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Abstract: In this paper, robust first and second-order divided difference filtering algorithms based on
correntropy are proposed, which not only retain the advantages of divided difference filters, but also
exhibit robustness in the presence of non-Gaussian noises, especially when the measurements are
contaminated by heavy-tailed noises. The proposed filters are then applied to the problem of ship
positioning. In order to improve the accuracy and reliability of ship positioning, the positioning
method combines the Dead Reckoning (DR) algorithm and the Global Positioning System (GPS).
Experimental results of an illustrative example show the superior performance of the new algorithms
when applied to ship positioning.
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1. Introduction

With the development of microcomputers and electronic integration technology, the requirements
for accuracy and reliability of ship positioning are becoming more and more complex. As a key
node in the air-space-ground of integrated information networks, ships can obtain the positioning
information from many systems. The Dead Reckoning (DR) is a common technology used in ship
positioning, which calculates the position of ship in real time based on the speed of ship and direction
information, it also considers the influence of wind and flow. However, errors in the speed and
direction information, and incomplete compensations of wind and flow cause positioning errors of
DR which accumulate with time [1,2]. Global Positioning System (GPS) is a satellite based system,
which provides the accurate velocity and position of a ship by making use of the GPS receiver. But
GPS has limitations such as a low sampling rate as well as being susceptible to interference [3–5].
The integration of DR and GPS takes advantage of two techniques, this integration system has a better
performance than the single techniques in terms of accuracy and reliability [6–8].

Filtering is a key problem in the integrated positioning system. The Kalman filter (KF) [9,10]
is a well known method to estimate the state of linear systems. However, the model of DR/GPS
integrated positioning system is nonlinear. To solve the nonlinear filtering problem, extensions of
the KF using some approximations have been proposed. The extended Kalman filter (EKF) [11–13]
approximates the nonlinear equation by its first-order linearization. The unscented Kalman filter
(UKF) [13–16] approximates the probability distribution of the state by a set of deterministically
chosen sigma points and propagates the distribution through the nonlinear equation, which provides
higher-order approximation than the EKF. Nevertheless, the parameters used in the UKF have
a great effect on performance of the algorithm. If they are not tuned finely, it is easy to face the
problem of numerical instability in practical applications due to the propagation of the non-positive
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definite covariance matrix. Another effective, alternative way is the divided difference filter (DDF).
The DDF [17,18] is derived from polynomial approximations of the nonlinear transformations using
multidimensional Stirling’s interpolation formula and can be classified into the first-order divided
difference (DD1) filter and the second-order divided difference (DD2) filter. The DDF can guarantee
a positive semi-definiteness of the covariance matrix. The DD2 filter not only has fewer parameters,
but also has nearly the same performance as the UKF. Therefore, we use the DDF type filters for ship
positioning. The traditional DDF is suitable for the Gaussian noise. However, in this real application,
the measuring instruments can be affected by extreme sea environments. They sometimes break
down, or suffer from operator error, which cause the measurement noise to be of the heavy-tailed
non-Gaussian form. In these cases, the traditional DDF, which is based on the minimum mean
square error (MMSE) criterion, cannot play well because the MMSE criterion is very sensitive to the
heavy-tailed non-Gaussian noise [19].

To solve the non-Gaussian filtering problems, some robust algorithms exist. The Huber
methodology is a method that combines minimum `1 and `2-norm [20–22]. The Student t technique
assumes that the process and measurement noises obey Student t distribution [23,24]. Another
effective approach is the information theoretic learning (ITL). In particular, the correntropy, which
is one of the ITL measures, can capture high-order statistics of the data rather than the common
second-order statistics and has been widely used in many fields [25–32]. In recent years, some
correntropy-based Kalman filterings have been proposed [33–35], which are mainly applied to linear
models. The correntropy-based unscented Kalman filters can solve some nonlinear problems [36,37],
but it is easy to have problems with numerical instability for integrated positioning.

In this paper, two novel nonlinear filters, the correntropy-based first-order divided difference
(CDD1) filter and the correntropy-based second-order divided difference (CDD2) filter, are proposed
to solve the problem of ship positioning. The proposed algorithms not only retain the advantages of
DDF algorithms, but also exhibit the robustness in the presence of heavy-tailed non-Gaussian noise.
Different from the works [38] which adopts the linear regression model, the proposed algorithms
adopt the nonlinear regression model.

The rest of the paper is organized as follows. Section 2 provides a short review of the correntropy,
the DD1, and DD2 filters. In Section 3, the the CDD1 and CDD2 filters are derived. In Section 4,
the example of ship positioning shows the performance of the proposed algorithms. The conclusion is
given in Section 5.

2. Preliminaries

2.1. Correntropy

The correntropy is an important measure in ITL, which measures the similarity between two
random variables X ∈ R and Y ∈ R. Given the joint distribution function of X and Y, FXY(x, y),
the correntropy is defined by

V(X, Y) = E [κ(X, Y)] =
∫

κ(x, y)dFXY(x, y) (1)

where E[·] represents the expectation operator, and κ(·, ·) is a shift-invariant Mercer kernel. In this
paper, the Gaussian kernel is chosen as the kernel function:

κ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
(2)

where e = x− y, and σ > 0 denotes the kernel bandwidth.
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In most practical applications, only a limited number of data samples are available and the joint
distribution FXY is usually unknown. In this case, we often use the sample mean estimator to estimate
the correntropy:

V̂(X, Y) =
1
N

N

∑
i=1

Gσ (e(i)) (3)

where e(i) = x(i)− y(i), with {x(i), y(i)}N
i=1 being N samples drawn from FXY.

Taking the Taylor series expansion for the Gaussian kernel yields

V(X, Y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E
[
(X−Y)2n

]
(4)

Note that the correntropy is the weighted sum of all even order moments of the error variable
X−Y and the kernel bandwidth appears as a parameter to weight the second-order and higher-order
moments. In particular, with a very large kernel bandwidth, the second-order moment will play
a major role.

2.2. DD1 Filter

In this paper, the nonlinear state and measurement equations are described by

xk = f (xk−1, qk−1) (5)

yk = h (xk, rk) (6)

where x(k) ∈ Rn and y(k) ∈ Rm are the n-dimensional state vector and m-dimensional measurement
vector at time step k. f (·) and h (·) are the continuous and differentiable state functions and the
measurement function. qk−1 and rk are the process and measurement noises, which are assumed i.i.d
and independent of states, and with means denoted by qk−1 and rk and covariance matrices denoted
by Qk−1 and Rk.

The square-root decompositions of the predicted state error covariance Pk, update state error
covariance P̂k, process noise covariance Qk, and measurement noise covariance Rk are introduced as

Pk = Sxk ST
xk

(7)

P̂k = Ŝxk ŜT
xk

(8)

Qk = Sqk ST
qk

(9)

Rk = Srk ST
rk

(10)

The DD1 filter uses the first-order divided differences to approximate. Let the element of i-th
row, j-th column of S′xx̂k

be denoted as S′xx̂k i,j, i.e., S′xx̂k
=
{

S′xx̂k i,j

}
, and similarly for other matrices.

The four matrices containing first-order divided differences are defined as

S′xx̂k−1
=
{[

fi

(
x̂k−1 + cŜxk−1,j, qk−1

)
− fi

(
x̂k−1 − cŜxk−1,j, qk−1

)]/
2c
}

(11)

S′xqk−1 =
{[

fi

(
x̂k−1, qk−1 + cSqk−1,j

)
− fi

(
x̂k−1, qk−1 − cSqk−1,j

)]/
2c
}

(12)

S′yxk =
{[

hi
(
xk + cSxk ,j, rk

)
− hi

(
xk − cSxk ,j, rk

)]/
2c
}

(13)

S′yrk =
{[

hi
(
xk, rk + cSrk ,j

)
− hi

(
xk, rk − cSrk ,j

)]/
2c
}

(14)

where Ŝxk−1,j is the j-th column of Ŝxk−1 , c is the interval length, and is generally set as c2 = 3.
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The predicted state and the Cholesky factor of corresponding covariance are given by

xk = f
(
x̂k−1, qk−1

)
(15)

Sxk = H
([

S′xx̂k−1
S′xqk−1

])
(16)

where H (·) denotes a Householder transformation of the augment matrix [17].
The predicted measurement and the Cholesky factor of corresponding covariance are given by

yk = h (xk, rk) (17)

Syk = H
([

S′yxk S′yrk

])
(18)

The Kalman gain is computed as

Kk = Sxk S′Tyxk

(
Syk ST

yk

)−1
(19)

The updated state and the Cholesky factor of corresponding covariance are given by

x̂k = xk + Kk (yk − yk) (20)

Ŝxk = H
([

Sxk −KkS′yxk KkS′yrk

])
(21)

2.3. DD2 Filter

The DD2 filter uses the second-order divided differences to approximate. Four matrices containing
second-order divided differences are defined as

S′′xx̂k−1
=

{√
c2 − 1
2c2

[
fi

(
x̂k−1 + cŜxk−1,j, qk−1

)
+ fi

(
x̂k−1 − cŜxk−1,j, qk−1

)
−2 fi

(
x̂k−1, qk−1

)]} (22)

S′′xqk−1 =

{√
c2 − 1
2c2

[
fi

(
x̂k−1, qk−1 + cSqk−1,j

)
+ fi

(
x̂k−1, qk−1 − cSqk−1,j

)
−2 fi

(
x̂k−1, qk−1

)]} (23)

S′′yxk =

{√
c2 − 1
2c2

[
hi
(
xk + cSxk ,j, rk

)
+ hi

(
xk − cSxk ,j, rk

)
−2hi (xk, rk)]}

(24)

S′′yrk =

{√
c2 − 1
2c2

[
hi
(
xk, rk + cSrk ,j

)
+ hi

(
xk, rk − cSrk ,j

)
−2hi (xk, rk)]}

(25)
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The predicted state and the Cholesky factor of corresponding covariance are given by

xk =

(
c2 − nx − nq

c2

)
f
(
x̂k−1, qk−1

)
+

1
2c2

nx

∑
j=1

[
f
(

x̂k−1 + cŜxk−1,j, qk−1

)
+ f

(
x̂k−1 − cŜxk−1,j, qk−1

)]
+

1
2c2

nq

∑
j=1

[
f
(

x̂k−1, qk−1 + cSqk−1,j

)
+ f

(
x̂k−1, qk−1 − cSqk−1,j

)]
(26)

Sxk = H
([

S′xx̂k−1
S′xqk−1 S′′xx̂k−1

S′′xqk−1

])
(27)

The predicted measurement and the Cholesky factor of corresponding covariance are given by

yk =

(
c2 − nx − nr

c2

)
h (xk, rk)

+
1

2c2

nx

∑
j=1

[
h
(
xk + cSxk ,j, rk

)
+ h

(
xk − cSxk ,j, rk

)]
+

1
2c2

nr

∑
j=1

[
h
(
xk, rk + cSrk ,j

)
+ h

(
xk, rk − cSrk ,j

)]
(28)

Syk = H
([

S′yxk S′yrk S′′yxk S′′yrk

])
(29)

The Kalman gain is computed as

Kk = Sxk S′Tyxk

(
Syk ST

yk

)−1
(30)

The updated state and the Cholesky factor of corresponding covariance are given by

x̂k = xk + Kk (yk − yk) (31)

Ŝxk = H
([

Sxk −KkS′yxk KkS′yrk KkS′′yxk KkS′′yrk

])
(32)

3. Correntropy-Based DDF

This section derives the DD1 and DD2 filters under maximum correntropy criterion (MCC).
First, the measurement Equation (6), whose noise is additive, would be written as yk = h (xk) + rk, and
the predicted state and the Choleskey factor of corresponding covariance are obtained by Equations (15)
and (16). Assuming the true state is denoted as xk, the predicted state error is written as ξk = xk − xk.
Then, a nonlinear regression model is reconstructed as follows:[

xk
yk

]
=

[
xk

h(xk)

]
+ δk (33)

where δk =

[
−ξk
rk

]
, with the Cholesky factor of covariance of δk is given by

Dk =

[
Sxk 0
0 Srk

]
(34)
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Left multiplying both sides of Equation (33) by D−1
k , we have the following regression model:

zk = m (xk) + ek (35)

where zk = D−1
k

[
xk
yk

]
, m (xk) = D−1

k

[
xk

h (xk)

]
and ek = D−1

k δk.

The problem associated with Equation (35) can be solved by making use of the MCC, and the
corresponding cost function is given by

J (xk) =
L

∑
i=1

Gσ (ek,i) (36)

where ek,i is the i-th component of the vector ek = zk −m (xk), and L is the dimension of ek.
Then, the solution of the problem mentioned previously can be found by setting the first derivation

of Equation (36) to be zero:
L

∑
i=1

φ (ek,i)
∂ek,i

∂xk
= 0 (37)

where φ (ek,i) = Gσ (ek,i) · ek,i. By defining C (ek,i) = φ (ek,i)
/

ek,i = Gσ (ek,i) and C = diag [C (ek,i)] =[
Cx 0
0 Cy

]
, Equation (37) can be written in matrix form as

(
∂m (xk)

∂xk

)T
C (m (xk)− zk) = 0 (38)

In fact, the MCC uses C to re-weight the covariance matrix of the residual error ek and reconstruct
the measurement information. Thus, the updated covariance can be written as

Ψ̃ = DkC−1DT
k (39)

and decomposed into two portion so that

Ψ̃ =

[
Ψ̃x 0
0 Ψ̃y

]
(40)

The initial value can be set as x̂(0)k = xk or be equal to the updated state computed from the
corresponding standard DD1 or DD2. Then, we can obtain the following equations

Ψ̃x = Sxk · C
−1
x · S

T
xk

(41)

Ψ̃y = Srk · C
−1
y · ST

rk
(42)

It is noted that the aforementioned derivation is the extension of Equation (25) in Reference [33].
To reduce the computation time, only one iteration would work to obtain the solution.
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Then, a one-step correntropy update for the DD1 filter can be written as

S(1)
yk = H

([
S′yxk C−1/2

x S′yrk C−1/2
y

])
(43)

K(1)
k = Sxk C−1

x S′Tyxk

(
S(1)

yk S(1)T
yk

)−1
(44)

x̂k = xk + K(1)
k (yk − yk) (45)

Ŝxk = H
([

Sxk C−1/2
x −K(1)

k S′yxk C−1/2
x K(1)

k S′yrk C−1/2
y

])
(46)

Similarly, a one-step correntropy update for the DD2 filter can be written as

S(1)
yk = H

([
S′yxk C−1/2

x S′yrk C−1/2
y S′′yxk C−1/2

x S′′yrk C−1/2
y

])
(47)

K(1)
k = Sxk C−1

x S′Tyxk

(
S(1)

yk S(1)T
yk

)−1
(48)

x̂k = xk + K(1)
k (yk − yk) (49)

Ŝxk =H
([

Sxk C−1/2
x −K(1)

k S′yxk C−1/2
x K(1)

k S′yrk C−1/2
y

K(1)
k S′′yxk C−1/2

x K(1)
k S′′yrk C−1/2

y

]) (50)

Remark 1. The proposed correntropy-based divided difference filters utilize the correntropy theory to improve
the performance in the presence of heavy-tailed non-Gaussian noises, in which a nonlinear regression problem is
introduced to update the measurement information. It is noted that the kernel bandwidth plays a key role in the
proposed algorithm. In general, a smaller kernel bandwidth exhibits more robust properties of the correntropy.
However, when the kernel bandwidth is too small, it will lead to an accretion of estimation error or even filtering
divergence. A sufficient condition for guaranteeing the convergence of filter was introduced in Reference [39].
Moreover, when kernel bandwidth σ→ ∞, the matrix C→ I, and the CDD1 and CDD2 filters would reduce to
the original DD1 and DD2 filters. The choice of the kernel bandwidth in practical applications is discussed in
next section.

In practical applications, the measurement system may sometimes obtain extremely large
measurements. In this case, the CDD1 and CDD2 filters may face numerical problems since Cy

will be nearly singular. In view of this problem, a method is introduced as

ak = (yk − yk)
T
(

Syk ST
yk

)−1
(yk − yk) (51)

If |ak| > θ, with θ being a positive threshold, only the predicted step is worked, that is x̂k = xk,
Ŝxk = Sxk . If |ak| 6 θ, the entire steps are worked.

The flow of the CDD1 filter algorithm is shown in Figure 1. Since the flow of the CDD2 filter is
similar, we omit it.
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Figure 1. The flow of the CDD1 filter algorithm.

4. Positioning of Ships

In this section, to demonstrate the performance of the proposed algorithms, we apply them to
solve the problem of ship positioning. The model combines DR and GPS technology to improve the
accuracy of positioning.

4.1. The State and Measurement Models

The motion of a ship can be denoted as a nonlinear function in terms of many factors, such as
speed, course, shape of earth, sea current, wind, and so on. There are two kinds of maneuvering
motions of a ship, which are speed maneuver in a straight line and direction maneuver. Since the
acceleration of the ship is generally small and the sampling period of the integrated positioning system
is relatively short, the speed maneuver can be ignored or regarded as the speed noise. The direction
maneuver can be approximately described by uniform circular motion with a constant change rate of
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the ship’s course. Therefore, there are two kinds of states related to the motion of a ship, which are
uniform linear motion and uniform circular motion. In view of the above, the state vector is chosen as

x =
[

ϕ λ vN vE s K Ω
]T

where ϕ and λ denote the arc lengths of latitude and longitude, vN and vE are the northward velocity
component and the eastward velocity component of the ocean current, s denotes the velocity of that
ship relative to the water, K is the ship’s course, and Ω represents the change rate of the ship’s course.
Correspondingly, the state equations of the ship are written as [40]

ϕ̇ = vN + s cos K + q1 (52)

λ̇ = vE + s sin K + q2 (53)

v̇N = −βvN + q3 (54)

v̇E = −βvE + q4 (55)

ṡ = q5 (56)

K̇ = Ω + q6 (57)

Ω̇ = q7 (58)

where β denotes the inverse correlation time of ocean current, qi are independent Gaussian white
noises. By discretizing these equations, we obtain the following equations

ϕk = ϕk−1 + β−1 (1− exp(−βT)) vN,k−1+

sk−1 cos (Kk−1 + 0.5TΩk−1) T + q1,k−1
(59)

λk = λk−1 + β−1 (1− exp(−βT)) vE,k−1+

sk−1 sin (Kk−1 + 0.5TΩk−1) T + q2,k−1
(60)

vN,k = exp(−βT)vN,k−1 + q3,k−1 (61)

vE,k = exp(−βT)vE,k−1 + q4,k−1 (62)

sk = sk−1 + q5 (63)

Kk = Kk−1 + Ωk−1T + q6,k−1 (64)

Ωk = Ωk−1 + q7,k−1 (65)

where T is sampling period.
Then, the measurement vector is chosen as

yk =
[

ϕG,k λG,k sL,k KG,k

]T

where ϕG and λG denote the arc lengths of latitude and longitude provided by GPS, sL is the velocity
of that ship relative to the water provided by electromagnetic log, KG represents the ship’s course
provided by electric gyrocompass. Accordingly, the measurement equations are given as

ϕG,k = ϕk + η1,k (66)

λG,k = λk + η2,k (67)

sL,k = sk + η3,k (68)
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KG,k = Kk + η4,k (69)

where ηi,k are independent white noises.
Some filters are used for comparison, including the EKF, DD1, UKF, DD2, the Huber-based

first-order divided difference (HDD1) filter and the Huber-based second-order divided difference
(HDD2) filter, and the HDD1 and HDD2 adopt the Huber methodology. The following benchmarks
are used to show the estimation performance:

MSEk =
1
M

M

∑
k=1

(xk − x̂k)
2 (70)

TMSE =
1

k2 − k1 + 1

k2

∑
k=k1

MSEk (71)

In this simulation, 100 independent Monte Carlo experiments were conducted, and the lasting
time of each experiment was 1200 s. The parameters of this example and initial conditions are
summarized in Tables 1 and 2, and the process noises satisfy the Gaussian distributions:

q1 ∼ N(0, 0.684 m2), q2 ∼ N(0, 0.684 m2)

q3 ∼ N(0, 0.000158 (m/s)2), q4 ∼ N(0, 0.000158 (m/s)2)

q5 ∼ N(0, 0.00158 (m/s)2), q6 ∼ N(0, 0.0026 rad2)

q7 ∼ 0

Table 1. Parameters of the example.

Parameter Value

β−1, s 27,780/s
T, s 12

Table 2. Initial conditions.

Parameter Value

ϕ0, m 2.2239× 106

λ0, m 1.2565× 107

vN,0, m/s 1
vE,0, m/s 1
s0, m/s 10.289
K0, rad π/4

Ω0, rad/s 0

4.2. Simulation Results

First, we assume the measurement noises satisfy the Gaussian distributions:

r1 ∼ N(0, 10000 m2), r2 ∼ N(0, 10000 m2)

r3 ∼ N(0, 0.0423 (m/s)2), r4 ∼ N(0, 0.0000395 rad2)

TMSEs of position in Gaussian noises are revealed in Table 3. It can be seen that the DD2
filter and UKF have a similar performance, likewise for the DD1 filter and EKF. The DD2 filter
and UKF are superior to the DD1 filter and EKF, exhibiting smaller errors. Meanwhile, the robust
filters do not perform as well as their non-robust counterparts under Gaussian noise conditions.
Moreover, the CDD1 and CDD2 filters achieve almost the same performance as the DD1 and DD2
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filters when the kernel bandwidth is large enough. It is noted that the UKF sometimes stops executing
because the parameters of the UKF may not be finely tuned enough to bring about the problem of
propagation of the non-positive definite covariance matrix.

Table 3. TMSEs of position in Gaussian noises.

Filter TMSEs of ϕ TMSEs of λ

EKF 10.3197 11.1708
DD1 10.3196 11.1707

HDD1 12.1968 13.1074
CDD1 (σ = 2) 23.8353 22.6151
CDD1 (σ = 5) 10.4517 11.2693

CDD1 (σ = 20) 10.3215 11.1690
UKF 10.3093 11.1557
DD2 10.3086 11.1549

HDD2 12.1613 13.0604
CDD2 (σ = 2) 23.8503 22.3792
CDD2 (σ = 5) 10.4366 11.2484

CDD2 (σ = 20) 10.3102 11.1529

Second, we assume the measurement noises are heavy-tailed non-Gaussian, satisfying the
following distributions:

r1 ∼ N(0, 10000 m2) + N(0, 1000000 m2)

r2 ∼ N(0, 10000 m2) + N(0, 1000000 m2)

r3 ∼ N(0, 0.0423 (m/s)2)+N(0, 4.23 (m/s)2)

r4 ∼ N(0, 0.0000395 rad2)+N(0, 0.00395 rad2)

Figures 2–5 show the MSEs of different filters for the non-Gaussian case, and Table 4 summarizes
the corresponding TMSEs. The performances of the DD2, UKF, DD1, and EKF follow the behavior
from the Gaussian case. In the non-Gaussian case, the robust filters outperform the corresponding
non-robust filters. With a very large kernel bandwidth, the CDD1 and CDD2 filters achieve a similar
estimation to the DD1 and DD2 filters; with a proper kernel bandwidth, the CDD1 and CDD2 give
smaller errors than the non-robust filters; in particular, when the kernel bandwidth is set to 2, the CDD2
exhibits the smallest errors.

Table 4. TMSEs of position in non-Gaussian noises.

Filter TMSEs of ϕ TMSEs of λ

EKF 91.7839 84.7678
DD1 91.7776 84.7557

HDD1 44.2747 37.6608
CDD1 (σ = 2) 39.4284 33.0989
CDD1 (σ = 5) 64.5026 56.9180

CDD1 (σ = 20) 89.3531 82.3220
UKF 91.4480 84.5617
DD2 91.4269 84.5294

HDD2 43.8700 37.4722
CDD2 (σ = 2) 39.0126 32.8825
CDD2 (σ = 5) 64.1485 56.7222

CDD2 (σ = 20) 89.0010 82.0980
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Figure 2. MSEs of ϕ with first-order approximate filters in non-Gaussian noises.

Figure 3. MSEs of λ with first-order approximate filters in non-Gaussian noises.



Sensors 2018, 18, 4080 13 of 15

Figure 4. MSEs of ϕ with second-order approximate filters in non-Gaussian noises.

Figure 5. MSEs of λ with second-order approximate filters in non-Gaussian noises.

5. Conclusions

This paper proposes two correntropy-based divided difference filtering methods, namely CDD1
and CDD2, which show strong robustness against heavy-tailed non-Gaussian noises. The proposed
algorithms recast the nonlinear regression models and use the maximum correntropy criterion to
obtain the solution. The two robust filters are then applied to the DR/GPS integrated positioning
system of ships. The filters used for comparison include the EKF, DD1, HDD1, UKF, DD2, and HDD2.
The results show that with a very large kernel bandwidth, the performances of the CDD1 and CDD2
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filters are similar to those of standard DD1 and DD2 filters; with a proper kernel bandwidth, the CDD2
filter exhibits the best performance for the non-Gaussian noise case. Moreover, extensions of this
research might include combining it with adaptive filtering methods, considering the problem of
continuous systems, and applying it to other practical examples.
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