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Abstract: With the rapid development of the Internet of Things, there are a series of security problems
faced by the IoT devices. As the IoT devices are generally devices with limited resources, how to
effectively allocate the restricted resources facing the security problems is the key issue at present.
In this paper, we study the resource allocation problem in threat defense for the resource-constrained
IoT system, and propose a Stackelberg dynamic game model to get the optimal allocated resources
for both the defender and attackers. The proposed Stackelberg dynamic game model is composed by
one defender and many attackers. Given the objective functions of the defender and attackers, we
analyze both the open-loop Nash equilibrium and feedback Nash equilibrium for the defender and
attackers. Then both the defender and attackers can control their available resources based on the
Nash equilibrium solutions of the dynamic game. Numerical simulation results show that correctness
and effeteness of the proposed model.

Keywords: resource allocation; threat defense; Internet of Things; Stackelberg dynamic game;
Nash equilibrium

1. Introduction

The Internet of Things (IoT) [1] refers to a huge network of various information-sensing devices
combined with the Internet. These sensing devices include infrared sensors, Radio Frequency
Identification Devices (RFID) [2], laser scanners, global positioning systems (GPS), and other devices.
In recent years, with the development of computer intelligence technology, communication technology
and perceptual recognition technology, the IoT has been widely used in smart home, smart medical,
smart grid, Intelligent Transportation System (ITS) and other fields, and brought great convenience to
people’s lives [3–5].

Generally, the IoT system is composed of a large number of nodes that are often exposed to public
situations, lack effective protection, and are easily attacked [6–8]. Therefore, the security threats faced
by IoT devices are more serious than those of the traditional network. In addition, the IoT environment
is complex and IoT devices with limited resources are more vulnerable to cyber-attack [9]. Faced with
limited resources, how to effectively allocate resources [10] to defend against threats in the IoT system
has become a serious problem that desperately needs to be solved.

Lots of work has been done on resource allocation problems in threat defense for IoT systems.
In order to build up the overall security of the IoT, studies [11,12] propose an overall security
architecture for the IoT from different perspectives. In order to promote multiple resource-sharing
and heterogeneous resource-demanding allocations, Intrusion Detection Systems (IDS) architecture
and resource allocation are recommended [13]. Zhang et al. [14] evaluated the four levels of a security
index system of the Internet of Things through fuzzy analytic hierarchy process, and concluded that
the key indicators for improving the security of the Internet of Things are privacy protection, WSN
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anti-attack capability, intelligent node security, and information application security. Leusse et al. [15]
analyzed the security threats of the IoT, and proposed a self-organized community security structure.

Since most IoT devices are micro-embedded devices, their hardware and software resources are
very limited, and only a small number of computing tasks can be performed. There are not enough
resources to implement defense against the attacks. For most of the time, the devices of the IoT
system are unprotected and the resources of each device are limited. The authors of [16] developed
a distributed algorithm to detect anomalous activities in the information flow in a wireless sensor
network-based IoT system. Considering the limited computational and communication resources,
Eschenauer et al. [17] proposed a key management scheme for the wireless sensor networks, which
relies on probabilistic key sharing among the nodes of a random graph to make a trade-off between
sensor memory cost and connectivity. The research into attack defense strategy plays a crucial
role in defending against malicious attacks and protecting the security of the Internet of Things.
Tague et al. [18] mapped the data traffic of the captured wireless mobile network and calculated the
minimum cost of node capture attacks using a key protocol to enhance the security of data privacy.
The literature [19–21] mainly focused on the research of node capture attacks on RFID and WSN in
the IoT perception layer. Liu et al. [22] proposed a dynamic defense framework for IoT security. The
literature [23] studies the optimal invasive differential game theory, which effectively reduces the
intrusion frequency of intruders. Zhang et al. [24] proposed a lightweight defense algorithm for IoT
network environment attacks.

Game theory is a particularly effective mathematical tool to study problems in diverse networks,
such as power control in wireless networks [25,26], channel allocation in cognitive radio networks [27,28],
congestion control in telecommunications networks [29], marketing and economics, and security
problems [30,31]. In this paper, we propose Stackelberg dynamic game-based resource allocation
model in threat defense for a resource-constrained IoT system. We will try to find optimal solutions for
both the defender and attackers for resource allocation problems. In summary, the key contributions of
this paper are as follows:

• Firstly, we research a cyber-security IoT system, which consists of one defender and N attackers.
The defender tries to find the optimal allocated resources for threat defense, and the attackers try
to use their resources to attack the IoT system.

• Secondly, a Stackelberg dynamic game model is proposed to formulate the resource
allocation problem in threat defense for the Internet of Things. The Stackelberg game is
a one-leader-many-followers game, where the defender is the leader and the attackers are
the followers.

• For the dynamic game, we use the risk level as the system state. The objectives for the defender
and attackers are to optimize the cost during the threat defense to find the optimal allocated
resources for both the defender and attackers.

• Finally, the open-loop control solutions and the feedback control solutions for both the defender
and attackers are given based on Bellman dynamic programming.

The remainder of the paper is organized as follows. Section 2 introduces the system model and
problem formulation. Section 3 provides the Nash equilibrium solutions for the proposed game model.
Numerical simulations are given in Section 4. Finally, we conclude the work in Section 5.

2. System Model and Problem Formulation

We consider a cyber-security IoT system that is composed of one defender and N attackers.
The defender can control its resources, such as energy resources, computing resources, and bandwidth
resources, to resist intrusion from all sorts of attackers. The attackers will use all available resources to
successfully break the defense and break into the IoT system. Based on these, we will try to formulate
a dynamic model for both the defender and the attackers, to find their optimal strategies for resources
allocation of the cyber-security IoT system in the process of defense and attack. In our proposed
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model, the relationship between the defender and the attackers is considered a one-leader-N-followers
Stackelberg dynamic game, where the defender is the leader and the attackers are the followers. At the
beginning of the Stackelberg dynamic game, the defender will choose a resource strategy to protect
the system. After observing the defender’s strategy, the attackers will choose their optimal resource
strategies for intrusion based on the observed defense strategy. Then the defender will allocate its
resources to defense the invasion based on the attackers’ strategies. The strategies for both the defender
and the attackers are dynamic and time-dependent.

In order to formulate the Stackelberg dynamic game, there should be a system state for both the
defender and the attackers. As the risk level of the IoT system concerns both the defender and the
attackers, we use it as the system state of the Stackelberg dynamic game. Generally speaking, the risk
level is affected by the input variables, which are the defense strategy and the attack strategies. In our
proposed model, we assume that the risk level is not only related to the current input variables, but
also is affected by the current risk level with a degradation coefficient. Assuming u0(t) and ui(t) are
the control variables of the defender and the attackers for the resource allocation, respectively, let x(t)
denote the risk level of the IoT system, which can be given by the following differential equation [32]:

dx(t)
dt

= αu0(t) + ∑
i∈N

βiui(t) + εx(t), (1)

where α is a negative weighted factor and βi is a positive weighted factor that denote the strategies’
relative importance on the risk level. Through an effective defense strategy, the system will be more
robust as time elapses. Then the risk level of the system will decrease with a random degradation
coefficient, which is denoted by ε. Based on Equation (1), we find that, in our proposed IoT system,
the risk level will decrease with the defender’s action, and increase with the attackers’ actions.
Meanwhile, the longer the system continues, the lower the risk level, which is denoted by the random
degradation coefficient ε.

Given the system state, we can now discuss the objective functions for the defender and the
attackers. As the leader of the Stackelberg dynamic game, we will formulate the objective function for
the defender first. The IoT system is usually composed of devices with limited resources, such as low
power supply and limited battery capacity, so the defense cost is the main concern for the IoT system
protection. For the defender, it aims to minimize the cost for protecting the IoT system and resisting
the attackers with limited resources. Its objective function can be given as follows:

U0 = µ0

N

∑
i=1

u2
i (t) + ν0u2

0(t) + ρ0(x̃− x(t)), (2)

where µ0, ν0, and ρ0 are positive weighted factors that denote the relative importance of the components.
In our paper, we assume that the weighted factors add up to 1, which means the weighted factors
are decimals larger than 0 and less than 1. The physical meanings of the weighted factors are the
importance of the components in the cost function. The objective function of the defender has three

components. The first part is
N
∑

i=1
u2

i (t), which means the observing cost. The defender should observe

the attackers’ strategies to generate its own strategy for system defense. The observing cost is a
direct ratio to the attackers’ resource strategies; when the attackers spend more resources, the defender
should pay more attention for observation. u2

0(t) is the second part of the objective function, and means
the defending cost of the IoT system. Generally, the defending cost is directly related to the resources
allocated for defending. The third part of the objective function of the defender is given by (x̃− x(t)),
which is the disparity between the maximum permissible risk level and the real-time risk level. The
purpose of the defender is to reduce the risk level to ensure data security, even with a risk level of zero.
Let x̃ denote the maximum permissible risk level; we should try to make the risk level no higher than
the threshold. According to Equation (2), we find that the total instantaneous cost of the defender is a
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function of the allocated resources u0(t), ui(t), and the risk level x(t). The defender wants to find the
optimal allocated resources u0(t) that minimize its cost function over time interval [0, T]:

min
u0(t)

L0(t) = min
u0(t)

{∫ T

0

{
µ0

N

∑
i=1

u2
i (t) + ν0u2

0(t) + ρ0(x̃− x(t))

}
e−rtdt

}
, (3)

subject to Equation (1). Here, r is the discount rate.
The attackers also want to invade the entire IoT system at a low cost. Therefore the aims of the

attackers are to minimize the cost of breaking into the IoT system with limited resources. Its objective
function can be given as follows:

Ui = µiu2
i (t) + νiu0(t)(u− ui(t)) + ρi(x(t)− x̃), (4)

where µi, νi, and ρi are positive weighted factors that denote the relative importance of the components.
The objective function of the defender has three components. The first part is u2

i (t), the resource
cost to the attacker. Generally, the attacker should allocate enough energy resources to attack the IoT
system, and we use the linear quadratic form to denote the attacking resource cost, the energy or
power cost during attack. The second part is the cost for observing and weakening the IoT system.
We use u− ui(t) to denote the resources available for observing, except for the allocated attacking
resources, where u denotes the maximum resources that can be allocated. u0(t) denotes the difficulty
of weakening the IoT system; the more resources allocated for protecting by the defender, the harder
it is to weaken the IoT system. We combine the above components to denote the system observing
and weakening cost. The third part is the cost caused by the risk level, which is denoted by (x(t)− x̃).
Each attacker wants to increase the risk level of the IoT system higher than the maximum permissible
risk level x̃. Based on the objective function, attacker i wants to find the optimal allocated resources
ui(t) that minimize its cost function over time interval [0, T]:

min
ui(t)

Li(t) = min
ui(t)

{∫ T

0

{
µiu2

i (t) + νiu0(t)(u− ui(t)) + ρi(x(t)− x̃)
}

e−rtdt
}

, (5)

subject to Equation (1). Here, r is the discount rate.

3. Game Analysis

In this section, we will discuss both the open-loop Nash equilibrium solutions and the feedback
Nash equilibrium solutions to the proposed game model established in the previous section,
and analyze the optimal strategies for the attackers and defender in the IoT system. The open-loop
Nash equilibrium solutions will be given first, followed by the feedback Nash equilibriums. Both
solutions are given based on Bellman’s dynamic programming principle.

3.1. Open-Loop Nash Equilibrium Solutions

During the Stackelberg relations in the threat defense, the IoT system will first consume certain
resources for implementing a defense strategy, then the attackers will attack the system based on the
initial defending resource. After observing the attackers’ strategies, the resources of the IoT system
will be recalibrated to cope with all kinds of risk. Because both the IoT system and attackers’ resources
are limited, it is important to effectively allocate resources during the defense and attack based on the
proposed Stackelberg dynamic game. If the defenders and attackers choose to commit their strategies
from the outset, their information structure can be seen as an open-loop pattern, which means the
optimal strategies for the defender and attackers are functions of the initial risk level x(0) and the time
instant t. In this section, the open-loop Nash equilibrium will be given to the game Equations (3) and (5)
to obtain the optimal strategies in a finite time horizon [0, T].
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3.1.1. Open-Loop Solutions for the Attackers

In order to minimize the cost function, each attacker needs to choose their optimal resource
strategies based on the observed defense strategy. Before getting the optimal allocated resources,
we first give some definitions for understanding the proposed game model.

Definition 1. For attacker i, the resource strategy u∗i (t) is optimal if the following inequality holds for all
feasible control ui(t) 6= u∗i (t):

Li(u∗i (t), x∗(t), t) ≤ Li(ui(t), x(t), t). (6)

Definition 2. A set of controls
{

u∗i (t)
}

constitutes an open-loop Stackelberg equilibrium to the problem in
Equation (5), and x∗(t) is the corresponding state trajectory, if there exists a costate function Λi(t) such that
the following relations are satisfied,

u∗i (t) = argmin
ui(t)

{
Ui + Λi(t)

.
x(t)

}
, (7)

.
Λi(t) = −

∂
[
Ui + Λi(t)

.
x(t)

]
∂x(t)

, (8)

where Λi(t) in Equation (8) is an adjoint equation to describe the dynamics of a costate variable. The costate
function Λi(t) is a function associated with the state variable x(t). Generally, Equation (7) can be considered a
Hamiltonian system Hi(t) of the proposed game model, and Hi(t) = Ui + Λi(t)

.
x(t).

Based on the definitions given above, we can solve the attacker’s optimal resource strategy
problem based on the Bellman’s dynamic programming principle.

Lemma 1. The optimal resource strategy to attacker i is

u∗i (t) =
viu0(t)− βiΛi(t)

2µi
, (9)

where Λi(t) is given by the following:

Λi(t) =
eε(t−T) − ρi

ε
. (10)

Proof. See Appendix A.

Equation (9) shows that the optimal resource strategy of the attacker will be affected by u0(t)
and costate functions Λi(t). We can see that the optimal resource strategy of attacker i is in positive
proportion to the resource strategy u0(t) of the defender. The attackers will choose their optimal
resource strategies for intrusion based on the initial defense strategy.

3.1.2. Open-Loop Solutions for the Defender

The defender will allocate its resources to defend the attackers based on the attackers’ strategies.
In this subsection, we will give the open-loop Nash equilibrium to the defender.

Definition 3. For the defender, the resource strategy u∗0(t) is optimal if the following inequality holds for all
feasible control u0(t) 6= u∗0(t):

L0(u∗0(t), x∗(t), t) ≤ L0(u0(t), x(t), t). (11)
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Definition 4. A set of controls
{

u∗0(t)
}

constitutes an open-loop Stackelberg equilibrium to the problem in
Equation (3), and x∗(t) is the corresponding state trajectory, if there exist costate functions λ0(t) and λi(t)
such that the following relations are satisfied:

u∗0(t) = argmin
u0(t)

H0(t), (12)

.
λ0(t) = −

∂H0(t)
∂x(t)

, (13)

.
λi(t) = −

∂H0(t)
∂Λi(t)

, (14)

where the Hamiltonian system H0(t) of the defender can be expressed as follows:

H0(t) = U0 + λ0(t)
.
x(t) +

N
∑

i=1
λi(t)Λi(t)

=

[
µ0

N
∑

i=1
u2

i (t) + ν0u2
0(t) + ρ0(x̃− x(t))

]
+λ0(t)

[
αu0(t) + ∑

i∈N
βiui(t) + εx(t)

]
+

N
∑

i=1
λi(t)(−ρi − εΛi(t))

. (15)

Calculate the partial derivative for λ0(t) and λi(t) in the Hamiltonian system H0(t), we can obtain,

.
λ0(t) = ρ0 − ελ0(t), (16)

.
λi(t) = ελi(t). (17)

Solving Equations (16) and (17), we have,

λ0(t) =
ρ0 − eε(t−T)

ε
, (18)

λi(t) =
eε(T−t)

ε
. (19)

Calculating the partial derivative for u0(t) in Equation (15), we obtain,

u∗0(t) = −
αλ0(t)

2v0
. (20)

Based on the above analysis, the optimal solutions for both the attackers and defender are obtained,
we get the corresponding state trajectory x∗(t) using Equations (9) and (20) as follows:

x∗(t) =
1
ε

[
eε(T−t) − αu∗0(t)−

N

∑
i=1

βiu∗i (t)

]
=

1
ε

[
eε(T−t) +

α2λ0(t)
2v0

−
N

∑
i=1

βi
viu0(t)− βiΛi(t)

2µi

]
. (21)

3.1.3. Open-Loop Control Algorithm

In this subsection, we discuss the implementation open-loop control algorithm for the proposed
game analysis. Algorithm 1 is the open-loop control algorithm for the attackers and defenders. The
whole algorithm cycling can be divided into two parts. One is the “open-loop control of attackers”
part, which is used to calculate the optimal strategies of resource allocation during the attacks. The
other is the “open-loop control of defender” part, to make a decision on the resource level for threat
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defense. The time complexity of the algorithm will be O(n), because the algorithm should be solved
for all the attackers and the defender, and should be solved in a finite time horizon [0, T]. The space
complexity of the presented solution is O(n), because the function for the open-loop solution should
be invoked at each time. The progress can be described as follows.

Algorithm 1. Open-loop control algorithm for the attackers and defender.

Start algorithm
Step 1. Set up the parameter for the attackers and defender;
Step 2. The defender controls its initial strategy for resource allocation for threat defense;
Step 3. Start the open-loop control of the attackers and the defender;
Step 4. Start to calculate the open-loop control solutions for the attackers,
Step 4.1. Set up the objective function for the attackers;
Step 4.2. Calculate the solutions for the attackers.
Step 5. Get the open-loop solutions of the attackers for the defender;
Step 6. Start to calculate the open-loop control solutions for the defender;
Step 6.1. Set up the objective function for the defender;
Step 6.2. Calculate the solutions for the defender.
Algorithm End

3.2. Feedback Nash Equilibrium Solutions

To eliminate information nonuniqueness in the derivation of Nash equilibria, we can obtain the
optimal solutions for the proposed game mode to satisfy the feedback Nash equilibrium property.
In the feedback situation, the information structures of the defender and attackers follow a closed-loop
perfect state pattern, and the optimal strategies for the defender and attackers become functions of
the initial risk level x(t), the current risk level x(t) at time instant t, and the current time t. In this
subsection, the feedback Nash equilibrium solutions to the proposed Stackelberg dynamic game are
discussed based on the dynamic optimization programming technique developed by Bellman [33].
In the following subsections, we first discuss the optimal resource strategies for each attacker in
a finite time horizon [0, T]. Then, the optimal strategy of the defender is obtained based on the
attackers’ solutions.

3.2.1. Feedback Solutions for the Attackers

In this section, we first discuss the optimal resource strategies for the attackers, the feedback Nash
equilibrium solutions to the game Equations (1) and (5) will be discussed.

Definition 5. A set of control
{

u∗i (t)
}

constitutes a feedback solution to Equations (1) and (5); if there exists a
continuously differentiable function Vi(t, x), and Vi(t, x) satisfies the following differential equation:

−Vi
t (t, x) = min

ui(t)

{[
µiu2

i (t) + νiu0(t)
(
u− ui(t)

)
+ ρi(x(t)− x̃)

]
e−rt + Vi

x

[
αu0(t) + ∑

i∈N
βiui(t) + εx(t)

]}
. (22)

Calculating the partial derivative for ui(t) in Equation (22), we can then obtain

u∗i (t) =
viu0(t)− βiVx(t, x)ert

2µi
. (23)

Lemma 2. The value function Vi(t, x) admits a solution that satisfies,

Vi(t, x) = [Ai(t)x + Bi(t)]e−rt, (24)
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where Ai(t) is given by

Ai(t) =
e(r−ε)(T−t) + ρi

r− ε
, (25)

and Bi(t) are satisfied,
.
Bi(t) = rBi(t)− Ai(t)

[
αu0(t) + ∑

i∈N
βiui(t)

]
−µiu2

i (t)− νiu0(t)
(
u− ui(t)

)
+ ρi x̃

(26)

Proof. See Appendix B.

3.2.2. Feedback Solutions for the Defender

In this subsection, the feedback Nash equilibrium solution for the defender will be discussed.

Definition 6. A set of control
{

u∗0(t)
}

constitutes an feedback solution to Equations (1) and (3), if there exists
a continuously differentiable function V0(t, x), and V0(t, x) satisfies the following differential equation:

−V0
t (t, x) = min

u0(t)

{[
µ0

N
∑

i=1
u2

i (t) + ν0u2
0(t) + ρ0(x̃− x(t))

]
e−rt + V0

x

[
αu0(t) + ∑

i∈N
βiui(t) + εx(t)

]}
. (27)

As the game leader, the defender should consider the resource strategies of the attackers before
making a decision on the resource strategies. Calculating the partial derivative for u0(t) in (27),
we obtain

u∗0(t) = −
αV0

x (t)ert

2v0
. (28)

Lemma 3. The value function V0(t, x) admits a solution that satisfies,

V0(t, x) = [A0(t)x + B0(t)]e−rt, (29)

where A0(t) and B0(t) are given by

.
A0(t) = (r− ε)A0(t) + ρ0
.
B0(t) = rB0(t)− A0(t)

[
αu0(t) + ∑

i∈N
βiui(t)

]
−µ0

N
∑

i=1
u2

i (t)− ν0u2
0(t)− ρ0 x̃

. (30)

Proof. By taking the derivative of V0(t, x) with respect to t and x, we obtain,

V0
t (t, x) =

[
−rA0(t) +

.
A0(t)

]
x +

[
−rB0(t) +

.
B0(t)

]
, (31)

V0
x (t, x) = A0(t)e−rt. (32)

Solving Equations (27), (31), and (32), A0(t) and B0(t) are satisfied:
.
A0(t) = (r− ε)A0(t) + ρ0
.
B0(t) = rB0(t)− A0(t)

[
αu0(t) + ∑

i∈N
βiui(t)

]
− µ0

N
∑

i=1
u2

i (t)− ν0u2
0(t)− ρ0 x̃

. (33)
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Solving the above equation, we can obtain the expression of A0(t) as follows:

A0(t) =
e(r−ε)(T−t) − ρ0

r− ε
. (34)

Substituting Equation (34) into Equation (28), we can derive the optimal resource strategy for the
defender as follows:

u∗0(t) = −
αA0(t)

2v0
. (35)

Solving Equation (1), we can get the optimal state:

x∗(t) =
1
ε

[
eε(T−t) − αu∗0(t)−

N

∑
i=1

βiu∗i (t)

]
=

1
ε

[
eε(T−t) +

α2 A0(t)
2v0

−
N

∑
i=1

βi
viu0(t)− βi Ai(t)

2µi

]
. (36)

3.2.3. Feedback Control Algorithm

In this subsection, we will discuss the implementation feedback control algorithm for the proposed
game analysis, which is given in Algorithm 2. Similarly, the whole algorithm cycling can be divided
into the attackers’ part, and the defender’s part. The time complexity of the feedback control algorithm
will be O(n), and the space complexity is O(n). The progress can be described as follows.

Algorithm 2. Feedback control algorithm for the attackers and defender.

Start algorithm
Step 1. Set up the parameter for the attackers and defender;
Step 2. The defender control its initial strategy for resource allocation for threat defense;
Step 3. Start the feedback control of the attackers and the defender;
Step 4. Start to calculate the feedback control solutions for the attackers,
Step 4.1. Set up the objective function for the attackers;
Step 4.2. Calculate the solutions for the attackers.
Step 5. Get the feedback solutions of the attackers for the defender;
Step 6. Start to calculate the feedback control solutions for the defender;
Step 6.1. Set up the objective function for the defender;
Step 6.2. Calculate the solutions for the defender.
Algorithm End

4. Numerical Simulations

In this section, we will use MATLAB software to simulate the proposed Stackelberg dynamic game
model. We will analyze the resource strategies of attackers and defender, in the form of open-loop and
feedback. The simulation parameters are shown in Table 1. To simplify the simulations, we assume all
the attackers are uniform with the same simulation parameters.

Table 1. Parameter settings.

Parameter α βi ε µ0 v0 ρ0 µi vi ρi

Value −0.85 0.6 −0.5 0.3 0.5 0.2 0.1 0.5 0.4

4.1. Numerical Simulations of Open-Loop Nash Equilibrium Solutions

We first simulate the open-loop Nash equilibrium solutions of the model to get the optimal
defense resource strategies of the defender and attackers.

Figure 1 describes the relationship between the optimal strategies u∗i (t) and u∗0(t) over time
t(t ∈ [0, 10]). As shown in Figure 1, the optimal resource strategy of both the attacker and defenders
monotonically decrease with time t. In order to protect the security of the system, the defender adopts
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a strategy to consume its own resources when the attacker attacks. The attacker adopts a strategy to
attack the system and consumes its own resources. As the time changes, the optimal strategies for the
defender and attackers tend to convergence.
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Figure 1. (a) Optimal strategy of the attackers; (b) optimal strategy of the defender.

Figure 2 describes the changes in the attacker’s optimal resource strategy when u0(t) takes
different values. We find that the smaller u0(t), the smaller the optimal resource strategy ui(t). This is
because the attacker will choose their optimal resource strategies for attacks based on the observed
defense strategy. Figure 3 describes the relationship between the risk level of the system and time
t. The risk level at the initial moment is the highest, and with the effective defense of the defender,
the risk level shows a decreasing trend. As shown in Figure 3b, the risk level is a decreasing function
with respect to time t, which is proportional to the number of attackers. The number of attackers are
set to 1, 5, and 20, respectively. Figure 4 shows the risk level variation of the system, when the number
of the devices in the IoT system becomes a large number, to analyze the scalability of the proposed
model. We can prove that the proposed model can be used for IoTs with a large number of devices
based on Figure 4.
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Figure 2. Optimal strategy of the attacker with different u0(t) over time.
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Figure 3. (a) Risk level variation for a system with one attacker; (b) risk level variation for a system
with different numbers of attackers.
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Figure 4. Risk level with a large number of attackers under open-loop control.

4.2. Numerical Simulations of Feedback Nash Equilibrium Solutions

This subsection mainly simulates the feedback Nash equilibrium solution of the model. Figure 5
describes the relationship between the optimal strategy u∗i (t) and u∗0(t) with time t(t ∈ [0, 10]).
As shown in Figure 5a, the attacker’s optimal resource strategy is an increasing function with respect
to time t. The attackers control their own resource strategies. The aim of the attack is to increase the
risk level, so they allocate more resources for attacks under the feedback control situation. As shown
in Figure 5b, the defender’s optimal resource strategy is a decreasing function with respect to time t.
The defender controls its own resource strategy to minimize risk, but, because of limited resources,
may not have enough for defense as the time changes.

Figure 6 describes the relationship between the risk level of the system and time t. As shown in
Figure 6, the risk level is proportional to the number of attackers. In the feedback Nash equilibrium
solution, the attacker uses more attacks to increase the risk. Figure 7 shows the risk level variation
of the system, when the number of devices in the IoT system becomes large. Figure 8 gives the time
complexity of the proposed Stackelberg dynamic game. As shown in Figure 6, the time complexity of
both the open-loop and feedback control algorithm will be O(n).
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Figure 5. (a) Optimal strategy of the attacker; (b) optimal strategy of the defender.
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5. Conclusions

This paper proposes a Stackelberg dynamic game-based resource allocation model in the
cyber-security IoT system that is composed by one defender and N attackers. We formulate a dynamic
model for both the defender and the attackers to find their optimal strategies for resource allocation
in the process of defense and attack. By solving the open-loop Nash equilibrium solution and the
feedback Nash equilibrium solution, we find that the optimal resource solution for the defender
is the open-loop Nash equilibrium solution, and under the open-loop situation, the defender can
effectively reduce the risk level of the system. However, attackers can obtain more profit under the
feedback situation.
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Appendix A

Proof of Lemma 1.

To solve the game model, we use the maximum principle proposed by Pontryagin et al. [34]. The
Hamiltonian system of attacker i is given by

Hi(t) = Ui + Λi(t)
.
x(t)

=
[
µiu2

i (t) + νiu0(t)
(
u− ui(t)

)
+ ρi(x(t)− x̃)

]
+Λi(t)

[
αu0(t) + ∑

i∈N
βiui(t) + εx(t)

] (37)

Calculating the partial derivative for ui(t) and x(t) in Equation (37), we have

∂Hi(t)
∂ui(t)

= 2µiui(t)− viu0(t) + βiΛi(t), (38)

∂Hi(t)
∂x(t)

= ρi + εΛi(t). (39)
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Then we have the optimal solution for resource allocation as follows:

u∗i (t) =
viu0(t)− βiΛi(t)

2µi
, (40)

and the costate function Λi(t) can be given by the following differential equation,

.
Λi(t) = −ρi − εΛi(t). (41)

Solving Equation (41), we can obtain the expression of the costate function Λi(t):

Λi(t) =
eε(t−T) − ρi

ε
. (42)

Hence, Lemma 1 follows.

Appendix B

Proof of Lemma 2.

By taking the derivative of Vi(t, x) with respect to t and x, we obtain,

Vi
t (t, x) =

[
−rAi(t) +

.
Ai(t)

]
x +

[
−rBi(t) +

.
Bi(t)

]
, (43)

Vi
x(t, x) = Ai(t)e−rt. (44)

Substituting Equations (43–44) into Equation (27), Ai(t) and Bi(t) are satisfied:
.
Ai(t) = (r− ε)Ai(t)− ρi
.
Bi(t) = rBi(t)− Ai(t)

[
αu0(t) + ∑

i∈N
βiui(t)

]
−µiu2

i (t)− νiu0(t)
(
u− ui(t)

)
+ ρi x̃

, (45)

Then, we obtain

Ai(t) =
e(r−ε)(T−t) + ρi

r− ε
. (46)

Using Equation (44), we can derive the optimal resource strategies:

u∗i (t) =
viu0(t)− βi Ai(t)

2µi
, (47)

where Ai(t) is given by Equation (46).
Hence, Lemma 2. follows.
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