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Abstract: There is limited research in land surface temperatures (LST) simulation using image 

fusion techniques, especially studies addressing the downscaling effect of LST image fusion. LST 

simulation and associated downscaling effect can potentially benefit the thermal studies requiring 

both high spatial and temporal resolutions. This study simulated LSTs based on observed Terra 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Terra Moderate 

Resolution Imaging Spectroradiometer (MODIS) LST imagery with Spatial and Temporal Adaptive 

Reflectance Fusion Model, and investigated the downscaling effect of LST image fusion at 15, 30, 60, 

90, 120, 250, 500, and 1000 m spatial resolutions. The study area partially covered the City of Los 

Angeles, California, USA, and surrounding areas. The reference images (observed ASTER and 

MODIS LST imagery) were acquired on 04/03/2007 and 07/01/2007, with simulated LSTs produced 

for 4/28/2007. Three image resampling methods (Cubic Convolution, Bilinear Interpolation, and 

Nearest Neighbor) were used during the downscaling and upscaling processes, and the resulting 

LST simulations were compared. Results indicated that the observed ASTER LST and simulated 

ASTER LST images (date 04/28/2007, spatial resolution 90 m) had high agreement in terms of spatial 

variations and basic statistics based on a comparison between the observed and simulated ASTER 

LST maps. Urban developed lands possessed higher LSTs with lighter tones and mountainous areas 

showed dark tones with lower LSTs. The Cubic Convolution and Bilinear Interpolation resampling 

methods yielded better results over Nearest Neighbor resampling method across the scales from 15 

to 1000 m. The simulated LSTs with image fusion can be used as valuable inputs in heat related 

studies that require frequent LST measurements with fine spatial resolutions, e.g., seasonal 

movements of urban heat islands, monthly energy budget assessment, and temperature-driven 

epidemiology. The observation of scale-independency of the proposed image fusion method can 

facilitate with image selections of LST studies at various locations. 

Keywords: land surface temperature; spatio-temporal image fusion; STARFM; downscaling;  

urban areas 

 

1. Introduction 

Land surface temperature (LST) is a primary factor of land-atmosphere energy exchange and is 

an important variable of urban thermal behavior and dynamics [1]. Thermal infrared satellite imagery 

is an efficient source of LST retrieval and numerous algorithms have been developed based on 

satellite and airborne sensors, e.g., Landsat Enhanced Thematic Mapper Plus (Landsat ETM+), 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Very High 

Resolution Radiometer (AVHRR), and Heat Capacity Mapping Mission (HCMM). LST has been 
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widely used to investigate heat-related phenomena and issues, e.g., urban heat islands [2], surface 

energy fluxes [3], and epidemiology of virus infections [4]. The LST patterns and their relationships 

with surface biophysical characteristics, e.g., vegetation, impervious surface, and human behavior 

have been well addressed in the literature [2,5,6]. LST is shown to be associated terrain topography 

(elevation and slope), e.g., LST tends to increase with more solar insolation at higher land; winds at 

steeper slopes may influence LST [7,8].  

Image fusion is a digital technique to generate a dataset based on two or more observed images 

from different sources [9]. It has been commonly used to form high-spatial and high-temporal 

resolutions by integrating high-resolution panchromatic image and low-resolution multispectral 

image [10,11]. There are some popular image fusion approaches: (1) Intensity-Hue-Saturation (IHS) 

method, which transfers a multi-band image from Red Green Blue (RGB) to IHS mode and creates an 

IHS fused new image [12]; (2) Principal Component Analysis (PCA) that converts correlated 

multispectral bands into uncorrelated components and generates fused panchromatic image with 

high resolution [13];(3) arithmetic algorithms, e.g., Brovey Transform integrating multispectral bands 

and high-resolution panchromatic channel with a set of multiplication and division operations [14]; 

(4) wavelet approach, which links high-resolution panchromatic data with low-resolution 

multispectral band based on a reverse wavelet conversion with specific wavelet coefficients [15]; and 

(5) statistics-based fusion that applies statistical approaches to assess the relationship among input 

spectral bands and evaluate the influences of individual bands to the final fused image [16–19]. The 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is an original and typical 

example of statistics-based fusion algorithm that simulates shortwave surface reflectance images 

based on observed Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) surface 

reflectance images [16]. There is another model called Spatio-Temporal Adaptive Data Fusion 

Algorithm for Temperature mapping (SADFAT) which is an improved version of STARFM for 

predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban 

thermal landscape heterogeneity [17]. The Spatial Temporal Adaptive Algorithm for mapping 

Reflectance Change model (STAARCH) was designed to detect spatial and temporal changes in the 

landscape with great details of disturbance [18]. The Enhanced Spatial and Temporal Adaptive 

Reflectance Fusion Model (ESTARFM) was developed to improve the fusion accuracy on complex 

and heterogeneous landscapes compared to that of STARFM [19].  

Scale influences the examinations of the landscape patterns and thermal behaviors on the earth’s 

surface. The scaling issue not only has a long history in various disciplines in general, e.g., 

biogeography, climatology, hydrology, and geomorphology [20–23], but also attracts wide attention 

in remote sensing and landscape studies specifically [24–28]. Schmid [29] observed that the thermal 

radiance could be stable across a range of scales (25–200 m) in urban areas with homogeneous land 

use land cover and LSTs. It was also believed that the thermal characteristics captured by a specific 

thermal inferred sensor may not necessarily be the same as the ones retrieved at different times with 

the same sensor, or the ones from other sensors [30]. Liu and Weng [31] suggested an optimal scale 

(90 m) in studying the relationship between LST and landscape pattern for a specific study site (the 

City of Indianapolis, USA) based on landscape metrics analysis.  

A challenge in remote sensing analysis is to obtain/generate a remote sensing image with both 

high spatial and high temporal resolutions. The restriction lies in the technical difficulties for any 

sensor to provide measurements, e.g., LST data of global coverage at a reasonably high spatial 

resolution while maintaining a high temporal resolution [17]. Image downscaling is one of the 

possible solutions to overcome the restriction. Different studies have been conducted to demonstrate 

the downscaling techniques in remote sensing, e.g., spectral mixture analysis, regression, cokriging, 

and Hopfield neural network [32–34]. Although diverse fusion methods have been successfully 

developed, most applications of image fusion have been focused on surface reflectance fusions. 

Relatively fewer documents address the possible applications of image fusion techniques in LST 

fusion which will potentially benefit the thermal studies requiring high spatial and temporal 

resolutions [35]. Zakšek and Oštir [36] applied a LST downscaling approach (principal component 

analysis and regression) for urban heat island assessment based on MODIS LST level 2 data. Another 
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LST downscaling study included multispectral data and morphological conditions as downscaling 

predictors [37]. Jiang and Weng [38] examined the surface moisture based on downscaled LST over 

urban terrains using Zakšek’s method. Stathopoulou and Cartalis [39] used different scaling 

techniques to downscale AVHRR LST imagery and found that the downscaled LST imagery 

possessed visual improvement compared to that of the original data. Liu and Pu [40] estimated 

subpixel thermal infrared radiance by applying both physical and statistical downscaling models, 

and suggested that both downscaling models were suitable for maintaining the general patterns in 

the original image with considerable spatial details. An applied study assessed heat wave health risks 

based on downscaled Geostationary Operational Environmental Satellite (GOES) LST [41], and found 

that the downscaling method used (Zakšek’s algorithm [36]) could be used to effectively address the 

spatial and temporal variability of heat waves in urban areas. Various disaggregation methods were 

used to improve the spatial resolution of thermal infrared data based on Landsat visible and near 

infrared (VNIR) data and MODIS LST imagery, among which a linear regression method reached the 

best results [42]. Although the downscaling techniques on LSTs have been documented, there are 

very limited studies discussing the possible downscaling effects during the LST fusion process 

mentioned above, which can be critical in some thermal landscape issues, e.g., the central locations 

and magnitudes of urban heat islands in urban areas with various sizes [43], and the relationships 

between LSTs and landscape patterns [31].  

The objectives of this study were: (1) to simulate land surface temperatures (LSTs) in an urban 

environment with an existing statistics-based image fusion model; and (2) to assess the downscaling 

effect in LST image fusion. The simulated LST images can be used to evaluate thermal landscape, 

energy exchanges, and other related phenomena that need LST information at a more frequent base 

with fine spatial resolutions, e.g., seasonal movements of urban heat islands, monthly energy budget 

assessment, and temperature-driven epidemiology. The downscaling effect analysis will facilitate 

with image selections of LST studies at various locations.  

2. Materials and Methods 

2.1. Study Area 

The study area covered part of the City of Los Angeles (LA), California, USA and surrounding 

locations, e.g., Long Beach, Anaheim, and Santa Ana (Figure 1). The overall elevation increases from 

flat coastal land on the south to hilly mountains to the north with a range from about 5 m to 2590 m. 

Some hills are present in the central west and central east. Sitting along the coast, Los Angeles has a 

typical Mediterranean climate condition (e.g., hot and dry summers, and warm and moist winters). 

The average high temperature is 29.3 ℃ in August and 20.1 ℃ in January, according to the weather 

station on the Downtown-University of Southern California campus. Temperature transitions 

between the inland and coastal areas can be obvious and are closely related to elevation and distance 

from the coast. More than 60% of the area is covered by urban development mainly spreading along 

the coast and in the south with flatter land. Vegetation, e.g., shrubs and canopies mainly appear in 

residential areas, rural mountains on the north, and vacant fields. Certain bare soil and herbaceous 

vegetation can be observed as well [44].  
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Figure 1. Geographical location of the study area. 

2.2. Data Collection and Pre-Processing 

The principle of date selection was to select three pairs of Terra ASTER/MODIS LST images with 

each pair acquired in the same date. Considering the data availability and quality (e.g., low cloud 

cover), we carefully selected six Terra ASTER surface kinetic temperature scenes and three Terra 

MODIS LST datasets acquired on 04/03/2007, 4/28/2007, and 07/01/2007 at leaf-on seasons. Due to the 

scene coverage, two ASTER images acquiring in the same date had to be obtained and a mosaic built 

to fully cover the study area. All the images were acquired in April or July 2007 with no/low cloud 

cover. Planck’s Law was used to derive ASTER’s surface kinetic temperature based on the emissivity 

values from the Temperature-Emissivity Separation (TES) algorithm with ±1.5 K measurement  

error [45]. MODIS’s land surface temperature/emissivity was created using the generalized split-

window LST algorithm with standard deviations of errors of 0.4–0.5 K [46]. Table 1 lists all the images, 

with their acquisition dates and spatial resolutions. 

Table 1. Satellite images used in the study, their acquisition dates and spatial resolutions. 

Satellite Data 
Acquisition Date & Time 

(GWT)  

Spatial Resolution 

(m) 

Terra ASTER AST_08 3 April 2007, 18:46  90 

(Surface Kinetic Temperature) 28 April 2007, 18:39 *   

 1 July 2007, 18:39  

Terra MODIS 11A1 LST/E 3 April 2007, daily 1000 

(Land Surface Temperature & 

Emissivity) 
28 April 2007, daily  

 1 July 2007, daily  

* image used for image fusion validation. 
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A study boundary was determined based on the overlap among three ASTER LST images 

acquired at different image dates. All images were then resized such that they comprised the same 

study boundary (Figure 1) without cloudy pixels (mainly near the coast or in the ocean). As a result, 

three ASTER/MODIS LST image pairs were ready for LST image fusion analysis.  

2.3. LST Image Fusion 

The goal of LST image fusion in the study was to create simulated LST image at ASTER spatial 

resolution and MODIS acquisition dates. Since LST is associated to the energy exchange between the 

land surface and atmosphere [46], rather than a response to reflected energy, some traditional image 

fusion methods (e.g., IHS and PCA methods) may be not suitable for LST simulations. STARFM, a 

statistics-based approach was used to perform LST image fusion. Initially the model was developed 

to simulate 30-m surface reflectance images based on observed Landsat and MODIS surface 

reflectance images [16]. The model algorithm is given as: 

�(��
�
, ��

�
, ��) =������� × (�(��, ��, ��) + �(��, ��, ��) − �(��, ��, ��)
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���

�

���

�

���
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where � represents the Landsat surface reflectance and � for MODIS, � is the searching window 

size with (��
�
, ��

�
) as the central pixel, (��, ��) is a given pixel location for a Landsat and MODIS image 

pair, �� is the acquisition date for a simulated date, and �� is the acquisition date for the image pair. 

���� is the weight deciding the influence of each neighboring pixel to the simulated reflectance of 

central pixel (��
�
, ��

�
). Variable ���� is defined by three components: spectral difference between 

Landsat and MODIS, temporal difference between the simulated and input MODIS images, and 

location distance between central pixel and candidate pixel [16]. The STARFM can accurately estimate 

the surface reflectance with pure MODIS pixels, and capture permanent land-cover changes during 

the growing season. However, fine-resolution bracketing (Landsat) images are necessary in capturing 

transient phenology for the STARFM [16]. The model is applicable to other instruments since its 

functioning is purely statistical in nature [16]. For example, one study utilized the STARFM model to 

produce interpolated ASTER surface reflectance images based on archived ASTER and MODIS 

surface reflectance images [4].  

The STARFM model was adapted to simulate LSTs for the simulation date 04/28/2007 based on 

ASTER and MODIS LST images. More specifically, there were five input LST images: two ASTER 

and MODIS image pairs acquired on 04/03/2007 and 07/01/2007 respectively, and one MODIS LST 

image acquired on 04/28/2007. Since STARFM was designed to use Landsat and MODIS stimulated 

land surface reflectance as inputs, it was necessary to modify the model parameters (e.g., image size, 

spatial resolution, and maximum search distance) for use with ASTER and MODIS LST data. ���� 

was determined based on three factors: LST difference between ASTER and MODIS imagery (an 

approximate calculation to identify the homogeneity of LST for a MODIS pixel), temporal changes 

on MODIS LST measurements between the simulation and the acquisition dates, and location 

distance between the central simulated pixel and the surrounding candidate pixel with similar LST 

associated. We adopted the assumptions made by Gao [16] when combining the three factors above 

for the calculation of ���� . We naively assumed that: (1) homogeneous MODIS pixels provide 

identical temporal changes as ASTER observations in regard to LST values; (2) measurements with 

less change from the simulation date provide better reference for the prediction date; and (3) 

neighboring pixels with closer distance usually provide better reference for simulation. The LST 

image fusion was validated by statistically comparing the observed and simulated ASTER LSTs for 

date 04/28/2007.  

2.4. Downscaling Effect Analysis 

The availability of LST or thermal images varies from location to location, so that it is important 

to assess the scaling effect, especially the downscaling effect of LST image fusion with STARFM. It is 

noted that downscaling in remote sensing refers to a decrease in pixel size and an increase in spatial 
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resolution. The downscaling effect may associate with either consistent or inconsistent measurements 

in information retrieval [47]. In order to assess the possible downscaling effect, all the input images 

(both ASTER and MODIS LST images) were resampled to possess the following eight spatial 

resolutions (units: meters): 15, 30, 60, 90, 120, 250, 500, and 1000, based on the Cubic Convolution 

resampling method. It was noted that those scales range from 15 to 1000 m, so it seemed to be more 

appropriate to select a resampling approach that can generate a smooth instead of choppy output 

image, e.g., Cubic Convolution. A simulated ASTER-like LST image at a particular scale was 

generated by entering the corresponding image pairs at the same scale to STARFM. For example,  

15 m LST image pairs (ASTER and MODIS) acquired at different dates (04/03/2007 and 07/01/2007) 

generated a 15 m simulated ASTER LST dataset for a particular date (04/28/2007). The basic statistics 

were calculated across the scales to identify the appropriate scales for LST simulation. 

3. Results 

3.1. Simulated ASTER LST Image 

Figure 2 shows the simulated ASTER LST image on date 04/28/2007 (90 m spatial resolution). As 

can be observed in the figure, overall the LSTs on the north side were lower than those in the south. 

The simulated LSTs tended to agree with land use and land cover types, and the variations of LSTs 

corresponded to energy balance across the surface. For example, LSTs in urbanized lands, e.g., south 

side with heavy urban infrastructures and buildings/houses possessed relatively higher LST values 

with lighter tones, while vegetated mountain areas on the north contained relatively lower LSTs with 

darker tones. LSTs along the major roads could be clearly observed at 90 m resolution.  

 

Figure 2. Simulated Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-like 

land surface temperatures (LST) image on date 04/28/2007 (90 m spatial resolution). 

  



Sensors 2018, 18, 4058 7 of 12 

 

3.2. Image Fusion Validation 

The observed ASTER LST and simulated ASTER LST images (date 04/28/2007, spatial resolution 

90 m) had high agreement in terms of spatial variations and LST statistics (Figure 3 and Table 2). 

Urban impervious surfaces possessed much higher LSTs with lighter tones but mountainous areas 

showed dark tones with lower LSTs on both figures. It was notable that the simulated LST image 

appeared to contain slightly lower LST contrasts across the surface than those of observed LSTs. It 

indicated the possible influences of input ASTER and MODIS LST images on the fusion results. It is 

likely due to the calibrations of ���� which were calculated based on LST difference between ASTER 

and MODIS imagery, temporal changes on MODIS LSTs between the simulation and the acquisition 

dates, and location distance between the central simulated pixel and the surrounding candidate pixel 

with similar LST associated. On the third panel (right) of Figure 3, the simulated LSTs of rural 

mountain areas on the north deviated more from observed LSTs at in situ pixels, comparing to urban 

pixels farther south. This finding may correspond to the limited capability of STARFM in the 

mountainous areas as addressed by Gao [16]. 

 

Figure 3. A comparison between observed (left) and simulated (middle) ASTER LST image on date 

04/28/2007. The map (right) shows the difference between observed and simulated images. Spatial 

resolution: 90 m. 

In order to further demonstrate the variations of departures across the surface between observed 

and simulated images, a scatter plot was created to compare the observed and simulated LSTs in a 

rural mountain site, as well as a plot for an urban site (Figure 4). LSTs of mountain site tended to 

gather along the reference line in red with extensive departures on both sides of the line. It indicated 

that mountain LSTs generated larger errors in simulation (greater or smaller than observed LSTs). 

Urban LSTs also accumulated along the reference line with limited departures on the left side of the 

reference but much more on the right side. It implied that observed LSTs in the urban site had higher 

values than those of simulated LSTs. This difference could be once again associated with observed 

LST images used in STARFM. The statistics showed that the mean differences between observed and 

simulated ASTER LST datasets at 90 m spatial resolution reached 0.89 K, with a standard deviation 

(SD) of 1.93 by using Cubic Convolution resampling method (Table 2). 
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Figure 4. Scatter plots between observed and simulated ASTER LST datasets at mountain and urban 

areas on date 04/28/2007. Temperature units: K. Spatial resolution: 15 m. 

Table 2. Basic statistics in the difference maps between observed ASTER LST and simulated ASTER 

LST data (observed–simulated) for image date 04/28/2007, by using Cubic Convolution, Bilinear 

Interpolation, and Nearest Neighbor resample methods. 

Spatial Resolution 

(units: m) 

Mean (Units: K) 
Standard Deviation (SD)  

(Units: K) 

Cubic Bilinear 
Nearest 

Neighbor 
Cubic  Bilinear 

Nearest 

Neighbor 

15 0.88 0.93 1.08 1.99 1.96 1.98 

30 0.95 0.94 1.04 1.98 1.95 2.17 

60 0.90 0.98 −4.59 1.94 1.95 4.25 

90 0.89 0.88 −4.58 1.93 1.92 4.26 

120 −2.73 0.89 −4.53 3.43 1.91 4.24 

250 0.93 0.90 −4.45 2.14 1.88 4.09 

500 0.90 0.86 −4.41 2.12 1.84 4.16 

1000 0.92 0.90 −4.33 2.12 1.85 4.20 

3.3. Downscaling Effect Analysis 

Figure 5 shows a series of simulated ASTER LST images at different spatial resolutions: 15, 30, 

60, 90, 120, 250, 500 and 1000 m. More variations could be observed when the scale changed from 15 

to 120 m, and from 120 to 1000 m, LST distributions became more homogeneous. Based on the statistics 

(mean and SD) shown in Table 2, the mean LST differences were around 1 K from 15 to 1000 m 

resolution, except that at 120 m, which was much lower (−2.72 K). This exception implied the 

influence of input (MODIS and ASTER) LST images to the model. Overall there were slight increases 

across the scales in regard to SDs. However, SD was noticeably higher at 120 m (3.43), which 

corresponded to the low mean LST difference at this scale. 
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Figure 5. Simulated LST images across the scales. 

4. Discussion and Conclusions 

This study simulated LSTs by using STARFM, an existing statistics-based image fusion model, 

and investigated the downscaling effect of LST fusion process based on ASTER and MODIS LST 

products. Results showed that LST image fusion reached a reasonable accuracy across the scales  

(15–1000 m) with both the Cubic Convolution and the Bilinear Convolution resampling methods. 

However, the results of the Nearest Neighbor resampling were not as consistent as those of the Cubic 

Convolution and the Bilinear Convolution methods. The downscaling process did not seem to 

significantly affect the fusion results, which suggested that the LST simulation approach was 

somewhat scale independent. Flat terrains yielded more accurate LST simulation than hilly and 

mountain areas. The results can be used in studies requiring LSTs with fine spatial details, e.g., time 

sensitive and heat-related epidemiological/public health studies, and monitoring the 

weekly/monthly shifts of urban heat islands (central locations and magnitudes) for the studied 

location. The low sensitivity to scaling effect makes it possible to apply the same approach to other 

urban locations.  

While the result of the simulation was promising, the demonstrated LST image fusion method 

should be used with caution. There are some potential limitations in adopting the STARFM for LST 

simulation. First, the accuracy of LST simulation was directly linked with the archived MODIS and 

ASTER LST products which may possess some errors introduced by LST retrieval algorithms [1]. 

Consequently the simulated LSTs could differ more from the LST measurements on the ground for 

some locations. This potential disagreement should be independent from the STARFM performance.  

Second, the temperature distribution across the land surface was obviously different from that 

of land surface reflectance since temperature variation was more closely related to the surface energy 

balance. In addition, the seasonal change of LST can be transient phenology. The variation of the 

surface energy balance may not be entirely accounted by such a statistics-based approach. STARFM 

could not generate accurate results on LST simulations without quality bracketing ASTER images. 



Sensors 2018, 18, 4058 10 of 12 

 

As such, more archived MODIS and LST images acquired at different dates and seasons would be 

helpful in calibrating the STARFM model and validating the results.  

Third, STARFM was believed to be less suitable for simulating spectral reflectance in the 

mountainous areas or heterogeneous landscapes with extreme surface reflectance, e.g., small 

agriculture patches, due to the fact that mixed coarse-resolution MODIS pixels usually captured 

limited variation in surface reflectance across the surface [16,18,19]. Future work may include a 

separation between flat terrain and hilly areas before performing LST simulation, and further 

optimization of STARFM parameters, e.g., ���� , and maximum search distance. It would also be 

worthy to assess how LST varies with elevation by incorporating surface elevation as the topographic 

effect, as indicated by Wan and Dozier [48]. To provide even more details, an investigation of 

transitions could be conducted to demonstrate how simulated LSTs vary with land cover types, e.g., 

from highly developed downtown to residential areas with mixed vegetation and houses and 

mountains with low-to-median-density tree canopy.  

Meanwhile, it is worthwhile to compare the current LST simulation method with other image 

fusion models, such as STAARCH, in which spatial-temporal landscape changes can be better 

captured by choosing an optimal acquisition date for Landsat input image [18], ESTARFM that can 

better simulate the surface reflectance for complex and heterogeneous regions with the assistance of 

reflectance trend analysis and spectral unmixing approach [19], and SADFAT that incorporated 

annual temperature cycle modeling and spectral unmixing into the prediction of LST change [17].  

The image resampling process could influence the results at certain levels. The Cubic 

Convolution method was first applied to create a series of LST images for downscaling effect analysis. 

In order to evaluate the possible influences of resampling approaches, two other traditional resampling 

methods, Bilinear Interpolation, and Nearest Neighbor method were also used to generate two sets of 

ASTER and MODIS LST images as inputs to STARFM. The same basic statistics were calculated based 

on those two resampling methods (Table 2). According to the statistics in Table 2, the Bilinear 

Interpolation method leaded to quite similar results to those of Cubic Convolution. However no 

surprise was found at 120 m resolution as that of Cubic Convolution, it might indicate that the input 

(resampled MODIS and ASTER) images had less influence on LST fusion at 120 m. The simulated 

LSTs with Nearest Neighbor method seemed to be similar as those of Cubic and Bilinear methods at 

15–30 m resolution. However the simulated LST images tended to consistently depart from observed 

images at 60–1000 m with about −4.5 K mean difference and around 4.2 K standard deviation. The 

comparison between these three traditional resampling methods suggested that LST image fusion 

performs well with smooth resampling methods (e.g., Cubic and Bilinear) but reached less acceptable 

results with Nearest Neighbor method.  

It was notable that the study directly applied the traditional resampling approaches to upscale 

the ASTER LST imagery and meanwhile to downscale the MODIS LST imagery as inputs of STARFM 

model, rather than adopting the downscaling techniques used by other researchers, e.g., Zakšek and 

Ostir [36]. It will be worthwhile to apply other downscaling techniques and compare the results with 

current findings.  
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