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Abstract: Enterprise Wireless LANs (E-WLANs) such as airport WiFi, have become a convenient way
for Internet access for mobile users. In an E-WLAN, access points (APs) are usually deployed with
high-density around the infrastructure to provide sufficient coverage and for a better service, where a
mobile user chooses one AP to associate with among multiple available APs in the vicinity. Many
studies have been done on developing user association techniques to increase system performance,
with various objectives including network throughput maximization, load balancing etc. Our work is
unique in that we focused on bandwidth cost minimization via user association from the perspective
of the E-WLAN operators. Specifically, by considering the bandwidth demands from mobile users,
we modeled the joint user association and cost minimization problem in the heterogeneous E-WLAN
with additional constraints from individual bandwidth demands as an optimization problem. To solve
the optimization problem efficiently, we propose an approximation algorithm using relaxation and
rounding techniques. We prove that the proposed algorithm has performance bound with a constant
ratio to the optimization problem. Furthermore, our simulation results exhibit the superiority of our
proposed algorithm over prior schemes.
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1. Introduction

Due to the convenience of mobility and easy set-up, Wireless Local Area Networks (WLANs),
mostly based on WiFi, has become a conventional way for the Internet access to mobile users.
WLANs have been widely deployed in various scenarios from home wireless networks to enterprise
networks. Moreover, it could be adapted to Internet-of-Things scenarios [1]. The popularity of
smart devices further promotes the wide deployment of WLANs, especially in enterprise networks.
For example, airport WiFi has become the dominant way for air passengers to access the Internet
while waiting for their flights. To provide a better quality of service, access points (APs) are usually
deployed with high-density within the enterprise infrastructure, where each mobile user has multiple
APs to choose for an association. With the explosive growth of mobile devices, many challenges
have been brought to WLANs in enterprise networks. User association is one of the challenging
problems, which is to determine one-to-one pair between mobile users and proper APs for achieving
high network performance, in various network sites including airports, university campuses and large
public places such as stadiums and malls where high-density APs are deployed for a large number of
mobile users.

The default association method for a mobile user is defined by the 802.11 protocol which is to
associate an AP with the strongest Received Signal Strength Indicator (RSSI) value. The use of RSSI
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has been widely used for indoor localization [2] as well. However, this default mechanism may lead
to imbalance of loads on APs and decreased network throughput [3]. To enhance the performance,
much work has been conducted on user association with the objectives, such as the maximization
of network load balancing or total network throughput [4–6]. There are also studies that aim to
maximize the utilization of overall bandwidth, from the view of the system level at the time of user
association [7–9].

However, these studies do not consider each user’s bandwidth demand. In fact, each mobile
user tends to have their own bandwidth requirements for various applications. For example, in an
airport, a passenger who wants to stream a high-definition movie must have a larger bandwidth
demand than that of browsing online news. Without considering the users’ bandwidth demands,
the allocated bandwidth could be insufficient or wasteful for associated users. Moreover, in some
enterprise WLAN (E-WLAN) such as an airport WiFi, users may be charged based on their bandwidth
demands. This makes mobile users choose the proper bandwidth demand according to their demands.

Most importantly, for the E-WLAN providers, one major goal is to minimize the cost of operating
the WLANs. Among the overall cost, bandwidth cost is one of the major costs of maintaining the
E-WLANs and it is proportional to the amount of used bandwidth. From the perspective of the
E-WLANs providers, it is essential to minimize the total bandwidth cost.

Motivated by this, we identify the joint user association and cost minimization problem for
E-WLANs, while satisfying the bandwidth demands specified by mobile users. We refer this problem
as the Bandwidth Cost Minimization for Association (BCMA) problem in this paper. As an initial work
in this direction, we focus on bandwidth cost minimization while considering the users’ bandwidth
demand constraints. We leave the considerations of load balancing and fairness as our future work.

We then formulate this BCMA problem, as an optimization problem. However, the BCMA problem
is hard to solve directly as it involves binary constraints. Typical heuristic algorithms cannot provide
a guaranteed performance. That is, it is not clear how good or bad the solution from the heuristic
algorithm is compared to the optimal solution. To achieve a solution with a guaranteed performance
bound, we seek to design an approximation algorithm for the BCMA problem by adapting the
relaxation and rounding techniques, to mitigate the involved binary constraints. Unlike conventional
rounding techniques, we uniquely extend bipartite rounding techniques to graph modeling, which
helps us design the specific algorithm with performance guarantee.

The contributions of this paper are summarized as follows.

(1) We formulate the user association and bandwidth cost minimization that considers users’
bandwidth demands, as an optimization problem.

(2) To solve the problem, we develop an approximation algorithm by extending the integer relaxing
and the bipartite rounding technique. Specifically, to bound the integrality gap induced by
relaxation, we design a specific function and introduce it into the objective function. Moreover,
we adapt the bipartite rounding by constructing a special bipartite graph with auxiliary nodes to
represent the potential association. Then the min-cost flow algorithm is applied to determine the
final association which considers the users’ demands.

(3) By exploiting the integrality gap and the properties of min-cost flow, we theoretically prove that
the proposed algorithm could always achieve an approximation ratio of 2. Moreover, we evaluate
our algorithm with extensive simulations in terms of throughput, the total min-cost and the user
acceptance ratio under uniform and non-uniform distribution. Furthermore, simulation results
have exhibit the performance superiority of the proposed algorithm over existing methods with
respect to cost, throughput and acceptance ratio.

The remainder of this paper is structured as follows. Section 2 introduces the related work on the
joint user association and bandwidth cost minimization problem. Section 3 defines the system model.
Section 4 presents our approximation algorithm for the BCMA problem and proves its approximation
ratio. Simulation results are given in Section 5. Finally, we conclude the paper in Section 6.
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2. Related Work

WiFi has been broadly studied from various aspects, e.g., fast connection [1], indoor localization [2,10].
However, the default association method for a mobile user in 802.11 protocol is not an efficient approach
for user-to-AP association as proved in [11], therefore various studies have been performed to properly
associate users to APs for different purposes, e.g., to avoid congestion [12], balance the load [4], alleviate
interference [13].

In [12], Balachandran et al. focused on the user congestion problem in hot-spot areas of WLANs.
They proposed two approaches, namely explicit channel switching and network-directed roaming,
to alleviate the congestion in WLANs. Load balancing is considered in [4], from different metrics
including the time fairness and min-max fairness. In [4], Bejerano et al. proved that for the time
fairness user association problem, there exists a polynomial-time optimal algorithm, while for the
min-max fairness bandwidth allocation problem, they designed an approximation algorithm with
constant approximation ratio. User association towards proportional fairness (PF) is studied in [7,8].
In some studies [7,8], the PF fairness user association problem was formulated as an integer nonlinear
programming problem and is proved to be NP-hard. Due to the hardness of the origin PF fairness
association problem, the nonlinear objective function is discretized and relaxed, and then solved by
two approximation algorithms. Besides user-to-AP association, [13,14] explored frequency selection
for mobile users to minimize interference during user association.

Different methods and techniques are investigated to optimally associate users to APs. The user
association problem is modeled and treated as an evolutionary game problem in [15]. Karimi et al.
utilized a collaborative method for user association in [16]. Amer et al. applied the realistic media
sharing method to improve the network throughput using the 802.11 Distributed Coordination
Function (DCF) mode in [17]. They proposed a local search algorithm within neighborhoods to
solve the user association problem.

Association control is also explored in other types of networks, such Wireless Mesh Networks
(WMN) [18], Multiple Input Multiple Output (MIMO) networks [19] and cellular networks [20].
Furthermore, some researchers considered the dynamics and mobility in WLANs. In [21], Wong et al.
suggested re-associating users among neighboring APs when the AP capacity constraints are violated
due to the evolving network and users’ movements.

Despite the existing research work on user association and bandwidth allocation in WLANs, very
few work consider users’ bandwidth demands. Tang et al. [22] took the users’ bandwidth demands as
a new constraint when associating users to APs. However, they assumed that the maximum allocated
bandwidth of a user cannot exceed the bandwidth required by this user. In other words, the users’
requirements would be partially satisfied in the proposed scenario. In this paper, we argue that the
users’ bandwidth demands must be fully satisfied to ensure the quality of service and mobile users’
experiences. In addition, different from all the above-mentioned work, we consider the perspective
of E-WLAN’s providers in saving the network operation cost. Therefore, we target to minimize the
E-WLAN operation cost, specifically bandwidth cost by properly associating users to APs while
satisfying users’ individual bandwidth demands.

3. Problem Formulation and Graph Modeling

In this section, we describe the system model and give some basic assumptions, followed by
formulating the bandwidth cost minimization via user association. The notations used in this section
is listed in Table 1.
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Table 1. Notations Used.

Notation Explanation

U the set of APs in an E-WLAN
V the set of user devices
n the number of APs in set U
m the number of user devices in set V
i the index of an AP, i ∈ U
j the index of a user device j ∈ V

γij the experienced SINR of device j associated with AP i
ti the fixed transmission power of AP i
dij the physical distance between device j and AP i
α the shadowing factor ranging from 2.0 to 5.0

N0 the noise in the environment
bij the effective transmission rate of device j which is associated with AP i
B the channel bandwidth
Ci the bandwidth capacity of AP i
bj the specified minimal bandwidth demand of user device j to support its applications
xij binary variable indicating that if device j is associated with AP i or not
pij the effective transmission time between device j and AP i
w the unit cost for the bandwidth

We follow the assumptions and modeling in [3,22]. Consider an E-WLAN consisted of a set of n
APs denoted by U = {1, · · · , n} and a central controller which collects state information from all APs.
The union area of the communication ranges for all APs forms the coverage area of the E-WLAN. A set
V of user devices, V = {1, · · · , m}, are within the coverage of the E-WLAN. Assume each user j in V
can be covered by at least one AP and all APs operate at orthogonal channels.

Each user device communicates with APs in its communication range by sending request packets
to AP. These requests can be re-routed to the controller in the E-WLAN. As in [22], we can use the size
of downlink data arrived in the controller to represent the user demand.

Let γij denote the experienced SINR of device j associated with AP i. Then γij is defined as
follows [23].

γij =
tid−α

ij

N0
(1)

ti is the fixed transmission power of AP i. dij is the physical distance between device j and
AP i. α is the shadowing factor ranging from 2.0 to 5.0. N0 is the noise in the environment. Then,
the effective transmission rate of device j that is associated with AP i, bij = Blog2(1 + γij), where B is
the channel bandwidth.

When an AP i is in the communication range of a device j, AP i becomes a candidate AP for
device j. For example, in Figure 1, AP 1 and AP 2 are candidate APs for device 2. Although each
user device may have multiple candidate APs for an association, it can only be associated by at most
one AP. We refer this constraint as the association constraint. Assume the channels of various AP are
orthogonal. Then each user will not be interfered by other APs, and the noise only includes Gaussian
white noise [22].

d3

d2

d1

AP1

d4AP2

AP3

Figure 1. An instance of APs and user devices.
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In addition, each AP i is associated with a bandwidth capacity Ci. Each user device j can specify
a fixed amount of minimal bandwidth bj to support its applications. Also we assume bj ≥ 1 which
indicates each user demands at least 1 unit bandwidth. Next, we present the preliminary definitions
and introduce the Bandwidth Cost Minimization for Association (BCMA) problem.

Definition 1 (Assignment P). An assignment P is a sequence of pairs between APs U and devices V, i.e.,
P = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} such that the association constraint is satisfied.

If device j is associated to AP i, then AP i must allocate at least the bandwidth of bj to device j
such that device j’s bandwidth demand is satisfied.

Definition 2 (Bandwidth of Assignment P). Define the bandwidth of assignment P , BP , by the total
allocated bandwidth of all assigned devices in P , i.e., BP = ∑j bj, j ∈ {j|(i, j) ∈ P}.

Given a set of devices V and a set of APs U in an enterprise WLAN, the Bandwidth Cost
Minimization for Association (BCMA) problem is to seek an assignment P so that the bandwidth
cost of assignment P is minimized while satisfying the user’s bandwidth demands.

For the bandwidth cost, we consider a simple yet realistic unit cost model [24]. The operator of
an enterprise WLAN is usually charged with unit cost model by the ISP (Internet Service Provider).
That is, the bandwidth cost is the unit cost (dollars per Mbps) multiplied the total allocated bandwidth.
Let w be the unit cost for the bandwidth.

If device j is associated with AP i, let binary variable xij = 1; otherwise xij = 0. The minimal
bandwidth demand bj of user j is fixed. Define the effective transmission time between device j and
AP i to be pij. Then effective bit rate of user device j to AP i is bij. Here, the time demand pij of user j is
a variable. We further assume that the unit cost for the bandwidth is w. Then, the BCMA problem can
be formulated as the following mixed integer optimization problem:

min ∑
i∈U

∑
j∈V

xijbij pijw

s.t. ∑
j∈V

xijbij pij ≤ Ci, ∀i ∈ U (2)

∑
i∈U

xij ≤ 1, ∀j ∈ V (3)

∑
i∈U

xijbij pij ≥ bj, ∀j ∈ V (4)

xij ∈ {0, 1}, ∀i ∈ U, j ∈ V (5)

pij ∈ [0, 1], ∀i ∈ U, j ∈ V (6)

The constraint in Equation (2) ensures that the total effective rate is capped by each AP’s capacity.
The constraint in Equation (3) guarantees that each device can be associated with at most one AP.
The constraint in Equation (4) guarantees the minimum transmission rate demand Bj for each user i is
satisfied. The constraint in Equation (6) specifies the time allocated to device j. Note that we model the
BCMA problem in a unit time.

4. Approximation Algorithm Design

In this section, we propose an approximation algorithm via relaxation and rounding method [25]
to solve the BCMA problem. The basic idea is to relax the binary variable xij for allowing the fractional
association between devices and APs. Then we obtain an integral association using the rounding
technique. Finally, we prove that this method yields a constant approximation ration of 2.
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4.1. BCMA Problem Relaxation

Note that the relaxed optimization problem may induce a large integrality gap [26,27], i.e., the ratio
between the relaxed problem’s result and original problem’s result could be vast or even unbounded.
This large integrality gap will lead to difficulty for designing an approximation algorithm. To reduce
the integrality gap induced by relaxation, we introduce an additional function h(X, P) to the original
objective function. The function h(X, P) is defined as follows:

h(X, P) = ∑
i∈U

∑
j∈V

xij

√
bij p2

ij (7)

Let f (X, P) = ∑i∈U ∑j∈V xijbij pijw be the original objective function. Define the new objective
function by Γ(X, P) = f (X, P) + h(X, P), where X is the matrix of the binary variables xij and P is the
matrix of variable pij for the allocated transmitted time in a unit time. By relaxing the binary variable
xij in Γ(X, P) to the variable with range [0, 1], we have the following new relaxed problem which we
refer to as the R-BCMA problem:

min ∑
i∈U

∑
j∈V

xijbij pij + ∑
i∈U

∑
j∈V

xij

√
bij p2

ij

s.t. ∑
j∈V

xijbij pij ≤ Ci, ∀i ∈ U (8)

∑
i∈U

xij ≤ 1, ∀j ∈ V (9)

∑
i∈U

xijbij pij ≥ bj, ∀j ∈ V (10)

xij ∈ [0, 1], ∀i ∈ U, j ∈ V (11)

pij ∈ [0, 1], ∀i ∈ U, j ∈ V (12)

In the R-BCMA problem, the objective function and the constraints in Equations (8) and (10)
are convex and other constraints are linear. The R-BCMA problem is a typical convex optimization
problem which could be solved by with the desired precision in polynomial time by corresponding
algorithms [28,29], for example, interior-point methods [28].

With the new additional objective function h(X, P) in the R-BCMA problem, we show that the
integrality gap induced by the relaxation is reduced to a constant bound of 2.

Lemma 1. Let (X?, P?) and (X̃, P̃) be the optimal solutions to the original BCMA problem and its relaxed
R-BCMA problem, respectively. Then, Γ(X̃, P̃) ≤ 2 f (X?, P?) .

Proof. Since (X?, P?) is the optimal solution to the original BCMA problem, (X?, P?) is also a feasible
solution to the its relaxed R-BCMA problem. Note that the new added function h(X, P) does not affect
the feasibility of (X?, P?) to the R-BCA problem. Therefore, we have Γ(X̃, P̃) ≤ f (X?, P?) + h(X?, P?),
since R-BCA problem is a minimization optimization problem. According the definitions of functions
f (X, P) and h(X, P), we have h(X?, P?) ≤ f (X?, P?), since pij ∈ [0, 1] and bij ≥ 1. Thus, Γ(X̃, P̃) ≤
f (X?, P?) + h(X?, P?) ≤ f (X?, P?) + f (X?, P?) = 2 f (X?, P?).

4.2. Obtaining Integral Solution by Rounding

Although the added objective function h(X, P) reduces the integrality gap, the association result
X indicating the pairs between user devices and APs is fractional, i.e., {0 ≤ xij ≤ 1|xij ∈ X}. In this
subsection, we adopt the rounding technique [25] to achieve the integral association. The idea is to
create a bipartite graph based on the resulting X with a fractional association and then find a minimum



Sensors 2018, 18, 4104 7 of 16

total bandwidth matching. The resulting matching corresponds to an integral solution. Details are
illustrated as follows.

First, we construct a bipartite graph G, which is defined in Definition 3.

Definition 3 (Bipartite Graph G for Rounding). Given the fractional solution X̃ and P̃ of R-BCMA problem,
a bipartite graph G = (L, R, E,W , C) for rounding is constructed by the following steps:

(1) For each device j ∈ V, create a corresponding vertex vj ∈ R in G.
(2) For each AP i ∈ U, let ki = d∑j xije. Create ki vertices in L, i.e., L = {uiq|i ∈ [1, m], q ∈ [1, ki]}.
(3) If ∑j xij ≤ 1, there is only one vertex ui1 for AP node i. Create edge (ui1, vj) in E and set its weight

w(ui1, vj) = xij and cost c(ui1, vj) = bij pij.

(4) If ∑j xij ≥ 1, ∀q ∈ [1, ki− 1], let {jq|q = 1, 2, · · · , ki− 1} be the minimum index such that ∑
jq
j=1 xij ≥ q.

For convenience, we define j0 = 0. Create edges {(uiq, vj)|q ∈ [1, ki − 1], j ∈ [jq−1 + 1, jq − 1]} in E.
Assign its weight w(uiq, vj) = xij and cost c(uiq, vj) = bij pij.

(5) Create edge (uiq, vjq) in E and assign its weight w(uiq, vjq) = 1− ∑
jq−1
j=jq−1+1 w(uiq, vj). Create edge

(ui(q+1), vjq) ∈ E and assign its weight w(ui(q+1), vjq) = xijq − w(uiq, vjq) = ∑
jq
j=1 xij − q and cost

c(ui(q+1), vjq) = bijq pijq .
(6) For q = ki and j ∈ (jki−1, jki

], create edge (uiq, vj) and assign its weight w(uiq, vj) = xij and cost
c(uiq, vj) = bij pij.

Note that the weight and the cost for each edge in the construction of G are also assigned. From the
above steps, each AP i actually corresponds to ki nodes in the bipartite graph G. For each corresponding
node uiq, some properties of G are described in as follows.

Property 1. For each of AP i’s corresponding node uiq ∈ G (q = 1, 2, · · · , ki − 1), the total weight of all its

incident edges is equal to 1, i.e., ∑
jq
j=jq−1+1 w(uiq, vj) = 1.

Proof. Since {jq|q = 1, 2, · · · , ki − 1} is the minimum index such that ∑
jq
j=1 xij ≥ q, we have

∑
jq−1
j=jq−1+1 xij ≤ 1. In step 4, for each uiq and j ∈ [jq−1 + 1, jq − 1], the xij is assigned to (uiq, vj).

In step 5, the value w(uiq, vjq) = 1−∑
jq−1
j=jq−1+1 w(uiq, vj) is assigned. This property follows.

Property 2. For each of AP i’s corresponding node uiki
, the total weight of all its incident edges

∑
jki
j=jki

−1 w(uiki
, vj) ≤ 1.

Proof. In step 6 of the construction of G, it constructs the edges for the last corresponding node uiki
for

each AP i. Since ki = d∑j xije and {jq|q = 1, 2, · · · , ki − 1} is the minimum index such that ∑
jq
j xij ≥ q,

we have ∑
jki
j=jki−1

xij ≤ 1. According to step 5, w(uiki
, jk−1) < xijk−1

. According to step 6, the weight of

incident edges {w(uiki
, vj) = xij|j ∈ (jki−1, jki

]}. Thus this property is proved.
Step 3 considers the case that ∑i xij ≤ 1, then their is only one corresponding node ui1 for AP i.

According to the weight assignment in this step, this property still follows.

Second, we find the minimum cost matching M on the constructed bipartite graph G.
The resulting matching M corresponds to an AP-device association solution. That is, for each edge
(uiq, vj) ∈ M, let device j associate AP i.

4.3. Algorithm Analysis

The algorithm for the BCMA problem is summarized in Algorithm 1, which is referred to as the
RAA algorithm.
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Algorithm 1 Rounding Algorithm for Association (RAA)

1: Solve the R-BCMA problem to obtain the resulting matrices X̃ = {xij|i ∈ U, j ∈ V} and P̃ =
{pij|i ∈ U, j ∈ V}

2: Construct the graph G with X̃ and P̃ by Definition 3.
3: Apply minimum cost flow algorithm [30] to find a maximum matchingM with minimum cost on

graph G.
4: Each edge in (uiq, vj) ∈ M corresponds to an association between AP i and device j, i.e., x̂(i, j) = 1,

otherwise x̂(i, j) = 0. Let matrix X̂ = {x̂(i, j) = 1|i ∈ U, j ∈ V} denote the final integral association
result.

5: Return X̂.

Let f (X̂, P̃) be the final result for BCMA problem. Next, we prove the approximation ratio of the
RAA algorithm.

Lemma 2. Let AP r be the AP which is associated with device j in the final solution X̂, i.e., x̂(r, j) ∈ X̂.
Let (urq, vj) be the edge corresponding to x̂(i, j) = 1 inM. Then, ∀j ∈ V, c(urq, vj) is the minimum cost
among all costs between device j and any other AP i, i ∈ U ∩ {i 6= r}.

Proof. For the device j, the case of xij = 1 for an AP node i: From steps 4 and 5 in the construction of
G, there may be more than one edge incident to device j from nodes uiq, i.e., ∑q x(uiq, j) = 1. However,
for the device j and AP node i, the cost c(uiq, vj) of edges incident to device j from nodes uiq, q ∈ [1, ki],
are all equal to bij pij. Since one of the edges incident to node vj must be selected into the resulting
matchingM. Thus the lemma holds.

For the device j, the case of ∑i xij = 1 and xij < 1: Since the matching with minimum cost is
selected on graph G, then for each device j, only one edge incident to node vj is selected in the final
matchingM. Assume this selected edge is (urq, vj) on G. We argue that this edge (urq, vj) has the
minimum cost among all costs between between device j and any other AP i, i ∈ U ∩ i 6= r. Assume
this edge (urq, vj) does not have the minimum cost. Then M must not be the matching with the
minimum cost, since we can replace the edge (urq, vj) with the edge with minimum cost between
device j and any other AP i, i ∈ U ∩ i 6= r and obtain a matchingM′ with less cost. This contradicts
with the fact thatM is the matching with the minimum cost. Thus the lemma holds.

Lemma 3. ∑i ∑j x̂ijbij pij ≤ ∑i ∑j x̃ijbij pij

Proof. For the device j, consider the first case that x̃rj = 1 for an AP node r: From steps 4 and 5 in the
construction of G, we can see at most two edges incident to device j from nodes urq ∈ L on graph G.
Note that according to the construction steps, we have ∃r∃q, ∑r ∑q w(urq, vj) = x̃rj = 1 for the device
j. Let the E1

j = {(urq, vj)|∑r ∑q w(urq, vj) = 1, ∃r∃q, } be the set of at most two such edges. For the

device j and its incident AP nodes urq, the cost c(urq, vj) of the edges in E1
j are the same which is equal

to brj prj. Thus, for the device j, since ∑r ∑q x̃(urq, vj) = 1, we have

∑
r

∑
q

x̃(urq, vj) ∗ brj prj = brj prj (13)

Note that one of the edges in E1
j must be selected into the resulting matchingM, otherwiseM is

not a maximum matching with minimum cost. For the device j, then we have ∑i x̂(i, j)bij pij = brj prj,
since x̂(i, j) = 1. Then, for the case that x̃(r, j) = 1, we have the lemma proved.

For the device j, consider the second case that ∑i x̃ij = 1, i.e., there are more than one AP nodes
which are fractionally associated with the device j. Let the E2

j = {(uiq, vj)|∑i ∑q w(uiq, vj) = 1} be the
set of the edges incident to the device node vj in G.
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Also note that there must be exactly one edge in E2
j which is selected into the the resulting

matchingM. Let this selected edge be (urq, vj). Then for the device j, its final cost is

f j(X̂, P̃) = x̂rjc(urq, vj) = c(urq, vj) (14)

The fractional cost for the device j before rounding procedure is

f j(X̃, P̃) = ∑
q

w(urq, vj)c(urq, vj) +
i=|U|

∑
i 6=r,

∑
q′

w(uiq′ , vj)c(uiq′ , vj), ∃r, q ∈ [1, kr], q′ ∈ [1, ki] (15)

Since

∑
q

w(urq, vj) +
i=|U|

∑
i 6=r,

∑
q′

w(uiq′ , vj) = 1, (16)

we have the following:

f j(X̃, P̃)− f j(X̂, P̃) = (∑
q

w(urq, vj)− 1)c(urq, vj) +
i=|U|

∑
i 6=r,

∑
q′

w(uiq′ , vj)c(uiq′ , vj)

= (−
i=|U|

∑
i 6=r,

∑
q′

w(uiq′ , vj))c(urq, vj) +
i=|U|

∑
i 6=r,

∑
q′

w(uiq′ , vj)c(uiq′ , vj)

(17)

According to Lemma 2, we have

c(urq, vj) ≤ c(uiq′ , vj), ∀i ∈ U ∩ {i 6= r} (18)

Then for each j, we have

f j(X̃, P̃)− f j(X̂, P̃) ≥ 0 (19)

Then,

∑
j

f j(X̃, P̃) ≥∑
j

f j(X̂, P̃)⇒∑
i

∑
j

x̃ijbij pij ≥∑
i

∑
j

x̂ijbij pij (20)

That is f (X̃, P̃) ≥ f (X̂, P̃).

Theorem 1. The approximation ratio of the proposed RAA algorithm is 2.

Proof. According to lemma 1, we have Γ(X̃, P̃) ≤ 2 f (X?, P?). By lemma 3, we have f (X̂, P̃) ≤
Γ(X̃, P̃) ≤ 2 f (X?, P?). Since f (X̂, P̃) is the solution of our proposed RAA algorithm and f (X?, P?) is
the optimal solution of the BCMA problem, the theorem is proved.

Theorem 2. The time complexity of the proposed RAA algorithm is O(m2n2log(n)).

Proof. The time complexity for our RAA algorithm can be analyzed as follows. Its overall complexity
is composed by three parts, which are the complexity of solving the relaxed BCMA problem,
the complexity of constructing bipartite graph and computing the minimum cost value over the
constructed bipartite graph. The complexity for solving the relaxed BCMA optimization problem
is determined by the problem size which is O(m2n2). Thus, the complexity for this part is√

m2n2ln(1/ε) [29]. The bipartite graph construction needs O(mn2) time complexity, since each
corresponding AP node may construct up to n auxiliary nodes. The applied min-cost algorithm for
the minimum cost value computation needs time complexity O(m2n2log(n)) using minimum-mean
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cost cycle canceling algorithm [30]. Thus, the overall time complexity is dominated by the min-cost
algorithm which is O(m2n2log(n)).

5. Performance Evaluation

We investigated the performance of our algorithm RAA for the BCMA problem. Since there is no
similar work on the revenue minimization with considering users’ bandwidth demands, we utilized
the network flow algorithm in [3] (referred as NetFlow algorithm) as the benchmark to demonstrate the
superiority of our algorithm. We compared our RAA algorithm with NetFlow algorithm in terms of
minimum cost ( referred as min-cost) which is the value of our objective function. In addition, we show
the corresponding throughput comparison results when the min-cost results are achieved. Moreover,
due to bandwidth capacity constraint, some mobile users may not be able to be associated with any
AP. We utilized user acceptance ratio to denote the percentage of users who have been associated.
To further show the superiority of our algorithm, we also compared our RAA algorithm with NetFlow
algorithm in the aspect of the user acceptance ratio.

Our simulated network consisted of 10 APs placed on a 20 × 20 grid. The AP’s coverage was
set to 10 m. For each generated instance, all user devices were randomly generated within the grid.
Similar to [22], we set the transmission power ti of each AP i as 20 dBm, the shadowing factor α as 4
and the noise power N0 as −80 dBm. The user bandwidth demand bj was randomly generated within
the range [10, 20] for each user j. AP i’s bandwidth capacity Ci was randomly generated within the
range [40, 100]. For simplicity, we set the unit cost for the bandwidth w as 1.

5.1. Performance of the RAA Algorithm for the BCMA Problem

To compare the performance of the algorithm, we first ran both RAA and NetFlow algorithms 10
times under a random deployment with a fixed number of users. Figure 2a,b presents the min-cost
result for both algorithms when the number of m users was fixed at 40 and 50, respectively. As shown
in Figure 2a,b, our RAA algorithm always performed much better than that of NetFlow algorithm.
Moreover, our algorithm only generated about 1/7 min-cost of the NetFlow algorithm on average
for the total 10 rounds. Figure 3a,b presents the corresponding throughput result for both algorithms
when the number of users was fixed with 40 and 50 respectively. The throughput comparison result
shown in Figure 3a,b is consistent with the min-cost result, since less throughput leads to less cost.
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Figure 2. MinCost comparison for 10 rounds.

Figure 4a,b presents the user acceptance ratio results for both algorithms when the number of
m users was fixed with 40 and 50, respectively. When the number of users was 40, we can see in
Figure 4a that our RAA algorithm achieved 100% user acceptance ratio in eight rounds and 99% in
the remaining two rounds. When the number of users was 50, Figure 4b shows that our algorithm
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achieved almost 100% user acceptance ratio in every round, while the NetFlow algorithm could only
achieve around 80% user acceptance ratio. Overall, our algorithm performed much better in the aspect
of user acceptance ratio.
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Figure 3. Throughput comparison for 10 rounds.
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Figure 4. User acceptance ratio comparison for 10 rounds.

5.2. Impact of the Number of Users

We studied the impact of the number of users for both algorithms. We first fixed the number
of APs as 10 and gradually increased the number of user devices from 5 to 60 to compare the total
min-cost and user acceptance ratio between two algorithms. For each load, we ran both algorithms
10 times with the fixed number of mobile users to get the average results. Figure 5 depicts the result
of the average total min-cost for both algorithms as the number of users varies from 10 to 60 with an
increment of 10. When the number of users was 40, the average min-cost of the NetFlow algorithm
was 71.35, while it was only 6.29 for our RAA algorithm. From the curves in Figure 5, we can see that
the cost of our algorithm gradually increased while the cost of the NetFlow algorithm grew sharply
when the number of users increased.

Figure 6 presents how the average user acceptance ratio produced by RAA and NetFlow
algorithms change when the number of users increased from 5 to 60 with an increment of 10. As the
number of users increased, the user acceptance ratio from both algorithms decreased. This result is
consistent with the expectation that there will be some users that will not be able to be associated since
the capacities of APs are limited. However, from the result of Figure 6, our RAA algorithm accepted
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many more users as the number of users increases. In addition, our algorithm’s user acceptance
ratio dropped very slowly as the number of users increases, while the NetFlow algorithm’s result
droped sharply. When the number of users reached 60, the user acceptance ratio from NetFlow
algorithm has dropped to 65% while the RAA algorithm’s ratio could still be 95%. Figure 7 presents
the throughput generated by both algorithms. This result also shows that our algorithm produced
much less throughput which induces the less cost as shown in Figure 5.
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Figure 5. Mincost for varied numbers of users with 10 APs.
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Figure 6. User acceptance ratio for varied numbers of users with 10 APs.
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Figure 7. Throughput for varied numbers of users with 10 APs.

To further validate the above observation, we also checked the performance of both algorithms
when the number of APs was 20 with increasing users from 10 to 60. The min-cost, throughput and
user acceptance ratio are shown in Figures 8–10, respectively. From these results, we can conclude that
the same observations hold.
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Figure 8. Mincost for varied numbers of users with 20 APs.
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Figure 9. Throughput for varied numbers of users with 20 APs.
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Figure 10. User acceptance ratio for varied numbers of users with 20 APs.

We also tested the performance of our algorithm when the users were non-uniformly distributed
to simulate the hotspot scenario. Figure 11 presents the min-cost results for both algorithms with 10
APs when the users were generated under a non-uniform distribution. From this result we can see
that our algorithm maintained the very low cost even with the increasing number of users, while the
min-cost of the NetFlow algorithm increased very sharply. This result shows that our algorithm could
always achieve a small cost under the non-uniform user distribution. Figures 12 and 13 shows the
min-cost and user acceptance ratio results for both algorithms with 10 APs when the users were
generated under a non-uniformly distribution, respectively. Figure 12 tells us that our algorithm
always achieved much less throughput than that of NetFlow algorithm. When the number of users
was 60, our algorithm still achieved an 85% acceptance ratio while the NetFlow algorithm could only
achieve 58%. Figure 13 shows that user acceptance ratio of our algorithm could be maintained at a
high level even when the number of users increased under the non-uniform distribution.
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Figure 11. Mincost with non-uniform distribution.
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Figure 12. Throughput with non-uniform distribution.
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Figure 13. User acceptance ratio with non-uniform distribution.

6. Conclusions and Future Work

We have formulated the bandwidth cost minimization problem of scheduling the user association
for E-WLANs. To solve this problem, we first introduced an additional objective function to bound the
integer gap caused by the integer relaxation. Then we developed an algorithm based on the rounding
technique and prove the approximation ratio of the proposed algorithm. Our algorithm achieves
the constant approximation ratio for the proposed bandwidth cost minimization problem. Extensive
simulations were carried out to further validate the superiority of our proposed algorithm.

We focused on the association with user bandwidth demands under the static settings in this
study. As a future research direction, dynamic user demands and behaviors would be taken into
consideration. Specifically, we will extend the current model and algorithms to be adaptive to dynamic
scenarios. In addition, we will explore non-stable network conditions, e.g, connectivity states and
available bandwidth. We plan to apply nonlinear transformation techniques, e.g., discretization and
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regularization, or convex sum-of-squares relaxations followed by semi-definite programming method
to address the non-convex constraints induced by non-stable network factors.
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