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Abstract: Model-based image reconstruction has improved contrast and spatial resolution in imaging
applications such as magnetic resonance imaging and emission computed tomography. However,
these methods have not succeeded in pulse-echo applications like ultrasound imaging due to the
typical assumption of a finite grid of possible scatterer locations in a medium–an assumption that
does not reflect the continuous nature of real world objects and creates a problem known as off-grid
deviation. To cope with this problem, we present a method of dictionary expansion and constrained
reconstruction that approximates the continuous manifold of all possible scatterer locations within a
region of interest. The expanded dictionary is created using a highly coherent sampling of the region
of interest, followed by a rank reduction procedure. We develop a greedy algorithm, based on the
Orthogonal Matching Pursuit, that uses a correlation-based non-convex constraint set that allows
for the division of the region of interest into cells of any size. To evaluate the performance of
the method, we present results of two-dimensional ultrasound imaging with simulated data in
a nondestructive testing application. Our method succeeds in the reconstructions of sparse images
from noisy measurements, providing higher accuracy than previous approaches based on regular
discrete models.

Keywords: ultrasound; nondestructive testing; manifolds; inverse problems; dictionary; rank reduction

1. Introduction

Model-based image reconstruction methods provided important advances to imaging techniques
such as magnetic resonance imaging (MRI) [1] and emission computed tomography (ECT) [2] in
the last few decades. These methods rely on a known model that results in the captured signal
being represented by a sum of N coefficient-weighted responses. These responses are usually point
spread functions (PSF), and coefficients are usually intensities of pixels at the modelled locations.
Then, by using the discrete model, a vector of acquired data and a regression algorithm, the intensity
of each pixel is determined [3]. The use of model-based techniques in ultrasound imaging relies on
the assumption that all reflectors (or scatterers) are located on any of a finite grid of N modelled
positions [4].

Real-world inspected objects easily break this assumption and many scatterers may be situated
off-grid. Many previous studies with model-based algorithms for ultrasound imaging [4–11] have
reported that resolution and contrast are substantially improved in comparison to delay-and-sum
(DAS) algorithms when data comes from simulations with scatterers located strictly on a modelled
grid. However, images are corrupted by artifacts when the grid is not respected, which is typical
in data acquired from real measurements. Consequently, DAS beamforming algorithms remain as
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state-of-the-art for ultrasound imaging, despite having well understood physical limitations regarding
spatial resolution [12,13].

2. Model-Based Imaging and Regularization

Let RM be the space of the data observed through an acquisition process. A single, unity
amplitude event located at position τ ∈ RD causes the discrete acquired signal y(τ) ∈ RM,
known as the PSF. In ultrasound imaging, the event denotes a point-like reflexivity (also called
a scatterer) [14,15], as represented in Figure 1, and D typically equals 2 as the reflexivity is being
mapped over a two-dimensional plane. The variation of the set of D parameters τ within a region of
interest describes a D-dimensional manifold

M := {y(τ) : τ ∈ ROI} (1)

of all possible PSFs on RM. We will consider the two-dimensional case, where τ = [x, z]T (being ·T the
transpose) are the lateral and axial spatial dimensions, respectively.

ACQUISITION

ROI

ROI

ACQUISITION

Figure 1. Acquisition of the point spread function (PSF). For each position (x, z) of the unity amplitude
scatterer within the region of interest (ROI) (left side), an M-sample response y(x, z) ∈ RM (arranged
as an M-pixel image on right side) is generated by the acquisition model. The set of all possible PSFs
within the region of interest form a manifoldM onto the data space.

An acquired signal c ∈ RM is assumed to be composed by a sum of N events, or N samples,
from the continuous PSF manifold

c =
N

∑
n=1

vny(xn, zn) + w, (2)

where vn is the amplitude of the n-th event and the vector w ∈ RM accounts for acquisition noise,
which we will assume to be Gaussian white noise with variance σ2.

In a pulse-echo image with N pixels, vn in Equation (2) encodes the reflexivity of the n-th scatterer,
located at position (xn, zn), and is represented as the brightness of the corresponding pixel. This implies
sampling the parameters (x, z) on N possible scatterer locations (or pixels).

Considering N coordinate pairs (xn, zn), we make hn = y(xn, zn), n = 1, . . . , N, and define the
model matrix H = [h1, . . . , hN ] ∈ RM×N . Then, Equation (2) can be written in compact form as

c = Hv + w, (3)

where v = [v1, . . . , vN ]
T is the vector of scatterer amplitudes. This model has been used in

B-mode (two-dimensional) [4–9], A-mode (one-dimensional) [16,17], and three-dimensional [18]
ultrasound imaging.
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The reconstruction of the amplitudes vector v from a given acquisition c in Equation (3) is based
on the minimization of a cost function, such as the least squares (LS) problem

v̂ = arg min
v
‖c−Hv‖2

2, (4)

which is linear and can be solved by well-known methods [19].
However, real-world matrices are often ill-conditioned, which causes artifacts on the reconstructed

images in the presence of noise [20], even when all events are on grid. In ultrasound imaging,
this problem has been addressed with linear regularization methods such as Truncated SVD (TSVD) [7]
and Tikhonov regularizarion [5,6,8].

Sparsity-promoting regularization penalties such as `p-(pseudo)norm minimization with p ≤ 1
have shown successful results in ultrasound non-destructive testing (NDT), where the assumption of
sparsity in the space domain reflects the nature of discontinuities in observed materials [4,9,17,21].

Greedy algorithms effectively solve reconstruction problems where the cost function involves
the `0 pseudonorm. In [10], sparsity is induced in the solution by the assumption that the presence of
scatterers can be modelled by a Bernoulli process with a low value for the probability parameter.
The problem is then solved with a greedy algorithm called Multiple Most Likely Replacement
(MMLR) [22]. In [16], a Gabor dictionary is used in the reconstruction of thickness with a Matching
Pursuit (MP)-based algorithm that penalizes a relaxed support measure corresponding to the
`p-pseudonorm with 0 < p < 1.

3. Off-Grid Events and Dictionary Expansion

Aside from poor matrix conditioning, another problem known as off-grid deviation [23] limits
the applicability of inverse-problem-based approaches on signal and image reconstruction. Figure 2a
illustrates a grid of n = 9 modelled positions, represented by gray dots. As three events (represented
by black dots) are located on modelled positions, the corresponding data vector c can be synthesized
according to the acquisition models of Equations (2) and (3). The same does not hold when an off-grid
event (represented by a red dot) is added: attempts to reconstruct the locations and amplitudes for the
corresponding events may fail, causing artifacts and degradation on the reconstructed image.

Some formulations have been proposed for off-grid signal reconstruction, mainly within the
framework of Compressive Sensing. In [24], the acquisition model considers a perturbation matrix
summed column-wise to the (here referred to as H) regular discrete model matrix. The formulation
is applied to direction-of-arrival (DOA) estimation using the derivatives of the columns of H with
respect to the sampled parameters as perturbation matrix. In [25], an adaptation of the Orthogonal
Matching Pursuit (OMP) algorithm is proposed where the columns of the model matrix are iteratively
updated in order to accommodate variations in the parameters of the PSFs. The algorithm is applied
to pulse-Doppler radar. In [26], the problem of continuous line spectral estimation is approached with
an algorithm based on the atomic norm minimization, which is solved via semi-definite programming.
Similarly to the `1 minimization, the atomic norm minimization promotes sparse solutions. In [27],
the regression problem uses a Total Least Squares (TLS) penalization with sparsity constraints. The
motivation is that the “errors-in-variables” assumption of the TLS regression might be able to capture
the mismatch between the model matrix and the acquired data. The method is then applied to cognitive
radio sensing and DOA estimation.

Our approach relies on the framework of dictionary expansion. Each column hn of the discrete
model H of Equation (3) is replaced by K columns [b(n)

1 , . . . , b(n)
K ] = B(n) ∈ R(M×K) so that a data

vector c resulting from the acquisition of an event located in the neighborhood of an n-th modelled
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position can be approximated by some linear combination of B(n), i.e., by B(n)x(n), where x(n) ∈ RK.
As a result, an arbitrarily acquired c might be approximated as

c ≈
N

∑
n=1

B(n)x(n). (5)

In the two-dimensional case, the neighborhood of the n-position is the region within
(xn ± 0.5∆x, zn ± 0.5∆z). This is represented in Figure 2b, where the nine modelled locations give place
to nine neighborhoods (local ROIs).

Two forms of approximation are proposed in [23] for one-dimensional linear time-invariant (LTI)
problems. The first one is the Taylor approximation, which relies on the fact that small shifts on a
waveform can be well approximated by its Taylor expansion, i.e., by linearly combining the original
waveform and its time derivatives. In this case, the column b(n)

1 is identical to the original atom hn

and the columns b(n)
k for k > 1 correspond to its (k− 1)-th time derivatives. The second is the Polar

approximation, which is motivated by the fact that the continuous manifoldM of an LTI system lies
over a hypersphere on the M-dimensional data space [23]. The PSFs of the neighborhood of each n-th
modelled position are approximated by an arc of a circle and the the column hn is replaced by three
normal vectors with the directions of the center (b(n)

1 ) and the two trigonometric components (b(n)
2

and b(n)
3 ) of the circle. While the Taylor approximation can be done for any order K, in the Polar case K

always equals 3.
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Figure 2. (a) an illustrative discrete acquisition model with N = 3 × 3 = 9 modelled positions,
represented by the gray dots. The black dots represent three well located events and the red dot
represents an off-grid event. Because of the latter, the corresponding acquisition data vector c cannot
be synthesized as a linear combination of the columns of the discrete model matrix H; (b) the region
of interest (ROI) is divided into N local ROIs with area ∆x × ∆z; (c) each local ROI is sampled with a
fine grid with lateral and axial distances δx and δz; (d) on the space RM of acquired data, the set of all
possible point spread function (PSFs) within the ROI form a manifoldM. The gray dots are the PSFs
of the modelled positions of Figure 2a. The black dots are on the grid, while the red dot is off-grid;
(e) as the ROI is divided into N local ROIs (Figure 2b), the manifold is divided into N corresponding
local manifolds; (f) the acquisitions over the fine grid on each n-th local ROI create R samples from the
corresponding local manifold. Those samples compose matrix M(n) ∈ RM×R.
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An extension of the Basis Pursuit (BP) formulation [28], referred to as Continuous Basis Pursuit
(CBP), is proposed in [23] for the recovery of the expanded coefficients {x(n)}1≤n≤N . For the sake of
conciseness, from this point on, we will represent sets {x(n)}1≤n≤N simply as {x(n)}. The formulation
of CBP is given by

{x̂(n)} = arg min
{x(n)}

1
2σ2 ‖c−

N

∑
n=1

B(n)x(n)‖2
2 + λ

N

∑
n=1
|x(n)1 |, (6a)

s.t. {x(n)} ∈ C, (6b)

where the constraint set C prevents recovered expanded coefficients from having any arbitrary values
that do not represent actual PSFs. The definition of the convex set C varies according to the type of
approximation used. The `1 norm of a vector composed by the first element x(n)1 of each K-tuple x(n) is
used to obtain sparse solutions.

In [29], a low-rank approximation of the PSFs within the neighborhood of each n-th modelled
position is performed by means of a Singular Value Decomposition (SVD). The continuous manifold
drawn by τ in a local ROI is sampled with a very fine grid of R locations, generating R columns that
form a matrix M(n) ∈ RM×R, as represented in Figure 2f. Each matrix M(n) then undergoes an SVD
decomposition and the K first left singular vectors compose the corresponding expanded coefficients
B(n) for the n-th local ROI.

An adaptation of the OMP [30] algorithm, referred to as Continuous OMP (COMP), is also
presented in [29]. It aims at solving the `2 − `0 problem

{x̂(n)} = arg min
{x(n)}

‖(x(1)1 , . . . , x(N)
1 )‖0, (7a)

s.t.

{
‖c−∑N

n=1 B(n)x(n)‖2
2 ≤ ε

{x(n)} ∈ C

}
, (7b)

where the symbol ‖ · ‖0 denotes the `0 pseudonorm, i.e., the cardinality (number of nonzero elements)
of a vector.

In [31], a minimize–maximum (Minimax) formulation is presented for the definition of the
expanded set {B(n)}. The resulting approximation minimizes the maximum residual within the
representation of each n-th local ROI. It is motivated by the assumption that the off-grid deviation
from a discrete grid follows a uniform distribution; therefore, the off-grid error should be as constant
as possible, not privileging any distance from originally modelled positions.

4. Rank-K Approximation of Local Manifolds

Our criterion to determine B(n) is based on the SVD expansion, which has been proposed for
one-dimensional, shift-invariant problems [29]. The extension to D-dimensional problems relies mainly
on the first step of the process, which is a fine sampling of each local manifoldMn: here, the regular,
fine grid is defined for all D dimensions. This extension is facilitated by the fact that the formulation
is non-parametric, i.e., the deviation from originally modelled positions is not mapped onto any
independent variable and does not play any role on the definition on the bases. On the other hand, in
the Taylor, Polar [23] and Minimax [31] expansions, the off-grid deviation is a parameter from which
the elements of the expanded dictionary are derived. Consequently, except for the Taylor expansion,
their extensions to two or higher dimensions are not promptly defined.

4.1. Highly Coherent Discrete Local Manifolds

Figure 2d shows an illustrative example of a D-manifold embedded in an M-dimensional data
space. In this case, D = 2 and M = 3. The nine D-dimensional modelled positions shown in Figure 2a
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correspond here to nine samples of the M-dimensional manifold, as well represented by gray dots in
Figure 2d. The red dot corresponds to the data caused by the off-grid reflector from Figure 2a.

Figure 2e shows the same manifold as Figure 2d, but, instead of having N modelled positions,
it divides the manifold into N local manifolds

Mn := {y(x, z) : x ∈ [xn − 0.5∆x, xn + 0.5∆x], z ∈ [zn − 0.5∆z, zn + 0.5∆z]}, (8)

which correspond to the N local ROIs of Figure 2b.
We start by performing a fine sampling on each local manifoldMn, as represented in Figure 2f.

In practice, this means acquiring the PSF of a set of points from a fine grid of R points defined for
each local ROI (Figure 2c). The result is a matrix M(n) ∈ RM×R, whose columns are local manifold
samples. The finer this grid is, the better the continuous local manifold is represented by the discrete
dataset M(n). For simplicity of notation, we keep regular spacing δx and δz for the lateral and axial
directions, respectively. The number of sampled points is R = Rx × Rz, where Rx and Rz are the
number of locations defined on the lateral and axial directions, respectively. In the example of Figure 2c,
Rx = Rz = 7, thus R = 49.

Our sampling includes the boundaries of the local ROIs. For this reason, the relation between the
spacing and the number of locations on the lateral direction is given by

δx =
∆x

Rx − 1
(9)

and the same holds for the axial direction.

4.2. SVD Expansion

For each matrix M(n), a rank-K approximation M̃(n) ∈ RM×R is to be defined and also factorized
in the form

M̃(n) = B(n)F(n), (10)

where B(n) is an orthonormal basis matrix and F(n) ∈ RK×R modulates B(n) to form M̃(n).
Any approximation creates a residual matrix R(n) ∈ RM×R defined by the difference

R(n) = M(n) − B(n)F(n). (11)

The SVD expansion is defined by the minimization of the Frobenius norm [19] of R(n):

B̂(n), F̂(n) = arg min
B(n),F(n)

‖M(n) − B(n)F(n)‖F. (12)

According to the Eckart–Young theorem, a solution for Equation (12) is achieved by a truncated
SVD [32]. Consider the SVD of M

M(n) = UΣVT , (13)

where U ∈ RM×R is the unitary matrix of left singular vectors, Σ ∈ RR×R is the diagonal matrix of
singular values and V ∈ RN×R is the unitary matrix of right singular vectors [19]. The rank-K SVD
truncation is obtained by using only the K largest singular values from Σ and the K corresponding
vectors from U and V. This low rank approximation is given by

M̃(n) = ŨΣ̃ṼT , (14)

where Ũ ∈ RM×K, Σ̃ ∈ RK×K and Ṽ ∈ RR×K.
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The K columns of Ũ form an orthonormal basis for M̃(n) and composes the expanded set B(n),
while the product Σ̃ṼT compose the modulating matrix F(n):

B(n) = Ũ, (15a)

F(n) = Σ̃ṼT . (15b)

Naturally, large values for K mean more degrees of freedom in the approximation, which reduces
the residuals. Figure 3a shows how the value of K affects the Frobenius norm of R(n) for the centermost
local ROI of the acquisition set presented in Section 6.1. The values of the 35 first singular values σk are
shown in Figure 3b. The 75 individual residual norms ‖ri‖ for K = 5, 10 and 20 are shown in Figure 3c.
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Figure 3. Approximation metrics for the centermost local ROI of the ultrasound acquisition set
described in Section 6.1, with R = 75 (Rx = 5 and Rz = 15). (a) Frobenius norm ‖R(n)‖F of the
residual matrix as a function of the order of approximation K; (b) 35 first singular values σk from

the singular value decomposition of M(n); (c) individual residual norms ‖r(n)i ‖2 (of columns of R(n)),
spatially arranged according to the corresponding positions on the local ROI. The three surfaces
correspond to K = 5 (top), K = 10 (middle) and K = 20 (bottom).

It shall be noted that the processes presented from Equation (12) to Equation (15b) have to be
independently performed for every n-th local ROI. Although the construction of expanded dictionaries
is computationally demanding, it is an offline procedure that is carried only once for each given
acquisition set.

5. Reconstruction Algorithm

5.1. Limitations of Conic Constraints

Two main algorithms were proposed to work with expanded dictionaries: the convex CBP [23]
and the greedy COMP [29]. The first one aims at solving the problem of Equation (6) while the second
attempts to solve the problem of Equation (7). A hybrid approach called Interpolating Band-excluded
Orthogonal Matching Pursuit (IBOMP) was also proposed and applied to frequency estimation (FE)
and time delay estimation (TDE) [33]. Basically, it performs a rough greedy estimation of the support
of the solution, followed by a refining convex optimization.

In order to implement a constraint set C, all the aforementioned algorithms have at least one
step involving a constrained convex optimization where the constraints define either first-order (SVD,
Minimax and Taylor) or second-order (Polar) cones. Figure 4a illustrates an example of a first-order
cone for K = 2. The black curved line represents the projection onto the basis B(n) of a continuous
one-dimensional PSF manifold. The R vectors that compose a local manifold matrix M(n), when
projected onto B(n), result in vectors f(n), represented by the dots, which compose the columns of
F(n). When a reconstruction is performed, the recovered coefficients set x(n) ∈ R2 for this n-th local
ROI is constrained to lie within a first-order cone, represented by the shadowed area (which extends
indefinitely to the right). This cone is defined by two linear constraints that impose an upper and
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a lower bound for the relation x(n)2 /x(n)1 , combined with a non-negativity constraint for the first

component x(n)1 . This constraint set aims to avoid arbitrary combinations for x(n) that do not represent
positively-weighted copies of actual manifold samples. The upper black dot defines the upper angle of
the cone, and is defined by the modulating matrix F(n) as maxi( f (n)2,i / f (n)1,i ), i.e., the maximum relation
between the first and second components found among the projections of M(n). Similarly, the lower
black dot is defined by mini( f (n)2,i / f (n)1,i ), and defines the lower angle of the cone. For higher orders of
K, such a cone is defined for all K− 1 relations between each k-th (k ≥ 2) component and the first one.
The resulting linear constraint set is defined as [29,31]

min
1≤i≤R

 f (n)k,i

f (n)1,i

 ≤ x(n)k

x(n)1

≤ max
1≤i≤R

 f (n)k,i

f (n)1,i

 , (16a)

f (n)1,i ≥ 0, (16b)

∀k ∈ {2, . . . , K}, n ∈ {1, 2, . . . , N}, (16c)

where f (n)k,i denotes the element on the k-th line and i-th column on F(n). The principle is similar for the
Polar expansion, though in that case the cones are of second order [23].

f (n)

f (n)
2

1

(a)

f (n)

f (n)
2

1

(b)

f (n)
1

2f (n)

(c)

Figure 4. (a) illustrative case of projection of local manifold samples M(n) on a basis B(n), for K = 2.
The curved line represents the projection of a continuous one-dimensional manifold, while the dots
represent the projection of the samples (columns of M(n)) on B(n). When ∆ is sufficiently small,

the projections have single-signed, relatively large values on the first component f (n)1 and smaller
values on the remaining components. In this case, the definition of a first-order cone (represented
by the shadowed region) is possible and can be used in the reconstruction algorithm combined with
a non-negativity constraint for the first component, ensuring that the recovered coefficients represent
weighted copies of the local manifold, rather than other arbitrary combinations. The upper and lower

angles of the cone depend on maxi( f (n)2,i / f (n)1,i ) and mini( f (n)2,i / f (n)1,i ), respectively; (b) as ∆ increases,
the angle of the cone may as well increase, making the constraint less effective, as a broader area is
allowed for the recovered coefficients f(n); (c) an example where the definition of a convex cone is no
longer possible. This imposes a limit on the definition of ∆.

Notice that the cone-based convex constraints assume that the projection of M(n) on the K
components of B(n) yields relatively large, positive, small-variance values for the first component
and small values for the remaining, yielding relatively small values for minimum and maximum
relations of Equation (16c). If this assumption is broken, the cone will span too large an area of the
right half-plane, i.e., it will constrain less, being less effective, as represented in Figure 4b. In some
cases, defining the the cone is not even possible, as depicted in Figure 4c.

Assuring a well behaved relation between the first and the remaining components, as shown in
Figure 4a, implies choosing considerably small values for ∆x and ∆z, which limits the applicability
of recovery algorithms based on conic constraints. For instance, on the simulated acquisition set of
Section 6.1, choosing ∆x = ∆z = 0.2 mm still causes the first component to have both positive and
negative values on certain local manifolds, which makes the CBP [23], COMP [29] and IBOMP [33]
algorithms not applicable.
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5.2. Non-Convex Constraints

Instead of using conic constraints, our algorithm attempts to constrain each K-tuple of recovered
coefficients x(n) to be similar to any column of the modulating matrix F(n). We translate “similarity” as
high correlation, as formalized in the non-convex constraint set(

max
1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖

)
≥ µc, ∀n ∈ {1, 2, . . . , N}, (17)

where 〈a, b〉 = aTb denotes the inner product of two vectors.
The minimum correlation parameter µc controls how similar to any of the manifold samples

on M(n) a recovered event must be. If a given x(n) passes the test of Equation (17), proving to be
sufficiently similar to some i-th modulating vector f(n)i , then the approximation

m̃(n)
i
‖x(n)‖
‖f(n)i ‖

= B(n)f(n)i
‖x(n)‖
‖f(n)i ‖

≈ B(n)x(n) (18)

is assumed and the product B(n)x(n) is considered as a valid weighted copy of a PSF within the n-th
local ROI, rather than an arbitrary combination of the n-th basis vectors. This constraint is imposed by
our greedy algorithm on the decision of which expanded set B(n) will be added to the reconstruction
problem at each iteration.

5.3. OMP for Expanded Dictionaries

The proposed algorithm, summarized in Algorithm 1, is an extension of the OMP algorithm,
referred to as OMP for Expanded Dictionaries (OMPED). It attempts to solve a problem similar to
Equation (7) with the non-convex constraint set C defined in Equation (17). The stop criterion is based
on the residual yielded by the LS solution with a given cardinality, yet, instead of comparing the
residual to a fixed parameter ε, we compare it to an estimate of the current residual that takes into
account the expected acquisition noise and the estimated residuals resulting from the reduced-rank
approximation.

Algorithm 1 OMP for Expanded Dictionaries (OMPED)

Input: {B(n)}, {F(n)}, {R(n)}, c, enoise, µc, ∆µ

1: S← ∅
2: e← c
3: repeat

4: j← Compute from Equation (21)
5: while j = ∅ do

6: µc ← µc − ∆µ

7: j← Compute from Equation (21)
8: end while
9: S← S

⋃{j}
10: {x(n)} ← Compute from Equation (22b)
11: e← Compute from Equation (23)
12: erank ← Compute from Equation (24)
13: eest ← Compute from Equation (25)
14: until eest ≥ ‖e‖2 or SC = ∅
Output: S, {x(n)}n∈S
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The input parameter enoise contains the expected `2 norm of the acquisition noise. In practice,
this value can be obtained from acquisitions with samples of the inspected material known to have
neither discontinuities nor other sort of scatterers. For our simulations, we use the relation

e2
noise = ‖w‖2

2 ≈ Mσ2, (19)

which holds if the noise vector w contains white Gaussian noise with variance σ2. The approximation
of Equation (19) becomes an equality as M→ ∞. We assume the equality and use enoise =

√
Mσ2.

We define the support S of the solution, which is initialized as the empty set, and its complement
Sc = {1, . . . , N} \ S. The solution residual e ∈ RM is initialized with the vector of acquired data c on
line 2.

At each iteration, an index j ∈ Sc is added to S as we choose the expanded set B(j) that is capable
of causing the maximal decrease on the energy of the residual, as represented on the left side of
Equation (20). Since the columns of each B(n) are orthonormal, the identity

ĵ = arg min
j
‖e− B(j)B(j)T

e‖2 = arg max
j
‖B(j)T

e‖2 (20)

holds as a consequence of Parseval’s relation [34], which allows us to perform the simpler operation of

taking the norm of each product B(j)T
e.

This operation is a generalization of the measurement of maximum correlation on the original
OMP [30]. A constraint based on Equation (17) is imposed to prune candidates that do not accomplish
the minimum correlation required. The resulting criterion is formalized as

ĵ = arg max
j∈SC

∥∥∥B(j)T
e
∥∥∥

2
s.t. max

1≤i≤R

〈B(j)T
e, f(j)

i 〉

‖B(j)T
e‖‖f(j)

i ‖
≥ µc. (21)

The constraint in Equation (21) allows for the recovery of only positive-amplitude events. It can
be adapted to consider both positive and negative amplitudes by simply replacing the inner product

by its absolute value |〈B(j)T
e, f(j)

i 〉|.
The algorithm considers the case where no index meets the correlation criterion of Equation (21).

This case is treated from line 5 to line 8: while the problem of Equation (11) remains infeasible,
a decrease of ∆µ is made on the parameter µc and a new attempt to compute the index j is performed.

The support S is then updated to include the new index j (line 9) and is used to compute the
coefficients

{x̂(n)} = arg min
{x(n)}

‖c−
N

∑
n=1

B(n)x(n)‖2
2, (22a)

s.t. x(n) = 0, ∀n ∈ Sc, (22b)

where 0 ∈ RK is the zero vector. The updated residual is yielded as

e = c− ∑
n∈S

B(n)x(n). (23)

Were the manifold approximation exact, e in Equation (23) would be composed strictly of: (1) PSFs
located at local ROIs with the corresponding indices not yet added to the support S and (2) additive
noise. In that case, we could use the widespread stop criterion that compares ‖e‖2 to the expected noise
power. However, our residual estimate must take into account the rank-K approximation. This estimate
is computed on vector erank ∈ RM as



Sensors 2018, 18, 4097 11 of 18

erank = ∑
n∈S

r(n)
î

‖x(n)‖
‖f(n)

î
‖

, (24a)

where î = arg max
1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖
, (24b)

and r(n)i denotes the i-th column from R(n). Based on Equation (17), the index i in Equation (24b)
is a function of n: for every index n in the current support S, the correlations performed in (24b)
estimate which i-th PSF within the n-th local manifold best explains the recovered coefficients x(n) (see
Figure 2c,f). The residual r(n)i , from the dictionary low-rank approximation, is then used as a template
for the estimation of the current approximation residual. The amplitude estimate is taken from the
ratio between the norms of the recovered coefficients x(n) and of the similar modulating vector f(n)i .

The current total residual norm is estimated as

eest = (‖erank‖2
2 + e2

noise)
1
2 , (25)

where the summation is performed under the assumption that the acquisition noise and the vector
erank have negligible correlation.

The algorithm greedily increases the support until the estimated residual norm eest reaches the
norm ‖e‖ of the actual residual yielded by the LS or all indices n = 1, . . . , N have been added to the
support S.

5.4. Recovery of Locations and Amplitudes

Recalling the approximation m(n)
i ≈ B(n)f(n)i , we determine i by finding out which f(n)i most

correlates to x(n):

î(n) = arg max
1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖
, ∀n ∈ S. (26)

The amplitude estimations vn result form the ratios between the norms of x(n) and of the chosen
template f(n)i :

vn =
‖x(n)‖
‖f(n)i ‖

, ∀n ∈ S, i as in Equation (26). (27)

As consequence, the spatial resolution of the reconstructed events equals the fine sampling
represented in Figure 2c, i.e., δx and δz for the lateral and axial axes, respectively.

6. Empirical Results

6.1. Simulated Acquisition Set

To simulate the ultrasound NDT acquisition set from [21], represented in Figure 5a, we used
the Field II package [15] for Matlab® (The MathWorks Inc., Natick, MA, USA). A piston transducer
with 3 mm radius (125 µm mathematical element size) interrogates a steel sample object (sound speed
c = 5680 m/s). The excitation pulse has center frequency fc = 5 MHz and 6 dB fractional bandwidth of
100%. The simulated transducer slides horizontally along the surface of the object, acquiring scanlines
from 31 lateral positions ui, from u0 = 0 mm to u30 = 30 mm (center of transducer), with a distance
of 1 mm between consecutive lateral positions. The 31 scanlines are sampled with sampling rate
fs = 25 MHz and concatenated to form the acquisition vector c.
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ROI

x

z

u0 u1 u2 ... u29 u30...

(a) (b)

Figure 5. (a) simulated set (figure adapted from [21]). The transducer, fixed vertically at z = 0,
slides horizontally over the surface of the interrogated object, acquiring scanlines at 31 positions
x = {u0, . . . , u30}, corresponding to 0 mm up to 31 mm with 1 mm step. The scanlines are concatenated
to form the acquired vector c. A PSF y(x, z) is determined by placing a unity amplitude scatterer on
position (x, z) and acquiring the corresponding c; (b) extracts from the acquired data for the three
centermost transducer positions, with a unity amplitude scatterer located at the center of the ROI.
White Gaussian noise was added with σ = 0 (up), σ = 0.08 (middle) and σ = 0.12 (bottom).

Following [21], the model grid has 31× 41 = 1271 modelled locations distributed with regular
spacing of 1 mm on both x- and z-directions. On the x-direction, the locations are the same as the
transducer positions, i.e., x = 0, 1 mm, . . . , 30 mm. On the z-direction, 41 locations are modelled
regularly between 18 mm and 58 mm, i.e., z = 18 mm, 19 mm, . . . , 58 mm.

As explained in Section 4.1, in the expanded acquisition model, the grid locations give place
to local ROIs. Our expanded model has 1271 local ROIs with ∆x = ∆z = 1 mm, with centers
corresponding to the modelled locations of the regular model. Consequently, our ROI extends from
x = −0.5 mm to x = 30.5 mm and from z = 17.5 mm to z = 58.5 mm. The highly coherent
local manifolds were created with Rx = 5 and Rz = 15, thus R = 75. Therefore, δx = 250 µm
and δz = 71.4 µm.

We simulated the acquisition for 200 cases of five unity amplitude scatterers randomly distributed
over the ROI. The scatterers’ positions were not forced over any kind of grid. White Gaussian noise
with three different levels (σ = 0, 0.08, 0.12) was added to each simulated acquisition. Since the
energy of the acquired signal (without noise) varies according to factors such as distance to transducer
and constructive/destructive interference, we consider that the parametrization of noise in terms of
its standard deviation σ is more appropriate than signal-to-noise ratio (SNR). To provide a visual
notion of the noise levels, Figure 5b shows an extract of acquired data for the three noise levels from
an acquisition where a single scatterer was placed on the center of the ROI. Scanlines from the three
centermost positions of the tranducer are concatenated.

6.2. Recovery Accuracy

To compute the accuracy on the recovery of scatterers, we ran OMPED with a fixed number of
five iterations, with µc = 0.8, ∆µ = 0.1 and K varying from 2 to 10 for the 200 simulated acquisitions
with the three levels of noise. Each recovered scatterer distant less than 0.5 mm in both axial and
lateral directions from the closest original simulated scatterer was computed as a hit—otherwise, it
was computed as a miss. Figure 6a shows the percentage of misses from 1000 recovered scatterers
for all nine values of K and three noise levels. Even for the highest level of noise, misses kept below
10% for 6 ≤ K ≤ 10. For comparison, we ran OMP with the regular dictionary H on the same set of
simulated acquisitions. The resulting percentages of misses were 38.9%, 42.4% and 45.2% for the noise
levels σ = 0, 0.08 and 0.12, respectively.
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Figure 6. (a) percentage of misses (from 1000 simulated events) as a function of K, for three levels
of noise, with OMPED running with a fixed number of five iterations (each of the 200 simulated
acquisition had five scatterers). Each recovered scatterer distant more than 0.5 mm in any direction
(axial or lateral) from the closest original simulated scatterer was computed as a miss. A minimum
in the global number of misses is found at K = 8. For K > 8, a little amount of useful information is
added to the dictionary at the expense of increased coherence; (b) distance between recovered events
(hits) and their corresponding simulated true event; (c) average amplitude of the events computed
as hits, for noise levels σ = 0 (up), σ = 0.08 (middle) and σ = 0.12 (bottom). The bars indicate one
standard deviation above and below the average. All simulated events have unity amplitude.

A small increase in the count of misses is observed for values of K ≥ 8. This is possibly explained
by the fact that, for K ≥ 8, increasing K adds few useful information to the dictionary at the cost of
increasing coherence. For the SVD basis, the value of the singular values σk can be used as a measure of
useful information. Figure 3b shows how σk behaves for the centermost local manifold M(636). Notice
that values of σk for k ≥ 8 are significantly smaller than the previous ones.

For every hit, the distance between the original and the recovered scatterers was computed.
The average distances are shown in Figure 6b.

The computation of hits and misses does not take into account the amplitude of recovered
scatterers, i.e., recovered scatterers are implicitly considered as having unity amplitude. To endorse
this assumption, the average amplitudes of recovered events are shown in Figure 6c, where the bars
indicate one standard deviation above and below the average. Notice that, for all cases, the average
amplitudes are between 0.98 and 1.01, i.e., the average amplitude error is less than 2%. The average
absolute amplitude resulting from the reconstructions with OMP using the regular dictionary H were
0.70, 0.70 and 0.71 for the noise levels σ = 0, 0.08 and 0.12, respectively.

6.3. Estimation of Residual and Stop Criterion

To assess the accuracy of the stop criterion, OMPED was executed one more time on the 5-scatterer
dataset of Section 6.1, this time with the residual-based stop criterion defined on line 14 of Algorithm 1,
with a maximum of 10 iterations. Because all images contained five scatterers, the algorithm was
expected to stop at the 5th iteration. The histogram of Figure 7a shows this outcome: the peak of
occurrences is on iteration 5. The frequencies on the neighboring final iterations 4 and 6 are also
sensibly greater than on the remaining iterations (except for the maximum 10). The maximum iteration
allowed was 10, at which the algorithm stopped when eest failed to reach ‖e‖. The results for values of
K from 2 to 10 are summed on the histogram of Figure 7a. A total of 5400 reconstruction (3 noise levels
× 200 images × 9 orders K) are computed.

Figure 7b shows an example of the evolution of the regression residual norm ‖e‖ and the estimated
residual norm eest. As new events are iteratively added to the solution, the latter decreases while the
former increases. On iteration 5, ‖e‖ drops below eest and OMPED correctly meets the stop criterion,
yielding a final solution with cardinality 5. White Gaussian noise with σ = 0.12 was added to the data.
OMPED was ran with SVD (K = 8) dictionary.
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Figure 7. (a) histogram of final iteration (when eest ≥ ‖e‖ for the first time) for OMPED running with
the SVD dictionary, for K varying from 2 to 10. Results from all values of K are summed. The total
number of reconstructions is 5400. The 5th iteration was more frequently identified as final iteration,
which is correct since all simulated acquisitions contained 5 scatterers; (b) example of evolution of
eest and ‖e‖ along the iterations of OMPED. In this case, eest dropped below ‖e‖ at the 5th iteration,
which was correctly identified as the final iteration. The simulated object contained five scatterers.
White Gaussian noise with σ = 0.12 was added to the acquired data. OMPED was ran with the SVD
dictionary with K = 8.

6.4. Reconstructed Images: Examples

Figure 8a shows the ground truth for a simulation from the dataset of Section 6.1. Gaussian noise
was added to the acquired data with σ = 0.08. The reconstructed image using OMPED with SVD
dictionary (K = 8) is shown in Figure 8b. No limit was imposed on the number of iterations, i.e.,
the algorithm correctly stopped at the 5th iteration based on the values of the estimated and actual
residuals. The activated pixels are the same on the ground truth of Figure 8a and on the OMPED result
of Figure 8b. While all simulated scatterers had unity amplitude, the recovered amplitudes ranged
from 0.9398 to 1.0387. Both Figure 8a,b have 41× 31 pixels corresponding to the local ROIs of the
expanded model.

(a) (b) (c) (d) (e)

Figure 8. Example of image simulated and reconstructed, from the dataset described in Section 6.1.
The simulated data contains five scatterers and white Gaussian noise with σ = 0.08. All images
are normalized by the maximum absolute pixel value. (a) ground truth, with 5 unity amplitude
scatterers randomly distributed over the ROI; (b) results from OMPED with the SVD dictionary (K = 8).
The algorithm correctly identified the 5th iteration as the final one; (c) results from OMP with regular
model H. Seven iterations were run to show that, after the 4th iteration, the algorithm creates artifacts
on the neighborhood of the leftmost scatterer instead of identifying the bottom-right scatterer present
on the ground truth image. (d) Solution of the unregularized LS problem of Equation (4). The image is
dominated by artifacts; (e) solution of the `1-regularized problem of Equation (28). The penalization of
the recovered amplitudes causes the suppression of most points on the resulting image. The chosen
regularization parameter λ = 2.0691 minimizes the norm ‖v− v̂‖, where v is the ground truth.



Sensors 2018, 18, 4097 15 of 18

The result of the reconstruction using OMP with the regular dictionary model H is shown
in Figure 8c. We ran seven iterations of the algorithm in order to show that, beyond iteration 4,
the algorithm created artifacts around the leftmost scatterer instead of identifying the bottom-right
scatterer. The recovered amplitudes also display small and even negative values (the image shows
absolute, normalized values). Moreover, the bottom-left scatterer is displaced one pixel to the left on
the reconstructed image.

Figure 8d shows the image yielded by the LS (unregularized) solution of Equation (4). As is
common in unregularized model-based solutions, the image is dominated by noise [35]. We also
applied `1 regularization to the LS problem, which corresponds to the BP formulation [28]

v̂ = arg min
v
‖c−Hv‖2

2 + λ‖v‖1. (28)

The `1-regularized formulation was solved with L1_LS package for Matlab [36]. The resulting
image is shown in Figure 8e. While a small value for λ yields an image dominated by noise, such as
that of Figure 8d, larger values cause the image to be too sparse, suppressing some features. This is a
consequence of the penalization of recovered amplitudes on Equation (28). The chosen regularization
parameter λ = 2.0691 minimizes the norm ‖v− v̂‖2, where v is the ground truth and v̂ is the BP result.

7. Conclusions

To cope with the problem of off-grid deviation in image reconstruction from pulse-echo ultrasound
data, we developed a technique of dictionary expansion based on a highly coherent sampling of the
PSF manifold followed by a rank reduction procedure, as well as a generalization of the OMP algorithm
with non-convex constraints. Based on [29], the criterion for the rank reduction is the minimization of
the Frobenius norm of the resulting residuals.

Since no assumption is made regarding the geometry of the continuous PSF manifold,
our expansion formulation is applicable to both shift-invariant and shift-variant problems. On the
other hand, for instance, the Polar expansion [23] is conceived based on the fact that the PSF manifold
of any shift-invariant system lies over a hypersphere. In a two-dimensional ultrasound (our main
motivating application), the fact that the Spatial Impulse Response (SIR) is spatially variant [15,37]
puts the direct acquisition model in the class of shift-variant systems.

The criterion for definition of the order K of expansion may vary according to each application.
In cases where it is possible to carry out simulations (as presented here) or a relevant amount of data
with accessible ground truth is available, K can be determined empirically. Moreover, in our case,
a minimum in the number of misses is identifiable and lies close to a transition on the baseline of
singular values shown in Figure 3b. A suggestion for future studies is the development of a generalized
criterion for the definition of K. The behavior of the singular values of matrices M(n) is potentially
a starting point for such investigation.

The original OMP algorithm [30] is a particular case of OMPED where K = 1 and the parameter
µc (Equations (17) and (21)) is set to an arbitrarily large negative value. In both OMP and OMPED, the
residual vector e on each iteration is orthogonal to all active elements of the dictionary, which places
OMPED in the family of Orthogonal Matching Pursuit algorithms. The same does not hold for the
COMP algorithm presented in [29]: the fact that the LS regression performed at each iteration contains
linear constraints may result in eventual coherence between the residual and the active atoms.

Another particularity of OMPED in regard to previously proposed algorithms for expanded
dictionaries [23,29,33] is that it is not based on conic constraints, which removes any restrictions on the
choice of the sizes ∆x and ∆z (and further dimensions if that is the case) for the division of the ROI into
local ROIs.

The adaptation of OMP into OMPED, with a constraint imposed on the selection of the index
added the support at each iteration, might be replicable to other greedy search algorithms. The class of
forward-backward algorithms is of special interest in signal and image recovery because of its capacity
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of later “correction” of “wrong” choices made on the selection of indices to add to the support [38,39],
which constitutes a motivation for future investigation.

The computation of the estimated residual eest on OMPED may be subject to improvement in
order to increase the accuracy of the stop criterion (see Figure 7a). Decreasing the variance of the
residuals r(n)i caused by the low-rank approximation inside each local ROI (i.e., flattening the surfaces
of Figure 3c) would cause the inaccuracies on the computation of high resolution locations to have
a smaller impact on the computation of eest. This may be achieved with a different criterion for the
rank reduction than the LS. For instance, an extension of the Minimax dictionary expansion [31].

One limitation of our technique is that one single point-like event is identifiable inside each local
ROI. The search for a means to overcome this limitation, allowing for the recovery of several scatterers
inside the same local ROI, is a relevant topic for further investigation and may broaden the applicability
of the proposed technique.

Finally, our simulated data considered point-like reflectors, with spatial coordinates (x, z) as the
only nonlinear parameters. The ultrasound NDT literature contains parametric reflection models for
more complex discontinuity structures, such as spherical voids and circular cracks, where the distortion
of ultrasound waves is modelled as a nonlinear function of parameters like diameter and angle to
the surface [40,41]. The proposed method is applicable to those cases as long as those parameters are
comprised in the parameter set τ in Equation (1) and sampled like the parameters of spatial location.
In this case, characterization of discontinuities could be performed along with location. Classification
of discontinuities could also be jointly performed if dictionaries for several types of discontinuities are
combined. An equivalent principle has been used in the joint detection and identification of neuron
activity using SVD [29] and Taylor [42] expanded dictionaries.
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