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Abstract: In wireless body area networks (WBANs), the secrecy of personal health information
is vulnerable to attacks due to the openness of wireless communication. In this paper, we study
the security problem of WBANs, where there exists an attacker or eavesdropper who is able to
observe data from part of sensors. The legitimate communication within the WBAN is modeled
as a discrete memoryless channel (DMC) by establishing the secrecy capacity of a class of finite
state Markov erasure wiretap channels. Meanwhile, the tapping of the eavesdropper is modeled as
a finite-state Markov erasure channel (FSMEC). A pair of encoder and decoder are devised to make
the eavesdropper have no knowledge of the source message, and enable the receiver to recover the
source message with a small decoding error. It is proved that the secrecy capacity can be achieved
by migrating the coding scheme for wiretap channel II with the noisy main channel. This method
provides a new idea solving the secure problem of the internet of things (IoT).

Keywords: wiretap channel II; secrecy capacity; finite state Markov erasure wiretap channel; WBAN

1. Introduction

Due to the openness of wireless communication, the personal health information, which is
exchanged on the wireless channel in WBAN, is readily fetched and attacked by hackers. To address
this issue, there are usually two ways to enhance the security of wireless communications: one is
the security guaranteed by information theory in Refs. [1–3], another is the security verified by the
computational complexity in Refs. [4,5]. In this paper, we aim to study the secure transmission problem
in WBAN on the basis of the information theory. Here, the secure transmission indicates the way to
code the transmitted data so that the attackers cannot get the data. The concept of wiretap channel is
introduced by Wyner in Ref. [6]. In his model, the source message was sent to the targeted user via a
discrete memoryless channel (DMC). Meanwhile, an eavesdropper was able to tap the transmitted data
via a second DMC. It was supposed that the eavesdropper knew the encoding scheme and decoding
scheme. The object was to find a pair of encoder and decoder such that the eavesdropper’s level
of confusion on the source message was as high as possible, while the receiver could recover the
transmitted data with a small decoding error. Wyner’s wiretap channel model is called the discrete
memoryless wiretap channel, since the main channel output was taken as the input of the wiretap
channel in Ref. [7].

After Wyner’s pioneering work, the models of wiretap channels have been studied from various
aspects. Csiszar and Korner considered a more general wiretap channel model called the broadcast
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channels with confidential messages (BCCs) in Ref. [8]. The wiretap channel was not necessarily
a degraded version of the main channel. Moreover, they also considered the case where public data
was supposed to be broadcasted through both main channel and wiretap channel. The degraded
wiretap channels with discrete memoryless side information accessed by the encoder were considered
in Refs. [9–11]. BCCs with causal side information were studied in Ref. [12]. Communication
models with channel states known at the receiver were considered in Refs. [13,14]. Ozarow and
Wyner considered another wiretap channel model called wiretap channel of type II [15]. The secrecy
capacity was established there. In that model, the source data was encoded into N digital symbols and
transmitted to the targeted user through a binary noiseless channel. Meanwhile, the eavesdropper was
able to observe an arbitrary µ-subcollection of those symbols.

In the last few decades, a lot of capacity problems related to the wiretap channel II were studied.
A special class of non-DMC wiretap channel was studied in Ref. [16]. The main channel was a
DMC instead of noiseless, and the eavesdropper observed µ < N digital symbols through a uniform
distribution. An extension of wiretap channel II was studied in Ref. [17], where the main channel was
a DMC and the eavesdropper was able to observe µ digital bits through arbitrary strategies.

The model of finite-state Markov channel was first introduced by Gilbert [18] and Elliott [19].
They studied a kind of Markov channel model with two states, which is known as the Gilbert–Elliott
channel. In their channel model, one state was related to a noiseless channel and the other state
was related to a totally noisy channel. Wang in Ref. [20] extended the Gilbert–Elliott channel and
considered the case with finite states.

This paper discusses finite-state Markov erasure wiretap channel (FSME-WTC) (see Figure 1).
In this new model, the source data W is encoded into N digital symbols, denoted by XN ,
and transmitted to the targeted user through a DMC. The eavesdropper is able to observe the
transmitted symbols through a finite-state erasure Markov channel (FSMEC). Secrecy capacity of
this new communication model is established, based on the coding scheme devised by the authors in
Ref. [17].
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Figure 1. Communication model of degraded wiretap channels.

The model of FSME-WTC can be applied to model the security problem of WBAN readily. Let us
suppose that there are N sensors in WBAN. Then, we can treat the collection of symbols obtained from
the sensors as a digital sequence of length N transimitted over an imaginary channel. The imaginary
channel is not DMC because the symbols from the sensors are correlated. Markov chain is an important
model to characterize the correlation of random variables since it will not bring too much complexity of
the system. The wiretap channel is set as an erasure channel to model the situation where the attacker
in WBAN is able to tap data from only part of the sensors. Thus, our model of FSME-WTC is to ensure
that the attacker is not able to get any information from the WBAN when he/she can only observe
data from at most Nα sensors.

The importance of this model is obvious. As the technology of 5G advances towards the stage
of commercial applications, wireless networks are becoming more and more significant in our daily
lives [21,22]. Therefore, the security problem of wireless communication is critical from the aspects
of both theory and engineering. Meanwhile, the finite state Markov channel is a common model to
character the properties of wireless communication. Hence, the results of this paper are meaningful to
many kinds of wireless networks with high confidentiality requirements, such as WBAN and IoT.
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The remainder of this paper is organized as follows. The formal statements of Finite-state Markov
Erasure Wiretap Channel and the capacity results are given in Section 2 (see also Figure 1). The secrecy
capacity of this model is established in Theorem 1. Some concrete examples of this communication
model are given in Section 3. The converse part of Theorem 1, relying on Fano’s inequality and
Proposition1, is proved in Section 4. The direct part of Theorem 1, based on Theorem 1 in [17],
is proved in Section 5. Section 6 gives the proof of Proposition 1, and Section 7 finally concludes
this paper.

2. Notations, Definitions and the Main Results

Throughout this paper, N is the set of positive integers. [1 : N] = {1, 2, . . . , N} is the set of
positive integers no greater than N for any N ∈ N. For any index set I ⊆ [1 : N] and random vector
YN = (Y1, Y2, . . . , YN), denote by YN

I = (Y′1, Y′2, ..., Y′N) the “projection” of YN onto the index set I such
that Yi = Y′i for all i ∈ I , and Yi =?, otherwise.

Let Y be any finite alphabet not containing the “error” letter ? and YN
I = {(y1, y2, ..., yN) : yi ∈

Y for i ∈ I , and i =? for i /∈ I}. It follows that YN
I is distributed on YN

I for any random vector YN

over YN .

Example 1. Let N = 5, I = 1, 3 and X = 0, 1. Then,

X N
I = {(0?0??), (0?1??), (1?0??), (1?1??)}.

Let XN = (X1, X2, X3, X4, X5) be an arbitrary random vector distributed on X N . Then, the random vector
XN
I = (X1, ?, X3, ?, ?) is distributed on X N

I .

Definition 1. (Encoder) Let the source message W be uniformly distributed on a certain message set W .
The (stochastic) encoder qE is specified by a matrix of conditional probability qE(xN |w) with xN ∈ X N and
w ∈ W . The value of qE(xN |w) specifies the probability that we encode message w encoded into the sequence xN .

Definition 2. (Main channel) The main channel is a DMC, whose input alphabet is X and output alphabet
is Y , where ? /∈ X ∪ Y . The transition probability matrix of the main channel is denoted by QMC(y|x) with
x ∈ X and y ∈ Y . The input and output of the main channel are denoted by XN and YN , respectively. For any
xN ∈ X N and yN ∈ YN , it follows that

Pr{XN = xN , YN = yN} = Pr{XN = xN}QMC(yN |xN),

where

QMC(yN |xN) =
N

∏
i=1

QMC(yi|xi).

Remark 1. From the property of DMC, it holds that

H(YN |XN) =
N

∑
i=1

H(Yi|Xi).

Definition 3. (Wiretap channel) Let Tn, n ∈ N be the channel state of FSMEC at time n satisfying that
T1 → T2 → ... → TN → ... forms a Markov chain. The transition of channel states is homogeneous, i.e.,
the conditional probability Pr{Tn = tn|Tn−1 = tn−1} is independent from the time index n. Moreover,
the channel states are stationary, i.e., T1, T2, ..., TN , ... share a generic probability distribution pT on a common
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finite set T of channel states. Moreover, let QT(t′|t) be the probability that the state at the next time slot is
changed to t′ when the state is t currently. It follows that

Pr{TN = tN} = pT(t1) ·
N

∏
i=2

QT(ti|ti − 1)

for tN ∈ T N . The input of FSMEC is a digital sequence YN , which is actually the main channel output. Denote
by ZN the wiretap channel output. For each time slot n, the channel is either totally noisy, i.e., Zn =? or totally
noiseless, i.e., Zn = Yn, which depends on the value of Tn. Thus, the channel output Zn is totally determined by
the channel input Yn and the channel state Tn. Let T1 be the set of states under which the channel is noiseless.
Then, it follows that T0 = T − T1 contains the states where the channel is totally noisy. Denote by QWC(z|y, t)
the probability that the channel outputs z when the channel input is y and the channel state is t. It follows that

QWC(z|y, t) =

{
δ(z, y)t ∈ T1,

δ(z, ?), t ∈ T0,

where

δ(a, b) =

{
1, a = b,

0, a 6= b.

For any yN ∈ YN , zN ∈ ZN and tN ∈ T N , it is readily obtained that

Pr{YN = yN , ZN = zN |TN = tN} = Pr{YN = yN}
N

∏
i=1

QWC(zi|yi, ti).

Remark 2. Throughout this paper, it is supposed that TN is independent from W, XN and YN .

Proposition 1. Xn → Zn → Tn forms a Markov chain for every 1 ≤ n ≤ N.

Proof. The proof of Proposition 1 is given in Section 6. Proposition 1 would be used to establish the
converse part of Theorem 1 (see Section 4).

Definition 4. (Decoder) The decoder is specified by a mapping fD : YN →W. To be particular, the estimation
of the source message is Ŵ = YN , where YN is the main channel output. The average decoding error probability
is denoted by Pe = Pr{W 6= Ŵ}.

Definition 5. (Achievability) A positive real number R is said to be achievable, if, for any real number ε > 0,
one can find an integer N0 such that, for any N > N0, there exists a pair of encoder and decoder of length of
length N satisfying that

1
N

log|W| > R− ε,
1
N

I(W; YN) < ε and Pe < ε. (1)

Definition 6. (Secrecy capacity) A real number Cs is said to be the secrecy capacity of the communication
model if it is achievable for every 0 ≤ R ≤ Cs and unachievable for every R > Cs.

Theorem 1. Let Bn be the function of Tn defined in Definition 3 such that Bn = 1 if Tn ∈ T1, and Bn = 0,
otherwise. If it follows that

lim
N→∞

Pr{| 1
N

N

∑
n=1

Bn − α| < ι} = 1 (2)
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for any ι > 0, the secrecy capacity of the communication model in Figure 1 is (1− α)CM, where CM is the
capacity of the main channel, i.e.,

CM = max
PX

I(X; Y). (3)

Proof. The proof of Theorem 1 is divided into the following two parts. The first part, given in Section 4,
proves that every achievable real number R must satisfy R ≤ (1− α)CM, which is the converse half
of the theorem. The second part, given in Section 5, proves that every real number R satisfying
0 ≤ R ≤ (1− α)CM is achievable, which is the direct half.

Theorem 1 claims that, if the Markov chain {Tn} satisfies Label (2), then the secrecy capacity
of the wiretap channel model depicted in Figure 1 is (1− α)CM. In the rest of this section, we will
introduce a class of Markov chains satisfying (2) in Theorem 2, and provide the secrecy capacity of the
related wiretap channel model in Corollary 1.

A stationary Markov chain is call ergodic if, for each pair of states t, t′ ∈ T , it is possible to go from
state t to t′ in expected finite steps. One can prove that, if a Markov of chain is ergodic, the stationary
probability distribution of the state is unique.

Theorem 2. (Law of Large Number for Markov Chain) If the Markov chain {Tn} is ergodic, let π be the
unique stationary distribution of the state. Then, it follows that

lim
N→∞

1
N

N

∑
i=1

I(Tn = t) = π(t)

for each channel state t, where I(Tn = t) is 1 or 0, indicating whether Tn = t is true or not.

With the theorem above, we immediately obtain that

Corollary 1. If the Markov chain {Tn} is ergodic with the unique stationary distribution π over T , then the
secrecy capacity of the wiretap channel model depicted in Figure 1 is given by

Cs = (1− π(T1))CM,

where CM is the capacity of the main channel, and

π(T1) = ∑
t∈T1

π(t).

3. Examples

This section gives two simple examples of FSMEC defined in Definition 3. Example 2 is for
discrete memoryless erasure channel (DMEC) and Example 3 is for a simple two-state FSMEC.

Example 2. Suppose that the set of channel states T = 0, 1 with T1 = 1 and T0 = 0. Meanwhile, let

pT(0) = Qt(0|0) = Qt(0|1) = 1− α (4)

and
pT(1) = Qt(1|0) = Qt(1|1) = α.
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The state transition diagram of the channel states in this example is depicted in Figure 2. It is obvious that the
FSMEC is in fact specialized into a DMEC with the transition probability

QWC(z|y) =


α, z = y,

1− α, z =?,

0, otherwise.

From Theorem 2 in Ref. [6], the secrecy capacity of the communication model in Figure 1, with DMEC as the
wiretap channel, is

max
PX

I(X : Y|Z)

= max
PX

I(X; Y)− I(X; Z)

(a)
= max

PX
I(X; Y|T)− I(X; Z|T)

= max
PX
{[I(X; Y|T = 0)− I(X; Z|T = 0)]PT(0) + [I(X; Y|T = 1)− I(X; Z|T = 1)]PT(1)}

(b)
= max

PX
I(X; Y|T = 0)PT(0)

(c)
= max

PX
I(X; Y)PT(0)

(d)
= (1− α)CM,

where X and Y are the input and output of the main channel, respectively, and Z is the output of the wiretap
channel under the channel state T; (a) follows from the facts that X → Z → T forms a Markov chain
(cf. Proposition 1) and T is independent from X and Y; (b) follows from the fact that Y = Z when T = 1,
and Z is determined when T = 0; (c) follows from the assumption that T is independent from X and Y; and
(d) follows from (3) and (4).

 

  

α 

1 − α 

1 − 𝛼  𝛼 

0 1 

Figure 2. State transition diagram of discrete memoryless erasure channels.

Clearly, Formula (2) holds with Bn = Tn. Thus, in this case, the result of Theorem 1 in this paper coincides
with that of Theorem 2 in Ref. [6].

Example 3. Let T = 0, 1, T1 = 1, T0 = 0,

pT(0) = pT(1) =
1
2

,

Qt(0|0) = Qt(1|1) = p,

Qt(1|0) = Qt(0|1) = 1− p,

and Bn = Tn. We arrive at a simple two-state Markov erasure channel whose transition diagram is depicted in
Figure 3. Furthermore, observe that
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D

[
N

∑
n=1

Bn

]
= D

[
N

∑
n=1

Tn

]

= E

( N

∑
n=1

Tn

)2
−(E

[
N

∑
n=1

Tn

])2

=

(
N

∑
n=1

N

∑
m=1

E[TnTm]

)
− N2

4

=
N

∑
n=1

(N − n)
2

(2p− 1)n,

where the last equality follows because E[TnTm] =
1
2 when m = n, and

E[TnTm] = Pr{Tm = 1, Tn = 1}
= Pr{Tm = 1, Tn−1 = 1, Tn = 1}+ Pr{Tm = 1, Tn−1 = 0, Tn = 1}
= Pr{Tm = 1, Tn−1 = 1}QT(1|1) + Pr{Tm = 1, Tn−1 = 0}QT(1|0)

= E[TmTn−1]p + (
1
2
− E[TmTn−1])(1− p)

= (2p− 1)E[TmTn−1] +
1− p

2
= ...

= (2p− 1)n−mE[TmTm] +
1− p

2

n−m−1

∑
i=1

(2p− 1)i

=
1 + (2p− 1)n−m

4

when m < n. It is obvious that

lim
N→∞

1
N2 D

[
n

∑
n=1

Bn

]
= 0

for 0 < p < 1. Formula (2) is then established immediately from the Markov Large Number Law. Applying
Theorem 1, the secrecy capacity of the communication model in this case is 1

2 C(p). Figure 4 shows the relationship
between the secrecy capacity and the crossover probability p in this example.

 

  

1 − p 

1 − p 

p 
p 

0 1 

Figure 3. State transition diagram of a two-state Markov chain.
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Figure 4. Secrecy capacity of the two-state Markov erasure wiretap channel in Example 3.

4. Converse Half of Theorem 1

This section proves that every achievable real number R must satisfy R ≤ (1− α)CM. The proof
is based on Fano’s inequality (cf. Formula (76) in Ref. [6]) and Proposition 1.

For any give ι > 0 and ε > 0, Formula (2) indicates that

Pr{ 1
N

N

∑
n=

Bn > α− ι} > 1− ε

or equivalently

Pr{|I(TN)| > N(α− ι)} > 1− ε (5)

when N is sufficiently large, where

I(tN) = {n ∈ [1 : N] : tn ∈ T1}.

Suppose that there exists a code of length N satisfying (1), i.e.,

1
N

log |W| > R− ε,
1
N

I(W; ZN) < ε and Pe < ε.

Then, we have

NR < log |W|+ Nε = H(W) + Nε = I(W; YN) + H(W|YN) + Nε < I(W; YN) + Nδ(Pe) + Nε,

where δ(Pe) → 0 as Pe → 0, and the last inequality follows from the Fano’s inequality.
Since I(W; ZN) < Nε, the formula above indicates that

NR < I(W; YN)− I(W; ZN) + Nδ(Pe) + 2Nε. (6)
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The value of I(W; YN)− I(W; ZN) is upper bounded by

I(W; YN)− I(W; ZN)

(a)
= I(W; YN |ZN)

(b)
≤ I(XN ; YN |ZN) (7)

= I(XN ; YN)− I(XN ; ZN)

(c)
= I(XN ; YN |TN)− I(XN ; ZN |TN),

where (a) and (b) follow from the fact that W → XN → YN → ZN forms a Markov chain, and
(c) follows from Proposition 1 and the fact that TN is independent from XN and YN .

For any tN ∈ T N , denoting ZN(tN) = YN
I(tN)

, Formula (7) is further deduced by

I(W; YN)− I(W; ZN)

≤ I(XN ; YN |TN)− I(XN ; ZN |TN)

(a)
= I(XN ; YN |ZN , TN)

= ∑
tN∈T N

(
I(XN ; YN |ZN , TN = tN) · Pr{TN = tN}

)
(8)

= ∑
tN∈T N

(
I(XN ; YN |ZN(tN), TN = tN) · Pr{TN = tN}

)
(b)
= ∑

tN∈T N

I(XN ; YN |ZN(tN)) · Pr{TN = tN},

where (a) follows because XN → YN → ZN forms a Markov chain when given TN , and (b) follows
because XN , YN and ZN(tN) = YN

I(tN)
are independent from TN . For any fixed tN ∈ T N , denote

Z̃N = ZN(tN). On account of the chain rule, we have

H(YN) =
N

∑
n=1

H(Yn|Yn−1), (9)

H(Z̃N) =
N

∑
n=1

H(Z̃n|Z̃n−1), (10)

and

H(Z̃N |XN) =
N

∑
n=1

H(Z̃n|Z̃n−1, XN)

≤
N

∑
n=1

H(Z̃n|Xn). (11)

Moreover, from the property of DMC, Remark 1 yields

H(YN |XN) =
N

∑
n=1

H(Yn|Xn). (12)
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Combining Formulas (9)–(12), it follows that

I(W; YN)− I(W; ZN(tN)) ≤
N

∑
n=1

(H(Yn|Yn−1)− H(Z̃n|Z̃n−1)− H(Yn|Xn) + H(Z̃n|Xn)). (13)

Considering that Z̃(n− 1)→ Y(n− 1)→ Yn → Z̃n forms a Markov chain, we have

I(Yn−1; Yn) ≥ I(Z̃n−1; Z̃n)

or equivalently
H(Yn)− H(Z̃n) ≥ H(Yn|Yn−1)− H(Z̃n|Z̃n−1).

Substituting the formula above into Formula (13), we have

I(W; YN)− I(W : ZN(tN))

=
N

∑
n=1

(H(Yn)− H(Z̃n)− H(Yn|Xn) + H(Z̃n|Xn)) (14)

=
N

∑
n=1

(I(Xn; Yn)− I(Xn; Z̃n)).

Noticing that

I(Xn; Z̃n) =

{
0, tn ∈ T1,

I(Xn; Yn), t ∈ T0.

Formula (14) is further deduced by

I(XN ; YN)− I(XN ; ZN(tN)) ≤
N

∑
n=1

I(Xn; Yn)− I(Xn; Z̃n) = ∑
n/∈I(tN)

I(Xn; Yn) ≤ (N − |I(tN)|)CM.

Substituting the formula above with Formula (8) gives

I(XN ; YN)− I(XN ; ZN)

≤ ∑
tN∈TN

I(XN ; YN |ZN(tN))Pr{TN = tN}

≤ ∑
tN∈TN

(N − |=(tN)|)CM Pr{TN = tN}

≤ Pr{=(TN) ≥ N(α− ι)}N(1− α + ι)CM + Pr{=(TN) < N(α− ι)}NCM

≤ N(1− α + ι + 2ε)CM,

where the last inequality follows from (5). Combining (6) and the formula above yields

R < 1− α + ι + 4ε + δ(Pe).

R ≤ 1 − α is finally established by letting ι, ε and Pe converge to 0. This completes the proof of
converse half.
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5. Direct Half of Theorem 1

This section proves that every real number R satisfying 0 < R ≤ (1− α)CM is achievable, which
is the direct half of Theorem 1. It suffices to prove the achievability of (1− α)CM. More precisely, for
any given ε > 0, we need to prove the existence of the encoder–decoder pair (qE, fD) such that

1
N

log |W| > R− ε,
1
N

I(W; ZN) < ε and Pe < ε.

The proof is based on the following theorem.

Theorem 3. (Theorem 1 in Ref. [17]). Let a real number 0 < α′1 be fixed and given. For any N ∈ N and
µ = Nα′, denote

=µ = =µ(N) = {I ⊆ [1 : N] : |I| = µ}.

Then, for any real numbers ε′ > 0 and 0 < R < (1− α′)CM, one can construct a code of length N over the
DMC defined in Definition 2 such that

1
N

log |W| > R− ε′, max
I∈=µ

I(W; YN
I ) < ε′, Pe < ε′

when N is sufficiently large.

Proof. Let
α′ = α + ι

and
R = (1− α− 2ι)CM < (1− α′)CM

for a small ι > 0. Suppose that (qE, fD) is a code of length N satisfying

1
N

log |W| > R− ε′ > (1− α− 2ι)CM − ε′

max
I∈=µ

I(W; YN
I ) < ε′ and Pe < ε′.

Applying the code (qE, fD) to the communication model in Figure 1, it is already satisfied that

1
N

log |W| > (1− α)CM − ε and Pe < ε,

when ε′ and ι are sufficiently small. To establish 1
N I(W; ZN) < ε, let the value of N be sufficiently large

such that

Pr|I(TN)| < N(α + ι) > 1− ε′. (15)
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The value of I(W; ZN) is upper bounded by

I(W; ZN)

(a)
≤ I(W; ZN |TN)

= ∑
tN∈TN

I(W; ZN |TN = tN)Pr{TN = tN}

= ∑
tN∈TN

I(W; YN
=(tN)|T

N = tN)Pr{TN = tN}

(b)
= ∑

tN∈TN

I(W; YN
=(tN))Pr{TN = tN}

= ∑
tN :|=(tN)|<N(α+ι)

I(W; YN
=(tN))Pr{TN = tN}

+ ∑
tN :|=(tN)|≥N(α+ι)

I(W; YN
=(tN))Pr{TN = tN}

(c)
≤ ε′ + NCM Pr{|=(TN)| ≥ N(α + ι)}
d
≤ ε′(1 + NCM),

where (a) follows because W is independent from ZN ; (b) follows because YN
I(tN)

is independent from

TN ; (c) follows because I(W; YN
I(tN)

) ≤ H(W) ≤ NCM when |I(tN)| > N(α + ι), and

I(W; YN
I (t

N)) ≤ max
I∈=µ

I(W; YN
I ) < ε′

when |I(tN)| < N(α + ι); and (d) follows from Formula (15). Consequently,

1
N

I(W; ZN) ≤ ε′

N
(1 + NCM) < ε′(1 + CM) < ε

when ε′ is sufficiently small. The proof of the direct half is completed.

6. Proof of Proposition 1

This section proves that Xn → Zn → Tn forms a Markov chain for every n ∈ N, which is
Proposition 1. It suffices to prove that

Pr{Xn = xn, Zn = zn, Tn = tn}Pr{Zn = zn}
= Pr{Xn = xn, Zn = zn}Pr{Zn = zn, Tn = tn} (16)

for any xn ∈ Xn, tn ∈ T n and zn ∈ Zn. Suppose that xn, tn and zn are given. Denote

I(zn) = {1 ≤ i ≤ n : zi 6=?},

I(tn) = {1 ≤ i ≤ n : ti ∈ T1}.

If I(zn) 6= I(tn), both sides of (16) equal 0. Formula (16) is established. If I(zn) = I(tn) = I , terms
in Formula (16) are deduced as follows. Firstly,
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Pr{Xn = xn, Zn = zn, Tn = tn}
= Pr{Xn = xn}Pr{Tn = tn}·

Pr{Zn = zn|Xn = xn, Tn = tn}
= Pr{Xn = xn}Pr{Tn = tn}· (17)

Pr{Yn
= = zn|Xn = xn, Tn = tn}

= Pr{Xn = xn}Pr{Tn = tn}·
Pr{Yn

= = zn|Xn = xn},

where the last equality follows because Xn and Yn are independent from Tn. Moreover,

Pr{Xn = xn, Zn = zn}
= Pr{Xn = xn, Yn

= = zn} (18)

= Pr{Xn = xn}Pr{Yn
= = zn|Xn = xn}.

Finally,

Pr{Zn = znTn = tn}
= Pr{Yn

= = zn, Tn = tn} (19)

= Pr{Yn
= = zn}Pr{Tn = tn},

where the last equality follows because Yn is independent from Tn. Combining Formulas (17)–(19)
results in Formula (16) also holding for xn,zn and tn with I(zn) = I(tn). The proof is completed.

7. Conclusions

Since the data in WBAN is highly related with the personal health, it is vital to protect this healthy
information from attacks. In this paper, from the perspective of information theory, we studied the
infrastructure of secure transmission system in WBAN, and solved the capacity problem of a class
of finite-state Markov erasure wiretap channel for the IoT. The coding scheme used in this paper
comes from the generalized wiretap channel II with the noisy main channel. The idea may be used to
solve the capacity problems of other non-DMC wiretap channels. In a theoretical sense, the secure
performance of our designed algorithm is not relevant with the computation capability of engaged
computers and can guarantee the security of transmitted data in WBAN, by which the personal privacy
could be significantly protected.
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