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Abstract: The Internet of Things (IoT) is faced with challenges that require green solutions and
energy-efficient paradigms. Architectures (such as ARM) have evolved significantly in recent years,
with improvements to processor efficiency, essential for always-on devices, as a focal point. However,
as far as software is concerned, few approaches analyse the advantages of writing efficient code when
programming IoT devices. Therefore, this proposal aims to improve source code optimization to
achieve better execution times. In addition, the importance of various techniques for writing
efficient code for Raspberry Pi devices is analysed, with the objective of increasing execution
speed. A complete set of tests have been developed exclusively for analysing and measuring the
improvements achieved when applying each of these techniques. This will raise awareness of the
significant impact the recommended techniques can have.

Keywords: Raspberry Pi; efficient code; code optimization; performance optimization

1. Introduction

The emergence of the Internet of Things (IoT) aims to improve quality of life by connecting
smart devices, applications, and technologies, empowered by the high volume of smart sensors,
radio-frequency identifications, communications and Internet protocols available. In this way,
IoT allows all kinds of physical objects to connect to the Internet and interact without the need for human
intervention, turning these objects into intelligent devices [1]. However, despite its growth potential it
still faces many challenges, mainly related to addressing, routing, standardization, restricted physical
capabilities (e.g., energy, processing, and memory), security, privacy, and openness [2].

With regard to IoT sensing, data are collected from objects and sent to a data warehouse, database,
cloud or similar, for analysis in order to take specific actions. Thus, single-board computers (SBCs),
integrated with sensors, built-in TCP/IP, and security functionalities are currently being extensively
used in the development of IoT products. Although they cannot compete with the computing
performance of higher-value systems due to limited computational power, they often represent the
best option to build inexpensive, mobile and low-power systems because of their compact design,
very low cost/performance ratio, and energy consumption. In this way, they are gaining increasing
interest in research computing, and the number of ARM processors in these kinds of devices has grown
exponentially due to their low power usage.

One of the most dominant SBCs, along with the Arduino, is the Raspberry Pi (RPi) [3]: a low-cost,
credit card sized, computer. The RPi was initially created to promote the teaching of basic computer
science in schools and developing countries, but has since become one of the most commonly used
devices (in 2017, the Raspberry Pi Foundation [3] announced 14 million of their devices had been sold
since 2012). It is particularly remarkable for the computing power it offers per watt, allowing essential
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computing tasks to be performed in a more energy efficient way, consuming less power and saving a
notable amount of energy. Mobility also plays an important role in the success of the RPi.

Given its suitability for applications in many areas, the RPi has been used in a large number
of research projects, from sensor networks [4–6], vehicle active safety systems [7], e-health care [8],
big data analytics [9], and image analysis [10], to various other areas. It has also been widely used in
educational projects [11], and in the construction of affordable and energy-efficient clusters consisting
of up to 300 nodes [12], which partially offsets its lack of computing power.

Thus, this proposal aims to analyse the application of diverse techniques for the efficient writing
of programs in Raspberry Pi devices, preserving the semantics of the program to reduce execution
times without affecting the original algorithms (and, consequently, the results), with the objective of
speeding up the executions. The approach evaluates the execution times obtained through the manual
application of these techniques, compared to the automatic optimizations offered by the GNU Compiler
Collection (GCC) [13]. The experimental results demonstrate that the proposed techniques achieve
significant improvements in runtime, even improving automatic optimizations (offered by the compiler
if the techniques are not applied). Thus, it is shown that optimization options provided by GCC do
not achieve the same improvements that programmers can achieve when applying these techniques
manually. In addition, this proposal provides a set of tests developed to allow the measurement and
analysis of these techniques.

The proposal, therefore, is intended, firstly to help programmers to directly write efficient code,
and, secondly, to show that the help offered by the compiler is, in some cases, insufficient when it
comes to obtaining the best efficiency.

The rest of the paper is organized as follows: the next section describes the scope of application
and the objectives taken into account in the approach; Section 3 discusses related work, proposed in
the literature; Section 4 contains a complete description of the materials and methods used during the
experiments; Section 5 details the recommended techniques to write efficient code; the experimental
results are presented and discussed in Section 6, whereas current limitations and future work are
addressed in Section 7. Finally, Section 8 concludes and summarizes the contributions of the paper.

2. Scope and Objectives

Several low-level optimization techniques are provided by compilers, more widespread than
manual coding techniques, so that source code is compiled into a set of machine instructions to decrease
the code size, use less memory, take less time to run, or perform fewer input/output operations.
Their main objective is to achieve these advantages while preserving the semantics of the program,
so that the algorithm remains unchanged.

Programming skills still have a role to play in this regard, given that the programmer has a large
impact on the efficiency of the code written. This proposal aims to demonstrate that, in some cases,
compilers such as GCC still do not achieve the same improvements that a programmer achieves when
applying optimization techniques manually.

Additionally, this approach aims to provide useful guidelines for developers when writing
efficient programs for IoT devices, so that they can achieve significant improvements with minimal
effort by modifying the code. For a non-expert programmer, it can be difficult to know how to optimize
a particular fragment of code so that it executes more rapidly, beyond the use of profilers and analysis
tools to detect bottlenecks, or parts where the program spends most of its execution times. In this sense,
it is important to highlight that an inefficient piece of code can waste a significant amount of time in
the long term, when repeated millions of times. Thus, it is intended that programmers of Raspberry Pi
and other ARM-based SBCs be aware of the important impact that even small and simple portions of
code can have on their applications, especially when it comes to those that run continually.

Speeding up the executions may also lead to the achievement of higher energy efficiencies since,
although energy consumption also depends on a power variable, reducing execution times implies a
reduction in energy consumption when this power is constant over time. Assuming this, several works
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have demonstrated that energy usage and time are directly related [14], especially with regards to
C and C++ languages [15,16], concluding that it is best to produce code that runs at full-throttle,
completing as quickly as possible [17]. However, this cannot be considered a general rule, as it cannot
be assumed that a decrease in execution time always results in an energy decrease.

The present approach is focused on C and C++, two of the most commonly used languages.
The use of interpreted languages such as Java and Python was ruled out because they need to be
translated during runtime, whereas for compiled languages the translation overhead is incurred just
once, when compiling the source, and therefore (depending on the application) better execution times
can be achieved [15]. In this sense, Fortran would also have been a good choice, but it is rarely used
at present.

Regarding profilers and analysis tools, they can be an important tool for improving codes, but they
are focused on detecting bottlenecks and measuring the execution times of each code fragment,
rather than improving the implementation of the whole program by writing efficient code directly.
As such, they are beyond the scope of this proposal. In addition, the use of profilers has been ruled
out for our proposal because, although they are carefully designed to be as inexpensive as possible,
they tend to introduce significant latency and overheads, influencing the runtime, which would be
unacceptable for taking measurements.

It is also important to highlight that Raspberry Pi devices were chosen instead of other sensor
nodes or smart objects, because of their ability to compute IoT data (within a reasonable time
when the complexity of the problem increases) rather than sending it to a central location for
processing. These types of devices are more suitable to demonstrate the important impact that
the proposed techniques have on execution times, since they support a much greater computational
load. Nevertheless, even if single-board microcontrollers are excluded, there are a large number of
SBCs that could have been used to perform the experiments. It was decided to focus on Raspberry
Pi devices because they stand out from the rest, due to the computing power they offer per watt,
better cost/performance ratio, and especially as they have been used in a large number of representative
and heterogeneous research projects (as mentioned above). In addition, after analyzing other SBCs,
it was concluded that ARM architectures predominate widely in most devices. Thus, the results
obtained with the Raspberry Pi devices can also be extrapolated to them.

Finally, higher efficiencies can be achieved thanks to parallelism and should be addressed in
future works. In fact, a transcompiler for the automatic parallelization of sequential codes has been
developed [18] to train users who are new to parallel programming. It is hoped that in the future,
an extension of the current proposal can be applied to the development of this transcompiler to help
resolve the challenges that the Internet of Things is currently facing, especially in terms of runtime and
energy consumption.

3. Related Work

There are few proposals aimed at writing efficient code for IoT devices. In addition,
most programmers have never been taught to consider efficiency when writing code.

As far as optimizing C and C++ codes is concerned, a proposal focused on the impact of compiler
optimization on the efficiency of several well-known programs is presented in ref. [16]. Fog provides an
extensive reference guide on optimizing C++ for Windows, Linux and Mac platforms, using CPU clock
cycles rather than seconds or microseconds as time measure, based on the x86 family of microprocessors
from Intel, AMD and VIA, including the 64-bit versions, in ref. [19]. In ref. [20], a complete chapter
dedicated to efficient C programming (on ARM architectures in general, but without time estimates)
can be found. A platform and independent compiler report on C++ performance is presented in
ref. [21]. It gives the reader a model of time and space overheads implied by the use of various C++
language and library features, presents techniques for using C++ in applications where performance
matters, and shows techniques for implementing C++ Standard language and library facilities to yield
efficient code. In ref. [22] a significant amount of running examples are provided to demonstrate how
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to apply performance-tuning principles to improve existing C++ code, also offering timed results
on an i7 processor (Intel Corporation, Santa Clara, UT, USA) with a Visual Studio 2010 compiler
(Microsoft Corporation, Redmond, WA, USA). A system to optimize applying dead code and common
subexpression eliminations is presented in ref. [23], whereas some methods for dead code elimination
and inlining techniques in C/C++ language are described in ref. [24]. A complete set of compiler-based
code-improvement techniques mostly focused on C code is presented in ref. [25], describing analytical
techniques and specific data flow problems and discussing transformations to enhance the running
times of programs on uniprocessor machines. A wide range of general guidelines and techniques used
to optimize C code can be found in refs. [26–28].

In addition, recent proposals have focused on code refactoring techniques [29–31] and
restructuring codes without changing external behavior, but they only cover a limited number of
techniques, and do not contain enough detail to help developers in writing more efficient code.

Nevertheless, there is a lack of approaches that analyze the advantages of writing efficient code
for RPi devices. Thus, the current proposal provides a set of tests which were developed exclusively for
the measurement and analysis of twenty-five different techniques to reduce execution times, aimed at
demonstrating the importance of applying certain efficient strategies when developing C/C++ codes
for this type of device. These techniques were chosen because they are the most representative of those
existing in the literature and so can be widely applied in an extensive range of programming routines
and tasks, significantly impacting application runtime. In addition, they are easy to use for beginners
as well as advanced programmers.

4. Materials and Methods

The experiments were developed on three types of Raspberry Pi devices: second-generation
model B, third-generation model B and third-generation model B+, whose characteristics are shown in
Table 1 [3]:

Table 1. Raspberry Pi (RPi) comparison chart.

Model RPi 2 B RPi 3 B RPi 3 B+

SOC Type Broadcom BCM2836 Broadcom BCM2837 Broadcom BCM2837B0

CPU Clock 900 MHz Quad Core ARM Cortex-A7 1.2 GHz Quad Core ARM Cortex-A53 1.4 GHz Quad Core ARM Cortex-A53

RAM 1 GB 1 GB 1 GB

GPU Broadcom VideoCore IV 1080p30 Broadcom VideoCore IV 1080p60 Broadcom VideoCore IV 1080p60

USB Ports 4 4 4

Ethernet 100 Mbit/s base Ethernet 100 Mbit/s base Ethernet Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

Power over Ethernet No No Yes (requires separate PoE HAT)

WiFi No On Board WiFi 802.11n On Board WiFi 802.11ac Dual Band 2.4 GHz & 5 GHz

Bluetooth No On Board Bluetooth 2.0/4.1 On Board Bluetooth 2.0/4.1/4.2 LS BLE

Video Output HDMI 3.5 mm Composite DSI (for LCD) HDMI 3.5 mm Composite DSI (for LCD) HDMI 3.5 mm Composite DSI (for LCD)

Audio Output I2 S HDMI 3.5 mm Composite I2 S HDMI 3.5 mm Composite I2 S HDMI 3.5mm Composite

Camera Input 15 Pin CSI 15 Pin CSI 15 Pin CSI

GPIO Pins 40 40 40

Memory MicroSD MicroSD MicroSD

RPi devices can be powered in several ways: using a 5 V micro USB mains adaptor with 1200 mA
power; using a USB-based portable battery compatible with smartphones; using the Mobile Pi Power
(MoPi) (a power regulator that offers multiple inputs such as solar cells, car power sockets, or standard
batteries, with the ability to swap power supplies without interruption); or using a battery box with
six or more AA batteries [32]. For this proposal, the power adapter was chosen for its stability and
reliability when it comes to maintaining the power.

All the experiments were conducted with an ambient temperature of 22 ◦C, reaching the RPi’s
maximum CPU temperature of 60 ◦C. In addition, automatic pauses of 3 min were scheduled between
each experiment to avoid possible overheating problems during measurements.

Raspbian, a port of the Linux Debian distribution optimized for the ARM instruction set, was used
as the operating system, as recommended by the Raspberry Foundation [3]. Therefore, every Raspberry
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Pi used for the experiments had Raspbian Stretch 4.14 (June 2018 released), with all its packages
updated on 1 October 2018. The operating system and all the files were stored in SanDisk Ultra
microSDHC class 10 memory cards.

As far as compilers are concerned, all the code was compiled using GCC 6.3.0 version (May 2017
released) contained in the last stable version of GCC in the Raspbian6.3.0− 18+ rpi1+ deb9u1 package.
In order to analyze the improvements obtained through the automatic optimization, there were four
levels of optimization available [13]:

• O0: without optimization for execution time. The objective of the compiler is to reduce the
cost of compilation and to allow debugging to produce the expected results. This is the default.
The other levels of optimization increase compilation time and the ability to debug the program
may disappear.

• O1: optimization for code size and execution time.
• O2: the compiler performs nearly all supported optimizations that do not involve a space–speed

tradeoff. This option increases both compilation time and the performance of the generated code.
• O3: maximum level of optimization (at the expense of compilation time, and possibly the ability

to debug the program).

The details of all the optimization flags can be found in ref. [13], but it is also possible to obtain
the exact set of optimizations that are enabled at each level by means of invoking GCC with −Q - -help
= optimizers flags.

To carry out the experiments, and in order to improve the accuracy of the measurements, each test
was repeated with at least one hundred million iterations, so that the runtime of the analyzed code grew
to a measurable value and so it was also possible to discard the test function invocation cost. In addition,
the end result was the average of ten different measurements in order to obtain ten execution time
samples, reducing the impact of cold starts and cache effects. In this way, random variations were
canceled out and the state of the caches tended to converge on a single value, avoiding outliers.
The general pseudocode followed in all the experiments is shown in Algorithm 1.

Algorithm 1 Time measurement.
1: procedure
2: initialization
3: for i← 0, 9 do
4: start time
5: for j← 0, 100000000 do
6: execute test
7: end for
8: get time
9: end for

10: return execution statistics
11: end procedure

To ensure the accuracy of the tests, especially as far as the automatic optimization of the compiler
is concerned, each test code was enclosed in a single function with an OPTIMIZE attribute in its
declaration whose content was defined through preprocessor directives, as shown in Listing 1. In this
way, to compile a program with, for instance, the maximum level of optimization, the compilation
command should be invoked as follows: g++ source.c -o output -Dlevel= ‘O3’.

Regarding the time measurement, the stopwatch class defined in ref. [22] was followed to time the
tests, with the objective of obtaining meaningful results on performance measurement (see Listing 2).
It consisted of a timer that provided functions to access a tick counter, using the chrono library,
available from C++ version 11 and later, with the benefit of being portable to other operating systems.
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This option was chosen because of its resolution of around 10 milliseconds and its lack of overhead
while running, so that the only latency laid in the system call to get the current time, which was not
significant when timing tasks of tens of milliseconds or more [22].

Listing 1. Preprocessors directives.

# i f d e f l e v e l
# define OPTIMIZE _ _ a t t r i b u t e _ _ ( ( optimize ( l e v e l ) ) )
# else
# define OPTIMIZE
# endif

Listing 2. Stopwatch class used for the measurements.

# include <chrono>
using namespace std : : chrono ;

c l a s s Watchtime {
std : : chrono : : system_clock : : t ime_point m_start ;
system_clock : : durat ion d i f f ;
public :
void s tar tTime ( ) ;
unsigned getTime ( ) ;
} ;

void Watchtime : : s tar tTime ( ) {
system_clock : : t ime_point : : min ( ) ; / / c l e a r s t h e t i m e r
Watchtime : : m_start = std : : chrono : : system_clock : : now ( ) ; / / s t a r t t h e t i m e r
}
unsigned Watchtime : : getTime ( ) {
Watchtime : : d i f f = system_clock : : now ( ) − m_start ;
return ( unsigned ) ( durat ion_cast <mil l i seconds >( d i f f ) . count ( ) ) ;
}

The measurement procedure called the startTime function of the stopwatch class so that it started
to count until it was stopped to get the elapsed time. After this, the result (difference between final
and initial times) was converted to milliseconds. This measurement process was repeated ten times for
each test, as mentioned above, to balance variations in the runtime.

With the objective of avoiding variations due to background tasks and context switching during
the tests, the experiments started their executions by calls made through Secure Shell (SSH) network
protocol, and only required services run, while unwanted services on Raspbian were reduced as much
as possible before performing the experiments. Therefore, lightdm desktop service and bluetooth and
wireless drives were disabled, together with daemons such as avahi or triggerhappy.

5. Techniques to Write Efficient Code

This section provides a brief introduction to the techniques to write efficient code, which were
selected from the existing literature [19–28]. All of them are focused on transformations aimed at
decreasing the running time of the programs. Section 6 details, in more depth, those that have proven
to be especially efficient when executing code in RPi devices.

Following Algorithm 1 presented above, two specific tests were developed for each technique:
one test with a standard code, and a second with the result of applying the corresponding efficient
technique on the first one. To get their associated runtimes (as discussed above), ten measurements
were performed, and the tests were repeated one hundred million times for each measurement.

It is important to highlight the fact that in many cases, speeding up programs supposes code
size increments that affect their readability. In addition, although all the experiments were based
on C++ code, they apply equally to C. Another important point is the infinite possible variations in



Sensors 2018, 18, 4066 7 of 21

the experiments to analyze each technique. The main objective of these tests was to demonstrate
that the proposed alternatives reach significant improvements in the runtime, even improving the
automatic optimizations offered by the compiler when the techniques are not applied. Thus, we intend
to demonstrate that it is necessary to take them into account when writing highly efficient code.

The source codes of all the proposed tests can be consulted in the Supplementary Materials. Next,
all the techniques considered for their development are introduced.

T1 Bit fields: a bit field is a data structure to hold a sequence of a certain number of bits with the
objective of improving the use of memory space—for instance, to avoid the use of structures
which require 8 bits of memory space, when only 2 of them are used. This is common with
true/false variables. However, bit fields are usually accessed using pointers, which leads to
aliasing problems. Consequently, in terms of speed, it is recommended to use an integer and,
in any case, applying enum or #de f ine masks to divide it. The experiment illustrates this problem,
comparing the individual access to each of the four bits of a structure versus the use of a
single integer.

T2 Boolean return: returning several boolean variables at the end of a function is not a recommended
practice, since each one of these returns implies using a whole register by itself. Instead,
the conversion of multiple bools into a single unsigned int is advised, with the help of associated
flag definitions. In this way, several checks can be made thanks to a single logical operation.

T3 Cascaded function calls: as far as possible, cascaded function calls that return pointers or
references should be avoided. For instance, in this experiment, the result of the call to the
getData function, which is repeated N times, can be replaced by a single call by storing the
reference to data and using it within the loop. In this case the programmer, unlike the compiler,
can know that getData always returns the same reference.

T4 Row-major accessing: languages such as Fortran or MATLAB support two-dimensional arrays
stored in a contiguous by column-major order, whereas row-major is used in C and C++.
This means that the element x + 1 is stored right next to x. Thus, it is recommended to increment
the leftmost index first when stepping through two-dimensional arrays, with the objective of
achieving a higher rate of cache hits when accessing them. Both of these ways to traverse a
two-dimensional array were used in the experiment.

T5 Constructor initialization lists: regarding the constructors, the use of initialization lists is
recommended when setting the initial values of the variables. Otherwise, assignments within the
body imply that the default constructors of the variables are always invoked, with the consequent
overhead. For instance, in the experiment the string constructor is called first for two attributes,
then the assignment operator of string is called inside the body of a class constructor to assign
the values. Afterwards, the destructor of string is called when the two attributes got out of scope.
This code is compared to another one in which, in a class, the arguments in the initialization list
are used to copy the variables directly.

T6 Common subexpression elimination: identical expressions that are computed repeatedly,
without changing the values of their operands, can be replaced with single variables that hold
the computed values. The experiment analyses the effect of storing an addition operation with
an integer and a square root in a local variable, to use in the rest of the code.

T7 Mapping structures: the use of tables when mapping values to constants, changing the checklist
of each of the possible cases (with nested i f statements) by a loop that traverses the table looking
for the right constant is recommended.

T8 Dead code elimination: this is one of the best known and widely applied optimizations by
compilers. When an instruction is totally unreachable or does not influence the result (e.g., in the
case of variables that are never used), it can be eliminated. The experiment analyses the impact
of two never-used variables assignments and an unreachable line.

T9 Exception handling: this is used with the objective of changing the normal flow of an execution
when anomalous or exceptional conditions occur. In this way, exceptions are necessary to deal
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with unexpected errors. In fact, it should be noted that all the containers in the C++ standard
library use new expressions that throw exceptions [22]. However, in some cases it is possible to
significantly improve performance when they are used within a loop, since they can be replaced
by continue or break statements, as applied in this experiment.

T10 Global variables within loops: regarding the use of assignments to global variables within loops,
it is recommended to move these allocations out of the loops by computing the corresponding
operations in local variables and not performing the assignments in the global variables until the
end of the loop is reached. The benefits of using this technique are analyzed in the experiment.

T11 Function inlining: it is an effective method to completely remove the overhead caused each
time a function is called. In fact, it is reported by some researchers as the most powerful code
optimization [22]. Besides, this technique is preferred over the use of #de f ine macros because the
latter does not check the types of function [20]. It consists of replacing a call, inserting the code
for the function, instead of calling it and thus removing call and return statements. A simple
example is used in the experiment, where an addition function is expanded inline inside a
subtraction one.

T12 Global variables: global variables are defined outside all functions, so their scope is the whole
program. Therefore, their use is not recommended in order to avoid functions interfering with
each other as little as possible, since global values can be changed by any function and may cause
programming problems later. In addition, global variables are not allocated to registers, so they
should not be used within critical loops in order to avoid unnecessary overhead. Thus, regarding
runtime, if a function uses global variables heavily, it is also beneficial to copy their values to
local variables and use these instead to improve access times, as discussed in the experiment.

T13 Constants inside loops: as far as possible, continuous access to constants within loops should be
avoided. In many cases, however, this often leads to poor readability.

T14 Initialization versus assignment: it is recommended to initialize variables directly, instead of
using a subsequent assignment, and so avoid the unnecessary assignment of the instantiation.
The experiment evaluates the benefit of this technique when using complex numbers.

T15 Division by a power-of-two denominator: this technique consists of changing division
expressions with power-of-two denominators by shift expressions, as shown in the experiment.

T16 Multiplication by a power-of-two factor: this technique, similar to the previous one, consists of
changing multiplication expressions with power-of-two factors by shift expressions.

T17 Integer versus character: the use of integers is preferred over characters when performing
arithmetic operations because C and C++ convert char values to integers before operating,
later converting the result back to char again. The experiments analyze the effects of using
characters or integers to make a sum.

T18 Loop count down: this technique can be applied when the order of the loop counter is not
determinative. It consists of traversing the loop in the opposite direction to take advantage
of the fact that it is quicker to process “i- -” as the loop condition. Instead, traversing the
loop forward (i = 0; i < 100 condition) means more steps: subtract i to 100, evaluate if the
result is zero, if not, increment the iterator and continue, which may result in a significant
time difference. This deviation is increased when in addition the loop is controlled by a while
statement, as analyzed in the experiment. Another important point that must be taken into
account is the reduction of the cost of the loop termination clause, given the extensive number of
times that it can be evaluated.

T19 Loop unrolling: there is the possibility of unrolling small loops to improve runtime, reducing the
number of iterations and repeating the loop body several times. However, loop unrolling has an
important disadvantage (i.e., code size is increased), so it should be applied carefully. Therefore,
to avoid decreasing the performance of the cache, only unrolling loops which really affect the
final runtime is recommended.

T20 Passing structures by reference instead of value: structures should be passed by reference on
function calls whenever possible in order to avoid the overhead associated with the complete copy
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of each structure (including constructor and destructor) when passed by value. Since reference
arguments can modify the original instance (unlike value arguments), it is recommended that
pointers to structures be declared as constants when their pointed values are not going to change.
The experiment consists of a class with two string members and a data structure containing one
integer attribute which is passed by reference in a first test and by value in a second one.

T21 Pointer aliasing: this refers to the case where the same address is pointed to by two or
more pointers. Thus, writing to one will affect the reading from the other. Due to this
possibility, the compiler is prevented from applying certain optimizations, affecting efficiency.
The experiment consists of a common subexpression elimination (aforementioned in T6)
involving memory accesses through pointer, which cannot be automatically optimized by the
compiler due to aliasing. There are four addition operations, which add the value pointed to
by the same pointer to integer to the values stored in four different addresses (also pointers
to integer).

T22 Chains of pointers: this technique is directly related to the previous one, since it consists
of an optimizing chain of pointers (a pointer which points to another pointer, and so on).
The experiment analyzes the effect of caching a pointer to an object in a local variable, to then
access the rest of the pointers instead of using the entire chain every time.

T23 Pre-increment versus post-increment: the use of pre-increment operators is preferred with
data types whose classes overload pre-increment and post-increment operators. While the
post-increment operator needs to create a previous copy of the object, the pre-increment avoids it.

T24 Linear search: generally, linear search through a list implies two main comparisons—one to
control the loop iterations, and another to determine if the current key is the desired one.
The performance can be improved with a single comparison if a while statement is used
(while(list[i]! = searched)). To avoid problems when the searched value is not contained in
the list, the size of the array should be increased and the desired value inserted at the end. In this
way, the algorithm can know if the value was contained in the list by simply checking that the
found index does not correspond to the last position.

T25 Invariant IF statements within loops: regarding loops, another technique that can be applied
consists of transforming one loop into two when it contains a loop-invariant i f statement. For this,
it is necessary to take the conditional expression out of the loop, so that one identical loop is
traversed within each condition of the i f .

6. Experimental Results and Discussion

The runtime results of the tests related to the aforementioned techniques are shown in Tables 2–4,
organized by the device in which the experiments are executed (RPi 2 model B, RPi 3 model B and
RPi 3 model B+).

As described in Section 4, each test was introduced into a loop (to be repeated to at least one
hundred million iterations), and in turn this loop was executed ten times, in order to obtain the average
result of those ten measurements. This initial runtime result, given in milliseconds, was divided by
the number of iterations (getting the runtime of a single execution) and converted to nanoseconds
for readability. The standard deviation was also calculated in order to quantify the dispersion of
the measurements.

As mentioned above, two specific tests were developed for each technique: the first one with
standard code, and the second with the result of applying the corresponding efficient technique on the
first one (to decrease its runtime). In this way, the tables show the execution times in nanoseconds
of both tests (standard code and efficient code) for each technique, applying and not applying the
automatic optimization offered by the compiler—hat is, with optimization level three and without
optimization (optimization level zero), respectively.

In addition, the percentage of improvement between the execution of the standard code and the
efficient one is also shown, to facilitate the analysis of the results.
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The standard deviations obtained were very small (with an average deviation of 0.31%),
thereby indicating that the measurements tended to be close to the means given in the tables.
The standard deviations were not included in the tables, but they can be consulted in the Supplementary
Materials (Spreadsheet S2: complete experimental results).

Table 2. Runtime results and percentages of improvement in Raspberry Pi 2B.

Runtime (without Optimization) Runtime (Optimization Level 3)
Technique Standard (ns) Efficient (ns) Improvement (%) Standard (ns) Efficient (ns) Improvement (%)

1 Bit fields 85.71 42.28 50.67 31.25 28.92 7.46
2 Boolean return 40.63 38.35 5.61 20.32 20.30 0.10
3 Cascaded function calls 828.28 418.60 49.46 514.83 98.46 80.88
4 Row-major accessing 94,096.73 94,096.72 0.00 12,850.10 7502.61 41.61
5 Constructor initialization lists 1158.58 1128.70 2.58 1148.76 1107.63 3.58
6 Common subexpression elimination 74.50 55.29 25.79 36.13 34.97 3.21
7 Mapping structures 522.61 812.45 −55.46 505.80 442.10 12.59
8 Dead code elimination 32.47 24.61 24.21 16.82 16.78 0.24
9 Exception handling 9465.32 42.51 99.55 9406.65 10.06 99.89

10 Global variables within loops 558.62 425.40 23.85 87.27 87.29 −0.02
11 Function inlining 55.66 35.60 36.04 20.15 20.13 0.10
12 Global variables 1538.84 1211.68 21.26 697.21 589.75 15.41
13 Constants inside loops 504.34 353.86 29.84 224.77 228.08 −1.47
14 Initialization versus assignment 57.09 27.96 51.02 54.55 10.01 81.65
15 Division by a power-of-two denominator 35.83 35.79 0.11 20.16 20.13 0.15
16 Multiplication by a power-of-two factor 35.63 35.60 0.08 20.05 20.02 0.15
17 Integer versus character 60.45 54.82 9.31 20.14 20.13 0.05
18 Loop count down 1483.21 1824.74 −23.03 360.35 360.29 0.02
19 Loop unrolling 770.95 501.29 34.98 115.28 78.31 32.07
20 Passing structures by reference 509.51 44.75 91.22 474.79 10.06 97.88
21 Pointer aliasing 121.96 114.11 6.44 71.63 68.24 4.73
22 Chains of pointers 84.58 61.19 27.65 24.64 24.61 0.12
23 Pre-increment versus post-increment 2706.01 2707.06 −0.04 692.16 690.97 0.17
24 Linear search 2487.52 2060.83 17.15 700.99 378.30 46.03
25 Invariant IF statements within loops 2161.82 1496.00 30.80 156.92 156.88 0.03

Table 3. Runtime results and percentages of improvement in Raspberry Pi 3B.

Runtime (without Optimization) Runtime (Optimization Level 3)
Technique Standard (ns) Efficient (ns) Improvement (%) Standard (ns) Efficient (ns) Improvement (%)

1 Bit fields 55.09 28.35 48.54 21.05 20.16 4.23
2 Boolean return 32.84 25.23 23.17 12.65 12.61 0.32
3 Cascaded function calls 532.65 295.25 44.57 309.11 70.57 77.17
4 Row-major accessing 61,209.77 61,139.89 0.11 6796.87 5282.00 22.29
5 Constructor initialization lists 766.16 746.05 2.62 757.83 731.68 3.45
6 Common subexpression elimination 50.05 37.52 25.03 26.20 25.22 3.74
7 Mapping structures 399.75 524.69 −31.25 381.80 371.36 2.73
8 Dead code elimination 21.03 15.12 28.10 10.96 10.92 0.36
9 Exception handling 5465.30 26.68 99.51 5460.63 6.67 99.88

10 Global variables within loops 382.89 281.08 26.59 74.11 74.07 0.05
11 Function inlining 37.88 23.54 37.86 12.54 12.50 0.32
12 Global variables 910.18 749.08 17.70 521.35 480.29 7.88
13 Constants inside loops 340.73 236.00 30.74 144.84 137.48 5.08
14 Initialization versus assignment 40.35 18.48 54.20 37.03 6.72 81.85
15 Division by a power-of-two denominator 23.41 23.35 0.26 12.55 12.51 0.32
16 Multiplication by a power-of-two factor 23.47 23.35 0.51 12.64 12.61 0.24
17 Integer versus character 40.07 35.86 10.51 12.64 12.60 0.32
18 Loop count down 1027.85 1292.02 −25.70 269.68 188.72 30.02
19 Loop unrolling 532.41 330.48 37.93 93.45 57.18 38.81
20 Passing structures by reference 348.64 30.02 91.39 332.00 6.72 97.98
21 Pointer aliasing 84.31 78.39 7.02 48.47 45.86 5.38
22 Chains of pointers 60.54 43.69 27.83 16.82 16.79 0.18
23 Pre-increment versus post-increment 1867.60 1868.37 −0.04 519.81 519.78 0.01
24 Linear search 1690.00 1368.81 19.01 435.44 284.90 34.57
25 Invariant IF statements within loops 1538.42 1038.22 32.51 123.54 123.50 0.03

Note that although the runtime differences between a standard code and its optimized version
may seem insignificant, they refer to a single execution, so they become quite important when they are
executed iteratively in loops with long execution time. This is especially important within programs
that are running 24/7 throughout the year, something very common in IoT and these types of devices.

As expected, the execution times of the codes compiled with the maximum level of optimization
(3) were significantly lower (applying and without applying the techniques). However, it was also
important to analyze the effects of writing efficient code without the optimization offered by the
compiler, because that way the ability to debug the programs remains unaltered and the expected
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results can be obtained. Therefore, in cases in which the debugging process takes a lot of time,
employing techniques to write efficient code can imply substantial improvements. Nevertheless,
results related to other optimization levels (1 and 2) were not included in the tables, as they were not
particularly representative for the objectives of this article because they provided values that did not
improve results. However, they can be consulted in the Supplementary Materials.

Table 4. Runtimes results and percentages of improvement in Raspberry Pi 3B+.

Runtime (without Optimization) Runtime (Optimization Level 3)
Technique Standard (ns) Efficient (ns) Improvement (%) Standard (ns) Efficient (ns) Improvement (%)

1 Bit fields 47.92 24.67 48.52 18.18 17.41 4.24
2 Boolean return 28.35 21.77 23.21 10.90 10.88 0.18
3 Cascaded function calls 460.35 256.04 44.38 267.48 61.58 76.98
4 Row-major accessing 53,434.46 53,584.19 −0.28 6764.78 4622.89 31.66
5 Constructor initialization lists 673.66 667.99 0.84 662.28 653.39 1.34
6 Common subexpression elimination 43.01 32.16 25.23 22.46 21.52 4.19
7 Mapping structures 338.54 460.12 −35.91 324.79 323.35 0.44
8 Dead code elimination 17.94 12.86 28.32 9.50 9.43 0.74
9 Exception handling 4988.09 23.59 99.53 5056.53 6.03 99.88

10 Global variables within loops 330.50 243.72 26.26 63.54 63.81 −0.42
11 Function inlining 32.21 20.01 37.88 10.93 10.88 0.46
12 Global variables 793.95 679.45 14.42 464.86 436.42 6.12
13 Constants inside loops 289.83 202.27 30.21 126.07 119.64 5.10
14 Initialization versus assignment 34.35 15.72 54.24 31.52 5.71 81.88
15 Division by a power-of-two denominator 20.08 20.01 0.35 10.93 10.88 0.46
16 Multiplication by a power-of-two factor 20.07 20.01 0.30 10.80 10.72 0.74
17 Integer versus character 34.88 31.20 10.55 10.77 10.72 0.46
18 Loop count down 889.60 1103.27 −24.02 240.11 180.32 24.90
19 Loop unrolling 456.63 286.43 37.27 79.51 48.60 38.88
20 Passing structures by reference 301.95 26.29 91.29 285.03 5.85 97.95
21 Pointer aliasing 72.21 67.18 6.97 41.57 39.31 5.44
22 Chains of pointers 51.51 37.16 27.86 14.34 14.29 0.35
23 Pre-increment versus post-increment 1611.73 1652.95 −2.56 469.88 486.87 −3.62
24 Linear search 1455.65 1177.63 19.10 386.03 270.78 29.86
25 Invariant IF statements within loops 1321.56 895.18 32.26 105.90 105.86 0.04

Figures 1 and 2, corresponding to the previous tables, are provided to facilitate understanding
of the data. They show the percentages of improvement in the execution times when efficient codes
are used, with respect to their standard versions, in the three types of devices (RPi 2 model B, RPi 3
model B and RPi model B+). In the case of the executions represented by Figure 1, the automatic
optimizations offered by the compiler were not used (i.e., the optimization level was set to zero (0)
when compiling the tests), whereas Figure 2 corresponds to the tests compiled with the highest level of
optimization (3).

Figure 1. Percentages of improvement in the runtime achieved by writing efficient code (without
compiler optimization).
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Figure 2. Percentages of improvement in the runtime achieved by writing efficient code (with compiler
optimization level 3).

As shown in the tables and both figures, although the more advanced the Raspberry Pi model
was the shorter its execution times were. There were no significant differences in the percentages of
improvement when applying the techniques in one model or another, except for the techniques
that used mapping structures (T7) and avoided global variables (T12), since RPi 2B achieved
(with optimization level 3) improvements of 10% compared to the other devices (this does not mean
that their execution times were lower, but that the impact of applying the technique was greater).

Reductions of up to 99.53% could be achieved using these efficient techniques, as shown in both
the figures and the tables. Particularly noteworthy are the results (discussed below) obtained with the
exception handling technique (T9) and passing structures by reference instead of by value (T20), to be
expected given that both are widely known.

Regarding the writing of efficient codes without compiler optimization (see Figure 1),
improvements were achieved in most cases, except in seven, where the efficient codes reached
almost the same runtimes as the standard codes. The effectiveness of the following techniques
could not be demonstrated, despite having made substantial efforts to prove their usefulness:
row-major accessing (T4); constructor initialization lists (T5); mapping structures (T7); division by a
power-of-two denominator (T15); multiplication by a power-of-two factor (T16); loop count down
(T18); and pre-increment versus post-increment (T23). In fact, if these techniques were discarded,
the others achieved an average improvement of 36.20%. In this way, 16 techniques demonstrated their
efficiency to write efficient code when compiler optimization was set to default (i.e., with level zero).

In the case of writing efficient codes combined with the application of optimization level 3,
the compiler successfully resolved most of the cases, as shown in Figure 2. However, as can be observed,
it is still recommended to write efficient code manually in relation to the following eight techniques,
whose average percentage of improvement in the runtime achieved when applying them was
approximately 60%: cascaded function calls (T3); row-major accessing (T4); exception handling (T9);
initialization versus assignment (T14); loop count down (T18); loop unrolling (T19); passing structures
by reference (T20); and linear search (T24). Next, they were analyzed in greater depth, evaluating the
factors which conditioned their improvement but focusing only on the RPi 3B+, as this was the device
which obtained the best execution times (as expected).
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6.1. Cascaded Function Calls

In this technique, the standard code consists of a loop that, in each iteration, checks the content
of an integer variable calling a function through a pointer, which returns the value of the variable.
In the efficient code, the value of the variable is stored in an auxiliary variable, so that the function is
only called once (outside the loop), and it is the auxiliary variable which is checked in all iterations.
This technique can be applied in cases where the programmer (unlike the compiler) knows that the
value of the variable does not change during the execution of the loop. The code of both tests can be
shown in Listing 3. Writing the efficient alternative by hand results in an improvement of over 70%,
in just 15 iterations of the loop (N = 15).

Listing 3. Cascaded function calls. Standard and efficient tests developed.

void standard ( Test ∗ t e s t ) { void e f f i c i e n t ( Test ∗ t e s t ) {
for ( i n t i =0 ; i <N; i ++) i n t s t a t u s = t e s t−>g e t S t a t u s ( ) ;
i f ( t e s t−>g e t S t a t u s ( ) = = 1 ) for ( i n t i =0 ; i <N; i ++)
a [ i ] = 0 ; i f ( s t a t u s ==1)
} a [ i ] = 0 ;
}

Figure 3 shows how the percentage of improvement varied according to the number of calls to
the function—that is, the number of iterations of the loop. A single call to the function achieved a
small improvement of 0.49%, whereas with two calls it already reached 35%. From 100 to more calls,
the percentage grew very slowly, stabilizing around an improvement of 90%. Therefore, it is advisable
to apply this technique whenever possible under the above conditions.

Figure 3. Cascaded function calls. Percentage of improvement in the runtime according to the number
of calls to the function (number of iterations of the loop) in RPi 3B+.

6.2. Row-Major Accessing

This technique is based on the recommendation of always traversing the data in the order it
was stored, incrementing the leftmost index first when stepping through two-dimensional arrays.
The objective is to achieve higher rates of cache hits when accessing them, since C/C++ stores them
in a contiguous by row-major order—that is, row-by-row (values are written putting the first row in
contiguous memory, then the second row right after it, and so on). Thus, in the test developed for this
technique, the standard code traverses the array iterating over each column before going to the next
one (processing the columns in the outer loop and the rows in the inner loop), whereas the efficient
code consists of traversing using row-major iteration (see Listing 4).

Figure 4 shows how the percentage of improvement obtained by applying this technique grew
almost linearly depending on the size of the vector (larger size, greater percentage of improvement),
due to the increase in the work of the cache and the reduction of efficiency when column-major
iteration was used.
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Listing 4. Row-major accessing. Standard and efficient tests developed.

i n t standard ( ) { i n t e f f i c i e n t ( ) {
for ( i n t j =0 ; j <N; j ++) for ( i n t i =0 ; i <N; i ++)
for ( i n t i =0 ; i <N; i ++) for ( i n t j =0 ; j <N; j ++)
array [ i ] [ j ] = 0 ; array [ i ] [ j ] = 0 ;
} }

Figure 4. Row-major accessing. Percentage of improvement in the runtime according to the matrix size
in RPi 3B+.

Nevertheless, this test was focused on arrays with the same number of rows and columns
(representing square matrices). Hence, it is noteworthy to mention that the improvement would be
influenced by the size of both dimensions. For instance, when traversing a narrow matrix (with few
columns) by column-major order, consecutive rows may be found in the cache, and therefore the results
obtained by executing the standard code would improve substantially. Thus, analysis of the diverse
conditions depending on variations in the size of both dimensions of the arrays will be undertaken in
future work.

6.3. Exceptions

This technique is based on the fact that in some cases the use of exceptions within loops can be
avoided by using continue or break statements. The degree of improvement depends directly on the
number of exceptions that are thrown. Note that, in the experiment, the runtime of the standard test
referred to the throw of 100 simple exceptions, without any type of content except its declaration
(class myexception : public exception {} myex;), achieving improvements of 99% when using the
efficient version (see Listing 5). This time penalty was mainly due to the call to the exception handler,
which includes passing a parameter as argument. The type of this argument should be checked
against the type of parameter specified by the handler. If they match, the exception is caught and
the control is transferred to the handler. Thus, although exceptions are necessary to support error
handling, this technique is recommended when exceptions are within loops and there is a relatively
high probability of occurrence, together with the possibility of being managed without throwing them.

Listing 5. Exceptions. Standard and efficient tests developed.

i n t num = 1 0 0 ; i n t num = 1 0 0 ;
for ( i n t i =0 ; i <1 ; i ++){ for ( i n t i =0 ; i <1 ; i ++){
t r y { i f (num != 100) {
i f (num == 100) { continue ;
throw myex ; }
} }
} catch ( except ion& e ) { return 0 ;
} }
}
return 0 ;
}
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6.4. Initialization versus Assignment

Regarding this technique, the tests use complex double numbers, declared as a variable whose
real and imaginary parts are both of type double. In the efficient code, the test is performed initializing
the variable directly, whereas in the standard code, a subsequent assignment is used, as shown in
Listing 6. In this case, the percentage of improvement achieved by writing efficient code reached 80%
with respect to the use of the standard code, thanks to avoiding the unnecessary assignment of the
instantiation. In general, it is recommended to use this technique with any type of data.

Listing 6. Initialization versus assignment. Standard and efficient tests developed.

void standard ( ) { void e f f i c i e n t ( ) {
s td : : complex<double> mycomplex ; s td : : complex<double> mycomplex ( 3 . 1 4 ) ;
mycomplex = ( 3 . 1 4 ) ; }
}

6.5. Loop Count Down

This technique can be applied in cases where the order of the loop counter is not determinative.
The standard code traverses the loop forward while the efficient code consists of traversing it in the
opposite direction, as shown in Listing 7. Its use resulted in improvements from 20% to 30% with
array sizes greater than 20 elements (see Figure 5). This is because it is quicker to process “i - -” as the
while condition when traversing it in the opposite direction. As mentioned in Section 5, traversing the
loop forward implies more steps: subtract i to N, evaluate if the result is zero; if not, increment the
iterator and continue. In this sense, reductions in the cost of the loop termination clauses would also
mean significant improvements, given the extensive number of times that they can be evaluated.

Listing 7. Loop count down. Standard and efficient tests developed.

void standard ( ) { void e f f i c i e n t ( ) {
for ( i n t i =0 ; i <N; i ++) { i n t i = N+1;
a [ i ]= i ; while (−− i ) {
} a [ i ] = i ;
} }
}

Figure 5. Loop count down. Percentages of improvement in the runtime according to the array size
(number of elements) in RPi 3B+.

6.6. Loop Unrolling

In the case of the loop unrolling technique, the tests consist of initializing an integer array so that
the standard code traverses the loop forward and performs an assignment (initialization to zero) in
each iteration (see Listing 8), whereas the efficient code unrolls the loop and performs five assignment
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operations in each iteration, consequently increasing the code size while reducing the number of
iterations. Figure 6 helps in the analysis of the execution results of these tests.

Listing 8. Loop unrolling. Standard and efficient tests developed.

void standard ( ) { void e f f i c i e n t ( ) {
i n t i ; i n t i ;
for ( i =0 ; i <N; i ++){ for ( i =0 ; i <N; i +=5){
array [ i ] = 0 ; array [ i ] = 0 ;
} array [ i +1] = 0 ;
} array [ i +2] = 0 ;
array [ i +3] = 0 ;
array [ i +4] = 0 ;
}
}

(a) (b)

(c) (d)

Figure 6. Loop unrolling in RPi 3B+. Percentages of improvement in the runtime according to the
number of iterations. (a) Array size of 50 elements. (b) Array size of 100 elements. (c) Array size of
200 elements. (d) Array size of 300 elements.

In Figure 2, the percentage of improvement reached 39% with an array of 50 elements (N = 50).
However, it is necessary to understand the factors that affect this technique, since it depends on
both the size of the vector and the number of unrolled operations. Figure 6a–d matches arrays of 50,
100, 200, and 300 elements, respectively, and represent the percentages of improvement according
to the number of iterations. Taking as example the array of 100 elements, 50 assignment operations
are needed to initialize the entire vector with only two iterations of the loop, 25 assignments for
4 iterations, and so on, until reaching 50 iterations (which only need two assignment operations).
As can be observed, the smaller the vector, the greater the improvement achieved using this technique.
In fact, the improvement was not remarkable when the unrolling was used to initialize arrays of 200 or
more elements.
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As can be observed, regarding the array of 50 elements (see Figure 6a), there was an improvement
of around 40% when the number of iterations was smaller than 10 (there were more than 10 assignment
operations unrolled). Thus, when the number of iterations grew (exceeding 20 iterations) the
improvement disappeared. The same applies to the other three arrays.

6.7. Passing Structures by Reference Instead of Value

In this technique, the standard test passes a structure by value and directly accesses the value of
an integer variable (see Listing 9), whereas in the efficient version the structure is passed by reference
and the content of the variable is accessed through a pointer. In both cases, the structure consists of a
class with two string variables, and a sub-structure with an array of 10 elements and an integer variable.
In this way, passing the structure by reference resulted in an improvement of 98%. As mentioned in
Section 5, this was due to the overhead associated to the complete copy of each structure (including
constructor and destructor) when passed by value. In addition, since reference arguments can modify
the original instance (unlike value arguments), it is recommended that pointers to structure be declared
as constants when their pointed values are not going to change.

Listing 9. Passing structures by reference. Standard and efficient tests developed.

typedef s t r u c t { i n t array [ 1 0 ] ; i n t index ; } S t r u c t u r e ;
c l a s s Class {
private :
s t r i n g a t t r i b u t e _ a ;
s t r i n g a t t r i b u t e _ b ;
S t r u c t u r e s t r u c t u r e ;
public :
Class ( s t r i n g a t t r i b u t e 1 , s t r i n g a t t r i b u t e 2 , i n t i ) ;
i n t getIndex ( ) ;
} ;
Class : : Class ( s t r i n g a t t r i b u t e 1 , s t r i n g a t t r i b u t e 2 , i n t i ) {
a t t r i b u t e _ a = a t t r i b u t e 1 ;
a t t r i b u t e _ b = a t t r i b u t e 2 ;
s t r u c t u r e . index = i ;
}
i n t Class : : getIndex ( ) {
return s t r u c t u r e . index ;
}

i n t standard ( Class value ) { i n t e f f i c i e n t ( Class ∗ r e f e r e n c e ) {
return value . getIndex ( ) ; return re ference−>getIndex ( ) ;
} }

6.8. Linear Search

Although there are other search algorithms that achieve faster results, linear search is especially
recommended in short lists or for users who are beginners in programming. This technique consists of
finding a target number within an integer array (see Listing 10). The standard code is based on a linear
search, so that each element is sequentially checked until a match is found (returning the index) or
until all the elements have been searched (the target value does not match with any element and the
function returns −1). Consequently, two comparisons are required: one to control the loop iterations,
and another to determine if the current key is a value match. In the efficient code, a while statement is
used to make a single comparison in each iteration. To achieve this, it is necessary to increase the size
of the array and insert the target value in the last position so that if the found index does not match the
last position, the value was contained in the array. In both tests, the arrays are initialized so that the
searched number is in their last position.

The use of this technique resulted in improvements of between 20% and 30% with arrays of six or
more elements, as shown in Figure 7.
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Listing 10. Linear search. Standard and efficient tests developed.

i n t standard ( i n t ∗ l i s t , i n t N, i n t search ) { i n t e f f i c i e n t ( i n t ∗ l i s t , i n t N, i n t search ) {
i n t i ; i n t i ;
for ( i = 0 ; i < N; i ++) l i s t [N] = search ;
i f ( l i s t [ i ] == search ) i = 0 ;
return i ; while ( l i s t [ i ] != search )
return −1; i ++;
} i f ( i == N)
return −1;
}

Figure 7. Linear search with for loops. Percentages of improvement in the runtime according to the
array size (number of elements) in RPi 3B+.

7. Limitations and Future Work

The main objective of the experiments was to demonstrate that the proposed alternatives achieved
significant improvements in the runtime, even improving the automatic optimizations offered by the
compiler if the techniques were not applied. However, there are infinite possible variations which
could have been applied and analyzed in each of the experiments, which were also conditioned to the
programming language (as discussed in Section 2), the device, and its hardware architecture, as well
as the workloads used.

Therefore, future work is expected to expand the analysis of the seven techniques that were proven
to be essential regarding the improvement of runtimes in Raspberry Pis. This involves evaluating all
those conditions that influence such improvements, including, for example, different data types or
varied workloads, among other essential circumstances that should be taken into account in order to
manually write efficient code. In the same way, the possibility of analyzing the effects of combining
several techniques will also be taken into account. Moreover, modeling and simulation could also be
crucial for properly evaluating the energy savings achieved when writing efficient code.

The analysis in other IoT devices, apart from Raspberry Pis, as well as the use of other compilers
(and even other programming languages) will also be addressed in future work, to determine
if these techniques can be applied to other types of IoT hardware, regardless of architecture.
In addition, a software and hardware codesign has not been ruled out, since a joint specification,
design, and synthesis of hardware and software IoT systems could increase the improvements
already achieved.

In addition, it is evident that higher efficiencies can be achieved thanks to parallelism. Thus, it is
hoped that in the future the current proposal can be extended and applied to help users who are new
to parallel programming (as mentioned in Section 2), and thus help resolve the challenges that the
Internet of Things currently faces.
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8. Conclusions

This paper analyzed a broad set of techniques used to write efficient programming codes for
Raspberry Pi devices. All of these techniques, which were selected from the existing literature,
are focused on transformations aimed at decreasing execution times while preserving the semantics of
the program, so that the algorithm remains unchanged. In addition, the proposal provides a set of
tests that were developed to allow the measurement and analysis of the proposed efficient techniques.

We demonstrated that, in some cases, compilers such as GCC still do not achieve the same
improvements that a programmer achieves when applying optimization techniques manually. Thus,
the approach evaluated the execution times obtained through the manual application of these
techniques, compared to the automatic optimizations offered by the compiler, which were insufficient
when it came to obtaining the best efficiency.

Thus, 25 techniques were analyzed, of which 17 demonstrated their effectiveness when writing
efficient codes without the optimization offered by the compiler. In the case of the application of
these techniques combined with an optimization (level 3), the results show that there were eight cases
that should be applied manually, given that the compiler demonstrated its inadequacy. These eight
cases were analyzed in greater depth, evaluating the factors which condition the improvements in the
execution times. In addition, the results obtained can also be extrapolated to other devices with similar
ARM architectures.

In this way, it is intended to show that programmers of Raspberry Pi and other ARM-based
SBCs should be aware of the important impact that even small and simple portions of code can have
on their application’s runtime (which may also lead to a higher energy efficiency), and to apply the
recommended techniques, especially when their programs are developed to run continually.

Supplementary Materials: The following are available at http://www.mdpi.com/1424-8220/18/11/4066/s1,
Document S1: source code of the tests developed, Spreadsheet S2: complete experimental results.
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