by the
colors in the background only for the reader; it was not used in our methods.

4.1. Activity Classification Results

First, we discuss our experiments on how efficiently the activity recognition module of the GaIn
system recognizes the patient’s intention to (a) sit down from a standing position and (b) to stand
up from a sitting position using mainly EMG signals. The results, summarized in Table 3, show that
standing and sitting position recognition can be achieved with high accuracy; however, it is easier
to recognize standing up intention than sitting down intention. Our system achieved 0.99 recall and
0.99 precision for recognizing standing up intention, but it achieved only 0.68 recall and 0.99 precision
for sitting down activity. The reason is that the muscle activity in both thighs is very low in a sitting
position, thus it is effortless to recognize standing up intention form the sudden increase in muscle
activity. However, muscle activity is already present in a standing position, which makes it more

https://youtu.be/aTeYPGxncnA
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challenging to distinguish a patient’s simple balancing or walking efforts from a sitting down intention.
Nevertheless, incorrect activity prediction can result in different impacts on the patient. When the
GaIn system incorrectly recognized a standing up activity while the user is sitting, then the system
simply stretched the robotic prosthetic leg, resulting in no harm to the patient. However, when a sitting
down intention is predicted while the user is simply standing, then the patient would fall and may
suffer serious injury. In our opinion, it is more important to achieve lower false alarm (high precision)
than missed alarm (high recall) rates for sitting down activity. Therefore, we calibrated the decision
threshold so that the activity recognition module achieved as high as 0.99 precision at the expense
of recall, which decreased to 0.68. As a consequence, users may need to produce clearer and longer
signals to the system for sitting down, but this results in GaIn causing fewer injuries from falling.
Figure 9 shows the system in action with different users having different qualities of EMG signals.

Table 3. Classification results for each participant.

Participant ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Mean
standing up recall 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1 0.99
standing up precision 1 1 0.94 1 1 1 1 1 0.94 1 1 1 1 1 0.94 0.93 1 1 0.99
standing up F1 1 1 0.97 1 1 1 1 1 0.97 1 1 1 1 1 0.97 0.93 1 1 0.99
sitting down recall 1 0.78 1 0.50 0.19 1 0.50 0.82 0.93 0.86 0.5 0.88 0.56 0.38 0.60 0.64 0.70 0.88 0.68
sitting down precision 1 1 0.90 1 1 1 1 1 0.93 1 1 1 1 1 1 0.90 1 1 0.99
sitting down F1 1 0.88 0.95 0.67 0.32 1 0.67 0.90 0.93 0.92 0.11 0.93 0.71 0.55 0.75 0.75 0.82 0.93 0.77
standing recall 1 1 1 1 1 1 1 1 1 0.96 1 0.97 1 1 1 1 1 1 0.99
standing precision 1 1 1 0.94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99
standing F1 1 1 1 0.97 1 1 1 1 1 0.98 1 0.98 1 1 1 1 1 1 0.99
sitting recall 1 1 1 1 1 1 0.95 1 1 1 1 1 1 1 1 1 1 1 0.99
sitting precision 1 0.78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99
sitting F1 1 0.88 1 1 1 1 0.98 1 1 1 1 1 1 1 1 1 1 1 0.99

Note that some participants (e.g., ID = 5, 14) yield poor results due to weak EMG sensor signals. These cases
could be circumvented using individual EMG signal calibration.
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Figure 9. Activity recognition in GaIn with good (A), “waving” (B), weak (C), and “waving” and weak
(D) EMG signals from participants ID = 1, 7, 12, 16, respectively. Note that plot D consists of three
continuing panels.

We examined the prediction latency and plotted a histogram of the activity recognition lag time
in Figure 10. On average, it takes 602 milliseconds to recognize standing up intention (shown in
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Figure 10A), while it takes 846 milliseconds to recognize sitting down (shown in Figure 10B). We note
that the standing up recognition has lower variance than the sitting down recognition and this is
concluded from the width of the distributions in Figure 10. Note that the higher lag time for sitting
down recognition is a result of the threshold calibration, as discussed above.
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Figure 10. Activity recognition latency in seconds (s) for standing up (A) and sitting down (B).

Finally, we mention that the quality of the EMG signals greatly depends on the physical properties
of the user’s skin. Some users generated poor EMG signals (see the results for participant ID = 5,14
in Table 3) that hampered the activity recognition consistently, while some users generated good
quality EMG signals (see the results for participant ID = 1, 6 in Table 3), resulting in almost perfect
activity recognition. Therefore, to mitigate dependency on the EMG signals, we propose calibrating
the system’s activity recognition module for each patient individually in the future.

4.2. Gait Inference Results

The results for gait inference are shown in Figure 11 for various walking-related activities such as
walking, running, and taking the stairs up and down. The dashed lines show the true angle of the
shank, while the solid line shows the prediction for the shank angle. The line segments going upward
correspond to swing phases and line segments going downward correspond to stance phases in the
gait cycle. The error, the difference between the true and the predicted movements, is indicated by the
shaded area. It appears that the errors occur at the peaks and troughs which correspond to the turning
point between the swing and stance phases. The color of the background indicates activity performed.
Note that these activity labels were not incorporated into the training procedure; they are presented
simply for illustration purposes. The prediction errors for different activities are listed in Table 4.
The error was calculated for each activity over all data of all users. The average of the prediction errors
for the shank angles across different activities is 4.55 degrees. Figure 12 shows the coordination and
coordination variability of the true (red) and predicted (blue) shank angles with respect to the thigh
angles. Here, we used the same data as for Figure 1. This scatter plot shows that the predicted shank
angles are in accordance with the true shank angles. However, the predicted shank angles do not span
over the range of the true angles in some cases. For instance, in plot F, the predicted shank angles do
not reach the extremes of the true angles. This is the error that occurs at peaks and troughs in Figure 11.

Table 4. Gait inference error.

Walking Running Going up Going down Standing Mean
Mean 4.988 5.648 5.820 5.148 1.174 4.555
Std 0.910 2.212 1.299 1.158 0.457 1.207

Error measured in absolute difference between the true and the predicted shank angles in degrees.
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Figure 11. GaIn inference for various walking-related activities. The activity is indicated by the
background color for the reader, but this information was not used in the methods. The shank degree is
predicted based on thigh angles (not shown). The solid black line shows the predicted, the dashed line
shows the true angles of the right shank, while the shaded area between them indicates the prediction
error. Plots for the left leg are similar. Plots A–C show various examples.
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Figure 12. Predicted and true shank angles as a function of thigh position over several gait cycles in
different activities. The input data used was the same as in Figure 1. The caption below each figure
indicates the types of activities performed on the plot. Plots A–F show various examples.

4.3. Variance in Different Phases

People walk differently, resulting in variance in gaits [1]. Moreover, gait varies over different
cycles for the same person as well. Figure 1 shows this natural variance. This variance prevents
achieving 100% accuracy in gait prediction for someone’s gait based on other people’s gait data. It has
also been noticed that variance in the swing phase is larger than in the stance phase [54]. This is as
expected, since the stance phase is more important in walking stability, while legs may move more
freely in the swing phase [54]. We also observed this fact in our data and plotted the shank angles
in the stance and swing phases of one gait cycle obtained from different users. In Figure 13, panel A
shows the shank angles of the gait cycle in the stance phase (blue lines) and the variance (red line) and
panel B shows the same information for the swing phase. The figure shows that the variance is higher
in the swing phase. Therefore, we expect higher prediction errors for the swing phase than for the
stance phase. In fact, the mean shank degree prediction error across all activities is 4.783 (STD: 1.171)
in the stance phase and 6.182 (STD: 1.680) in the swing phase. Table 5 shows detailed prediction errors
for different activities.
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Figure 13. Shank angles of different participants in stance phase (A) and swing phase (B).
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Table 5. GaIn inference error.

Walking Running Going up Going down Mean
Swing phase
Mean 5.826 6.420 6.738 5.744 6.182
Std 1.0817 2.750 1.437 1.452 1.680
Stance phase
Mean 4.268 4.967 5.140 4.758 4.783
Std 0.800 1.700 1.215 0.969 1.171

Error measured in degrees.

4.4. Inference Errors around Activity Change

We closely examined the errors around activity changes; for instance, when a walking user started
running. We measured the gait inference errors in a range of ± 15 data samples (equivalent to half of
a second) around the true activity change. We found that the shank degree prediction error is 5.44◦,
which is not especially larger than general. The detailed results for different activity transitions are
shown in Table 6.

Table 6. Average shank degree prediction error at activity transitions.

Activity Transition Mean Std
walking→ running 5.79 2.297
walking→ going up 5.34 1.417
walking→ going down 5.68 0.959
walking→ standing 4.50 0.742
running→ walking 5.31 2.352
going up→ walking 5.15 1.661
going up→ standing 7.24 0.837
going down→ going up 6.21 0.479
going down→ walking 6.22 1.734
standing→ going up 5.75 1.331
standing→ walking 4.20 3.065
standing→ going down 6.11 2.242
Mean 5.44 1.471

The degree error was measured in ±15 sample interval (around half a second long range) at the true activity
transition border.

5. Conclusions

In this article, we presented a new method, called GaIn, for human gait inference. GaIn was
designed to predict the movements of the lower legs based on the movements of both thighs. This can
potentially be the basis for building non-invasive, robotic, lower limbic prostheses for patients suffering
from double trans-femoral amputation. Our method is based on the observation that the thigh degrees
strongly correlate to the shin bone degrees during casual walking-related activities. In this article,
we showed that the shank degrees can be predicted using recurrent neural networks with LSTM
memory cells using thigh degrees as input. Our experimental results showed that our system is highly
accurate and it achieved 4.55 degree prediction error on average. The error for the stance phase was
even lower. We believe that a recurrent neural network is a suitable mathematical model to simulate
the motor cortex of the human neural system, and we think this is the reason why GaIn achieves low
prediction error.

However, in a real-life application, sitting down and standing up intentions cannot be recognized
from thigh movements. To circumvent this, we applied EMG sensors placed on the skin over the vastus
lateralis—the thigh muscles; therefore, the patient can signal her/his intentions by increasing thigh
muscle activity. Our system achieved a 99% precision and recall in recognizing standing up intention,
and achieved 99% precision and 68% recall in recognizing sitting down intention. We mentioned that a
patient may suffer injury if the system incorrectly predicts a sitting down intention during walking
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or just standing. For safety reasons, we adjusted the decision rule accordingly to maintain low false
alarm (high precision) at the expense of high missed alarm (low recall). As a result, users may need to
produce clearer signals to indicate sitting down intention.

Here, we presented our results purely on in silico experiments. Building a real prototype of such
a robotic prosthetic leg is the subject of our current research. In practice, we expect that the patients
may feel a little discomfort using such robotic prosthetic legs at the beginning and need to adjust to
the device and, on the other hand, we will also need to make adjustment in the GaIn model to adapt
the prosthesis to diverse peoples and urban situations. We hope that the prosthesis will be a useful
tool in combating disability discrimination.
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The following abbreviations are used in this manuscript:

EMG Electromyography
HAR Human activity recognition
HGA Human gait analysis
HGI Human gait inference
EM Expectation–Maximization
GMM Gaussian mixture model
RNN Recurrent neural networks
LSTM Long–short term memory
HMM Hidden Markov models
STD Standard deviation
ADC Analog-to-digital converter
LSB Least significant bit
CPU Central processing unit
GPU Graphics processing unit
TP True positive
FP False positive
FN False negative
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