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Abstract: The Internet of Things (IoT) is by now very close to be realized, leading the world
towards a new technological era where people’s lives and habits will be definitively revolutionized.
Furthermore, the incoming 5G technology promises significant enhancements concerning the Quality
of Service (QoS) in mobile communications. Having billions of devices simultaneously connected
has opened new challenges about network management and data exchange rules that need to be
tailored to the characteristics of the considered scenario. A large part of the IoT market is pointing to
Low-Power Wide-Area Networks (LPWANs) representing the infrastructure for several applications
having energy saving as a mandatory goal besides other aspects of QoS. In this context, we propose a
low-power IoT-oriented file synchronization protocol that, by dynamically optimizing the amount of
data to be transferred, limits the device level of interaction within the network, therefore extending
the battery life. This protocol can be adopted with different Layer 2 technologies and provides energy
savings at the IoT device level that can be exploited by different applications.

Keywords: Internet of Things; LPWANs; rdiff; synchronization

1. Introduction

The Internet of Things has now become reality and is expected to have by the 2020s over a
billion devices connected to the Internet, everywhere, at any time [1]. Smart homes, wearable devices,
smart cities, health care, transportation, and farming represent just few reference scenarios where the
application of IoT-based models would be successful. The goal of IoT is to realize an environment
within which things are uniquely identified and able to interact with one another through the exchange
of information. Moreover, the development of this new paradigm has been sped up thanks to incoming
5G technology that will provide ultimate performance in terms of data rates, latency, and network
coverage. Therefore, the concept of connectivity among devices will soon be completely revolutionized.

Providing good performance is paramount when dealing with mobile communications and,
in general, with real-time services that request high data rates and low latency. However, there are
many other application scenarios where the sporadic interaction among devices makes energy saving
the main aspect to take care of. In this regard, Bluetooth Low Energy, ZigBee, and Low-Power Wi-Fi will
be used in a large part of the so-called consumer IoT (cIoT) market [2] that refers to all those applications
aiming to improve citizen life quality. Specifically, the technologies cited above are tailored to Personal
Area Networks (PANs) as they essentially provide single-user coverage area. The Internet Engineering
Task Force (IETF) has recently standardized several IoT-oriented protocols, such as the one considering
the use of IPv6 over Low-Power Wireless Personal Area Networks (identified as 6LoWPAN) [3,4].
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Several devices especially employed for health and fitness activity monitoring have been already
implemented with the 6LoWPAN protocol suite and launched into the market.

In parallel to the cIoT, the world of industrial IoT (iIoT) has been recently rising. The iIoT collects
those scenarios where information technologies are integrated into industrial and public facilities
contexts, to make activity management and monitoring more efficient [5]. As with cIoT, many iIoT
applications are characterized by limited device mobility and sporadic data transmission, but on
the other hand a wider coverage area than in PAN-based services is requested. The satisfaction of
these requirements has been achieved through the development of specific radio access technologies,
referred to as Low-Power Wide-Area Networks (LPWANs), that best match the features of iIoT.
Several standards and vendors in the field of LPWANs have emerged during the last decade [6].
The first one was Sigfox [7] that in 2009 presented on the market its ultra-narrow band (UNB) patented
technology. A few years later, LoRa Alliance standardized the LoRaWAN networking protocol [8] for
LPWANs exploiting a chirp spread spectrum (CSS)-based technology developed and provided by the
Semtech Corporation [9]. The third main potential solution offered on the market is Narrowband-IoT
(NB-IoT), representing the result of a 3GPP (3rd Generation Partnership Project) standardization
process begun in 2014 [10] and currently approaching its Release 15 [11]. The NB-IoT features originate
from the LTE framework, with the employed frequency bands that are part of the LTE and GSM
spectrum [12]. This is one of the marked differences with Sigfox and LoRa which, on the other hand,
share the unlicensed ISM spectrum. However, each technology provides different performances [13].

Thanks to their characteristics, LPWANs have been recognized as particularly fitting for the IoT
context, especially with respect to emerging scenarios such as remote health and industrial monitoring,
smart cities and living. As shown in Table 1, different kinds of activities and measurements can be
considered for each specific environment, therefore the use of technology that is as flexible and scalable
as possible is fundamental to providing good network performance.

Table 1. Typical IoT LPWANs use cases.

IoT Scenario Applications Typical Traffic Volume

Respiratory rate
ECG Tens of bits to a few kilobytes

Healthcare Blood pressure per measure
Skin temperature (single/aggregate measures messages)
Oxygenation

Environment monitoring
Industry Indoor localization Tens of bits per message

Production line control

Traffic management
Smart Waste management Tens of bits per message
cities Parking tracking (aggregate data measures)

Pollution monitoring

Lighting control
Smart buildings Energy/water use Hundreds of bits per message

and living Surveillance (single/aggregate data measures)
Indoor climate control

In medical applications, healthcare remote monitoring represents a promising solution to facilitate
the interaction between patients and doctors. In fact, parameters such as blood pressure, temperature,
or respiratory rate can be easily measured at home by patients through medical wearable devices,
and then sent to a cloud server to make them available to hospital personnel at any time [14,15].
Monitoring activity also concerns industry, where production line control, inventory tracking and
many other tasks can be performed in an automated and remote fashion. Finally, smart environment
applications collect a wide range of activities to be handled, from traffic control, pollution monitoring
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and waste management in cities, to indoor lighting and climate control, energy and water use in
buildings [16]. Overall, the diversity and specificity of each introduced application results in a largely
variable exchanged data traffic volume. By looking, for instance, at the medical scenario, the data
outputs of devices measuring blood pressure and heart rate are typically in the order of tens of
bytes [17]. However, since these kinds of measurements are performed many times a day, it is possible
to reach a daily aggregate data volume up to hundreds of bytes. On the other hand, processes such as
electrocardiography (ECG) are more sporadic, but they can generate a large amount of information
up to dozens of kilobytes [18]. Therefore, handling heterogeneous networks necessarily requests an
efficient management of heterogeneous data.

The main aspect characterizing LPWANs is the restrained power consumption that brings benefits
in terms of battery life extension, especially for mobile entities. On the other hand, the limited rate
makes data transmission slower than in other technologies, so devices may be forced to remain
connected for a long time. Energy saving strictly depends on how long devices stay active within the
network, therefore this issue may become very challenging in those IoT applications that consider low
interaction among entities. Specifically, the problem of power consumption in IoT LPWANs can be
identified at the following levels:

• network access and interference: some technologies such as NB-IoT work according to a
random-access procedure where a sequence of signaling messages is sent by the user asking
for the channel resources. This mechanism may request non-negligible power since, if the
channel is busy for a long time, the number of signaling messages to be generated will increase.
However, the advantage of NB-IoT is that the use of licensed frequency bands limits the problem
of interference with other communications. This is not true when dealing with systems such as
Sigfox and LoRa where the channel access is simpler than the NB-IoT, but on the other hand
exploiting the unlicensed spectrum for transmission may lead to strong interference, resulting
in possible data packet loss. In that case, the information must be retransmitted, thus causing
additional power usage.

• exchanged data amount: sometimes, when the communication is underway, some part of the data
sent by the transmitting party may be already received at the receiving side due to not perfect
synchronization. That information will be redundant and useless, and furthermore its transmission
will lead to a waste of power. This occurrence is typical in remote file synchronization scenarios,
where specific protocols are used to make the data transmission between two parties limited
only to the new information. By doing so, the data traffic is reduced, optimizing the number
packets to be exchanged and thus providing energy saving. Finally, the complexity requested
by file processing and synchronization impacts on the device energy consumption, therefore the
mechanisms for data communication must be not only efficient but also computationally feasible.

LoRa, Sigfox, NB-IoT and the other solutions used in LPWANs have different characteristics,
therefore to manage the power consumption in the context of network access requires methods
specifically tailored to the considered technology and application. On the other hand, data traffic
optimization is independent from the network framework, so it would be possible to design some
communication protocols providing good performance in the IoT environment in a more general way.

The main contribution of this work is therefore to consider well-known architectural models for
IoT interconnection through LPWANs such as the ones discussed in [19] and provide a solution to
reduce the data to be exchanged in the system for file synchronization purposes. A possible framework
that this approach can refer to is e-health where on one side reliable file synchronization is needed,
and on the other side both the energy consumption and the network load have to be reduced ([20,21]).
Taking into account those concerns, we propose an adaptive file synchronization algorithm, particularly
tailored to IoT applications, allowing:

• Data traffic optimization, to avoid the network overload;
• Energy saving, since reducing the amount of data to be transmitted allows the IoT device to limit

power consumption.
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It is worth noting that the proposal here identified can be applied independently to every
low-power technology.

The rest of the paper is organized as follows. Section 2 reports the state of the art regarding
file synchronization algorithms. In Section 3 the cloud-based network model under investigation is
introduced, reporting the framework for the file synchronization procedure. Section 4 describes the
proposed adaptive file synchronization algorithm, while Section 5 concerns the IoT devices power
consumption analysis. Simulation results are shown and discussed in Section 6. Finally, Section 7
draws conclusions.

2. Related Works

The ever-growing network traffic and the size diversity of data to be exchanged have made the
problem of remote file synchronization an ongoing issue to be tackled. Bandwidth saving, network
latency minimization and overhead reduction are paramount, especially when the files to be updated
usually exhibit only a few changes with respect to their previous version. In this scenario, the challenge
is to perform the synchronization by identifying the similarities between two versions of the same file
and hence by transmitting only the essential parts to the update.

In this context, one of the best-known synchronization algorithms [22] is rsync [23], originally
developed for computer systems and still used by several applications. Considering a client-server
scenario where the server has to be updated with the client file version, rsync operates the
synchronization between the two parties by first splitting the server file into blocks (named chunks),
each one identified through a double hash. The hash function is here employed only to compress
a d-bytes chunk into a smaller h-bytes string. Moreover, the hash acts as a sort of signature for
the corresponding chunk to be used for making chunk matching processing faster. Specifically,
rsync considers each chunk as identified through a couple of hashes, referred as signatures in the rest
of the paper. Then the list of these signatures is sent to the client and used to find matching blocks.
Finally, the client generates a delta file, containing both the indexes of matching blocks and the literal
bytes recognized as new, which is transmitted to the server for its file updating. rsync is therefore
a single-round synchronization algorithm based on bidirectional communication between the two
parties. This kind of framework has been considered in many other works such as in [24] where the
features of rsync and a set of reconciliation techniques [25] are combined to achieve bandwidth saving.
Overall, single-round-based techniques performance, including rsync, rely on the choice of a suitable
block size. Sometimes, the number of transmitted bytes may be larger than the strictly necessary ones,
leading to a performance reduction. Other strategies based on the edit distance are more efficient, but at
the expense of a higher computational cost [26].

Several techniques following a multiple-rounds approach have been presented in the literature as
well. An example is given in [27] where a two-phase synchronization protocol is proposed. The first
step is represented by the so-called map construction where recursive block splitting is used to identify
the common elements to both the parties. The second step instead concerns delta compression, which is
the transmission of the unknown parts of the file necessary for the update. Despite multiple-rounds
techniques providing significant improvements in terms of bandwidth efficiency, they may result in
complex protocols, introducing non-negligible communication latencies and large overheads.

The paradigm of IoT has posed significant challenges that are different from those faced in classic
distributed systems, therefore an important critical question recently arising in the context of IoT
devices interaction and file synchronization is about the flexibility of the available algorithms in the IoT
environment. To solve the potential efficiency reduction, several studies have been developed in the
field of synchronization protocol optimization for IoT systems. Following this direction, the authors
in [28] introduce a data synchronization technique between gateway and IoT platform that uses
timestamp and bitmap to reduce byte traffic and latency.

Furthermore, handling the heterogeneity of the entities connected in the IoT is another aspect that
may affect the performance of synchronization algorithms. The problem of data synchronization in



Sensors 2018, 18, 4053 5 of 21

multi-sensor scenarios is tackled in [29]. Specifically, a novel technique that uses the interactions and
events experienced by each sensor within the network to solve multiple couplings among devices and
efficiently handling the data stream synchronization is proposed.

Data exchange, storage, and sharing are instead specifically addressed for IoT LPWANs in [30],
together with the other issues related to network management.

3. Remote File Synchronization in IoT LPWANs

3.1. Motivation and Goal

In the previous section we discussed how the remote file synchronization was mainly designed
and employed in distributed systems (computer-based). On the contrary, only a few works have
addressed this issue specifically for the IoT context and low-power communications.

We then analyzed the protocols that are efficiently conceived for low-power consumption,
sporadic interaction among devices and reduced data traffic, and we identified the fundamental
aspects to be taken into consideration in the design. Multiple-round synchronization techniques may
not be efficient in a low-power scenario because they require devices to be active for a rather long time
period, also increasing the amount of bidirectional information exchanged between the parties. On the
other hand single-round approaches, such as the early rsync algorithm, [23] allow the communication
to be simpler but the data traffic optimization could not always achieve maximum efficiency due to
the limited adaptability of the protocols.

Aiming to address these issues, we propose a remote file synchronization algorithm that uses
double signatures to perform file scanning and update just as rsync does but following an adaptive
approach. In particular, the presented solution provides the dynamic adaptation of signatures and
chunk size considered for the matching procedure. By doing so, the efficiency of single-round
synchronization is improved, optimizing the data traffic as well.

We can describe briefly our proposal for remote file synchronization. Based on the same procedure
used in rsync to find matching information between the file at the two parties, we introduce the
following novel features the improve the performance of file synchronization:

• The adaptive tuning of the chunk dimension based on the distribution and type of modifications
presented by the latest file version with respect to the previous one. By doing so, the file processing
procedure and the amount of generated traffic are optimized.

• The dynamic selection between a signature-based and signature-free synchronization procedure,
driven by the adaptation of the algorithm parameters, to exploit, when possible, the data
compression provided by the signatures or, otherwise, avoid the use of signatures when it is not
convenient due to the computational cost.

Finally, it is worth highlighting that, in general, file synchronization algorithms are implemented
at the application layer of the OSI model, where it is safe to assume error-free and safe data
communications. Data encoding, encryption, framing, and related issues are handled by other
protocols at lower layers, therefore the addressing of these aspects goes beyond the scope of this work.

3.2. Reference Scenario

Let us refer to an IoT scenario where a cloud server stores the updated data sent by multiple
devices (smartphones, sensors, wearables) connected to the network [30]. Direct connection between
cloud and IoT devices (DIoT) is assumed, considering a long-range communication infrastructure
such as the one typically used in LPWANs (Figure 1). Therefore, the single DIoT–cloud interaction is
depicted as follows.
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Figure 1. Typical IoT scenario where multiple devices are directly connected to the Cloud in a LPWAN.

Let us consider two files FC and FDIoT at cloud and DIoT side, respectively (Figure 2). FDIoT is
newer than FC, therefore the cloud must receive from the DIoT the information to update FC to the
latest version, that is FDIoT . Without loss of generality, equal size is assumed for FC and FDIoT . The steps
performed for file synchronization are derived from the rsync algorithm, the essentials of which are
reported below (see [23,31] for details).

FDIoT FC

DIoT Side Cloud Side

BC,i BC,NBC,2BC,1B
DIoT,1

B
DIoT,k

L bytes 

RC,i, SC,i RDIoT,k, SDIoT,k 

Figure 2. rsync procedure between DIoT and Cloud.

First, the cloud organizes FC in non-overlapping blocks, named in the following as chunks,
of size d bytes. Given the file dimension L, N = L/d chunks are obtained. For each chunk BC,i
(with i = 1, 2, . . . , N) two checksums RC,i and SC,i, a weak one and a strong one respectively, are
calculated and sent to the DIoT side. Checksums are used to compress the chunks information so that
the bytes to be transmitted are reduced.

The received setsR = {RC,1, RC,2, . . . , RC,N} and S = {SC,1, RS,2, . . . , RS,N} are used by the DIoT
as a reference to process FDIoT and find potential matchings with FC. Specifically, a moving window
BDIoT,k of dimension equal to d bytes (k refers to the window offset along FDIoT , with k = 1, 2, . . . , L) is
used to scan FDIoT . The DIoT calculates the checksums RDIoT,k and SDIoT,k of the current chunk BDIoT,k
and searches for a matching with any element in R and S (the weak checksums are analyzed first,
then, if there is a positive feedback, the strong checksums are compared to have the proof of chunks
matching). If BDIoT,k is recognized to be already present in FC, the DIoT saves the chunk index, referred
as token. Otherwise, if no matching is found, the k-th byte of FDIoT is evaluated as new and therefore
marked to be necessarily sent to the cloud. As the scanning of FDIoT goes on, the DIoT creates a delta
file ∆ containing tokens and literal bytes that will be ultimately transmitted to the cloud. Once ∆ is
received, the cloud performs the update of FC and recomputes the checksums on the new file chunks
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that will be used for the next synchronization events. Since the generated ∆ reports the differences
between FDIoT and FC files, the rsync algorithm is also named rdiff.

The good performance of rsync relies on the hypothesis that part of the file to be updated is
sufficiently smaller than the entire file dimension. Furthermore, the size of chunks d and checksums
R, S is set as fixed. As reported in [23], blocks dimensions between 500 to 1000 bytes are optimal.
Regarding checksums, two 32-bit and 128-bit signatures are employed respectively to represent each
chunk, therefore allowing a significant compression (32 + 128 = 160 bits, that is 20 bytes, are transmitted
in place of a chunk of size equal to 500 bytes or more).

Computer systems for which rsync was initially designed usually consider files of sufficiently large
size (tens of megabytes and more), therefore the introduced parameter configuration is appropriate.
However, this fact may not be verified in IoT scenarios where limited amounts of data are managed.
For instance, information about temperature and humidity in environmental monitoring systems or
blood pressure measure in medical applications are represented by only a few bytes (at most kilobytes
when considering aggregate measures).

In general, regarding the mechanism described in Figure 2, when the chunk dimension approaches
the entire file size, finding matchings becomes ever more sporadic and the number of literal bytes to be
transmitted grows. Consequently, the size of the file ∆ grows, also increasing the data traffic. On the
other hand, if the chunk size is reduced the compression ratio offered by the checksums decreases,
therefore the advantage of using signatures is less significant.

4. Adaptive File Synchronization

The previous observations highlight the importance of a suitable parameter setup when dealing
with file synchronization. However, in the literature, this issue seems to be handled in a somewhat
general fashion, without properly considering how some aspects, such as the file update percentage,
may significantly impact the protocol performance. Unfortunately, this kind of approach turns out to
be inefficient in the IoT context with different connected entities exchanging different types of data,
giving rise to heterogeneous and hardly predictable data traffic.

For these reasons, we propose an adaptive rsync-based file synchronization algorithm where the
chunk size is dynamically tuned based on update distribution within the file, to optimize the number
of literal bytes and tokens to be transmitted. Furthermore, the chunk dimension drives the choice
between a signature-based or signature-free approach to be used.

Before detailing the algorithm, we summarize the following remarks about the original
rsync mechanism:

• By referring to Figure 2, the search for matching chunks in FDIoT is performed by using a d-bytes
sliding window BDIoT,k identified through the index of its first byte k (in Figure 2 the window
moves from left to right, that is from first byte to last). As long as no matchings are found,
the scanning proceeds by shifting the sliding window by a single position (k is incremented by a
one unit). On the other hand, if the current chunk matches, the sliding window is moved by d
positions (k is incremented by d).

• If the chunk BDIoT,k matches, a token is generated. Specifically, a token is an index reporting
the position of the matched chunk within the file, therefore it will be represented exactly by the
corresponding index k. An example of this occurrence is reported in Figure 3a, representing a
portion of the scanned file FDIoT . The sub-chunks in green refer to the bytes that are not changed
with respect to the previous version of FDIoT . In that case, the chunk BDIoT,k matches, therefore a
token with index k is created. Then the file scanning continues considering the window BDIoT,k+d.
That chunk is matching too, leading to the generation of another token, identified by k + d.

• The generic chunk BDIoT,k is not matching if containing at least one single byte that is new with
respect to the previous file version. This occurrence is described in Figure 3b–c, where the new
bytes are marked in red.
Specifically, in Figure 3a the chunk BDIoT,k is matching, but the following BDIoT,k+d is not because
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the (k + d)-th byte is a new one. Consequently, the (k + d)-th byte is added to the list of literal
bytes to be sent to the cloud for update, and the sliding window is shifted by a single position.
The next chunk BDIoT,k+d+1 is recognized as known, therefore the relating token with index
k + d + 1 is sent.
Regarding the case of Figure 3b, the new byte is placed at the end of BDIoT,k+d, hence 4 single shifts
are necessary before finding another matching chunk BDIoT,k+2d. Interestingly, considering the
generic chunk BDIoT,j, as the file scanning moves on from the left to the right (that is, j increases
from k + d to k + 2d), the new byte slides from the right to the left within BDIoT,j until it completely
moves out when j = k + 2d. By doing so, the bytes from the (k + d)-th to the (k + 2d− 1)-th
one are all judged as new and sent to the cloud. Actually, it would not have been necessary to
transmit the bytes from the (k + d)-th to the (k + 2d− 2)-th one since they are not new, but in that
case the size of the chunk d is too large, unavoidably leading to the transmission of unnecessary,
redundant literal bytes.
Let us note that the examples in Figure 3a,b consider only a single byte to be updated; however,
the same discussion remains valid even if multiple new bytes are present in the file.

• At the end of the file analysis procedure, the generated ∆ is sent to the cloud. Finally,
synchronization is concluded by rearranging the cloud matching chunks (identified through
the received tokens) and the literal bytes to obtain the updated version of FC, as shown in Figure 4.
The cloud will then compute the signature listsR and S referring to its latest file version, to be
used when a new file synchronization procedure occurs.

byte k byte k+d

BDIoT,k+dBDIoT,k BDIoT,k+d+1BDIoT,k

BDIoT,k+d

byte k+d

BDIoT,k+2dBDIoT,k

BDIoT,k+d

byte k+d

byte k+2d-1

a) b) c)

token k token k+d token k token k+d+1 token k token k+2d

Figure 3. Examples of occurrences during file synchronization.

Literal bytes

Tokens

 from DIoT

Old Fc

Updated Fc

B

Figure 4. Cloud file update according to the scenario in Figure 3c.
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4.1. Adaptive Chunking Algorithm

A fixed chunk-based synchronization mechanism does not allow sole and exclusive identification
of the bytes being updated, as for the case of Figure 3b where unnecessary literal bytes are sent,
thus increasing the final ∆ size. However, by analyzing the indexes corresponding to the tokens
(unchanged data) and literal bytes (new information) collected in ∆, it is possible to indicatively infer
the amount and position of the updates within the file. This kind of information is then exploited for
the adaptation of the chunk size d so to minimize the ∆ dimension for the next file synchronization
event. Specifically, we consider the file synchronization at time t resulting in a file ∆t generated by the
DIoT. As described in the previous sections, ∆t is composed of both tokens and literal bytes. The basic
approach of the proposed adaptive chunking is the following:

1. Having consecutive, adjacent, chunks (Figure 3a) suggests that the chunk size d could be increased
in order to reduce the number of tokens (in the limit case, two d-bytes chunks corresponding to
two tokens can be replaced by a unique 2d-bytes chunk expressed by a single token).

2. If the two consecutive matching chunks are not adjacent, it means that some updates are in
between (Figure 3c). Therefore, d should be conveniently decreased to optimize the transmission
of literal bytes, that is to reduce the redundancy.

The here-described possibilities must be evaluated on Pt = {p1, p2, ..., pm, ..., pM}, defined as the
set of tokens in ∆t sorted in ascending order. Finally, the sum of the occurrences, suitably weighted,
returns the new chunk size to be used for the next file synchronization event. The analysis of the
sequence Pt is conducted by considering two consecutive tokens at a time, namely pm and pm−1,
finally resulting in M− 1 couples.

Given dt as the chunk size used in the current file synchronization event, we consider the difference
Φq = pm − pm−1, with q = m− 1, hence q = 1, 2, ..., (m− 1), ..., (M− 1). As inferred by Figure 3a,
having Φq = dt reveals that the matching chunks pm−1 and pm are adjacent, therefore leading to the
conclusion at point-1 introduced above. Furthermore, if the measure of Φ remains constant and equal
to dt as q grows, then it means that there are multiple adjacent chunks identifying a portion of the
file that does not need to be modified. The number of adjacent chunks Nac defines the size of the
unmodified portion and it is used to drive the adaptive chunking as follows:

dt+1,w = dt + µNac (1)

According to Equation (1), the chunk dimension is increased as a function of the number of
detected adjacent chunks composing the w-th file section. The parameter µ acts as a step size ruling
the speed of adaptation.

On the other hand, measuring dt < Φq ≤ 2dt (Figures 3b,c) shows that there is at least an updated
byte between the chunks pm−1 and pm, resulting in point-2 of the considered possibilities. This kind of
approach does not provide the exact knowledge of both the number and position of the new bytes;
however, we remark that the first step of the proposed algorithm concerns only an approximate
description of the update distribution along the file FDIoT . Therefore, in this direction, it is sufficient
for us to detect the minimum number of updated bytes. Specifically, given pm and pm−1 so that

udt < Φq ≤ (u + 1)dt, with u = 1, 2, ...,
⌊ L−m

dt

⌋
, we measure the minimum number of updated bytes

NUD as:

NUD =

⌈
Φt

dt
− 1
⌉

(2)

Therefore, in this case, the adaptation rule for chunk size decrease is given by:

dt+1,w = dt − µNUD (3)
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Equations (1)–(3) return a partial metric of the new chunk size that refers only to the considered
file section w. Depending on the update distributions along the file FDIoT , the proposed algorithm
provides W partial measures corresponding to the W identified file portions, so that the final resulting
averaged chunk size dt+1, to be used in the next (t + 1)-th synchronization procedure, is obtained by:

dt+1 =
1

W

W

∑
w=1

dt+1,w (4)

As introduced before, the step size µ defines the adaptation speed of the algorithm. An opportune
choice of µ should be driven by the temporal features of the file FDIoT . In fact, for applications where the
update distribution along FDIoT changes quite slowly in time (that is, considering the synchronization
events at time t and t + 1, the updated bytes in FDIoT,t and FDIoT,t+1 are localized in the same portion of
the file) it would be convenient to select a high-valued µ, making the new chunk size the optimal one as
quickly as possible. A similar behavior can be found in medical device networks where the output files
to be exchanged are usually formed by a header, reporting barely variable control information, and a
payload containing the actual measurement. On the other hand, if there is no correlation between the
consecutive update distribution in FDIoT,t and FDIoT,t+1, working with a relatively small µ is preferable
since by doing so the chunk dimension varies slowly, therefore avoiding large deviations from the
optimal value. This happens especially when the rough data contained within the file are larger than
the data header.

4.2. On Double Signature Efficiency

The possibility of performing an adaptive chunking shows the importance and efficiency of
double signature, to be discussed. In rsync-based file synchronization strategies, the size of chunks
and signatures employed for data compression is fixed and no parameter variations are expected.
As already mentioned in Section 3.2, rsync considers the use of 20-byte signatures (dR = 4 bytes for the
rolling checksum, dS = 16 bytes for the strong checksum) to compress chunks of dimension typically

greater or equal to 500 bytes [23], resulting in a compression ratio rc =
d

dR + dS
≥ 15. This parameter

setup is particularly suited to the context where the files to be synchronized are sufficiently large and
the percentage of updates is quite low; on the other hand it may be failing when dealing with small-size
data subject to significant changes in time. The proposed adaptive chunking algorithm solves part
of the problem by dynamically changing the size of the chunk according to the update distribution,
but it does not care about signature efficiency. Specifically, when several synchronization procedures
consider a large number of changes on the same file, the adaptive chunking algorithm returns a
decreasing chunk size d. In this context, having d = dR + dS represents the signatures performance
lower bound, that is where there is no compression gain. Actually, the use of signatures becomes even
totally disadvantageous when d < dR + dS (the chunk is extended instead of compressed).

Therefore, to overcome the potential failures of double signature, we present two different
solutions for the choice of the most opportune signatures dimension that are driven by the chunk size
returned by the previously described algorithm (the essentials are reported in Algorithm 1).

• The first strategy considers a lower bound on the chunk dimensioning, that is, given the rolling
and strong checksums dimension dR,re f and dS,re f respectively, the following condition must
be met:

dt+1 > θc = dR,re f + dS,re f (5)

with θc being the reference threshold. Hence Equation (5) represents a sort of additional step to
the adaptive chunking algorithm in Section 4.1 that prevents the estimated new chunk size to
be smaller than the signatures total dimension. By doing so the benefits of double signature are
preserved, but the potential provided by the adaptive chunking algorithm is not fully exploited.
Based on the rsync framework we have considered, the proposed chunking algorithm and
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Equation (5), we refer to the overall file synchronization procedure as Adaptive Chunking rdiff
(AC-rdiff ).

• The second proposed approach relies on a threshold-based mechanism offering the possibility
to dynamically move from a signature-based procedure to a signatures-free one and vice versa.
In particular, the same threshold θc defined as in AC-rdiff is considered to evaluate the convenience
of using signatures as follows:

Synchronization =

{
Hashing-free if d ≤ θc → dR,t+1 = 0; dS,t+1 = 0

Hashing-based if d > θc → dR,t+1 = dR,re f ; dS,t+1 = dS,re f
(6)

If the chunk size is over the threshold θc, the signatures-based approach is selected which can
bring benefits in terms of data compression. On the other hand, when the chunk dimension is
under the reference threshold, the file-scanning procedure for matching detection is performed
directly on the original chunks without resorting to any compression. For representation purposes,
in Equation (6) and in Algorithms 2 and 3 the dimensions of signatures to be employed in
the next t + 1 synchronization procedure, namely dR,t+1 and dS,t+1, are set to dR,re f and dS,re f
for the signature-based approach, and to 0 for the signature-free synchronization. Because of
the provided signatures on-off switching feature, we define this solution as Adaptive Hashing
rdiff (AH-rdiff ). In contrast to AC-rdiff where the chunk size choice is dependent of (but also
constrained to, when referring to the minimum allowed size) the signature dimension, with the
AH-rdiff algorithm the use of signatures is defined by the chunk size.

Algorithm 1 Procedure for adapting the chunk size

1: Input: Current chunk size dt; Token index vector Pt
2: Wsum = 0 chunk estimate sum metric
3: w = 0 step counter
4: Nac = 0 No. consecutive, unmodified chunks
5: for m = 2:M
6: i = m− 1
7: Φi = pm − pm−1 Token difference
8: if Φi == dt
9: Nac = Nac + 1

10: else
11: if Nac > 0
12: w = w + 1
13: dt+1,w = dt + µNac
14: Wsum = Wsum + dt+1,w
15: Nac = 0
16: end if
17: NUD = dΦt

dt
− 1e No. updates detected

18: w = w + 1
19: dt+1,w = dt − µNUD Partial chunk estimate
20: Wsum = Wsum + dt+1,w
21: end if
22: end for
23: dt+1 = Wsum/w Final chunk size estimate
24: return dt+1
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Algorithm 2 AC-rdiff

1: Input: chunk size estimate dt+1; Reference signatures size dR,re f , dS,re f
2: θc = dR,re f + dS,re f Threshold
3: if dt+1 ≤ θc
4: dt+1 = dR + dS + 1
5: end if
6: return dt+1

Algorithm 3 AH-rdiff

1: Input: Chunk size estimate dt+1; Reference signatures size dR,re f , dS,re f
2: θc = dR,re f + dS,re f Threshold
3: if dt+1 ≤ θc
4: dR,t+1 = 0
5: dS,t+1 = 0
6: else
7: dR,t+1 = dR,re f
8: dS,t+1 = dS,re f
9: end if

10: return dR,t+1,dS,t+1

4.3. Output Delta Format and Signatures Reference Lists Update

At the end of the file synchronization occurring at time t, the AC-rdiff and AH-rdiff algorithms
return a new adapted chunk dimension to be considered during the next file synchronization procedure
at time t + 1. Concerning AH-rdiff, the choice between the signature-based and signature-free
synchronization approach is also determined. This reference information must be known also from
the cloud, so that it can adequately handle its file update and signature generation in the next
synchronization procedure. Therefore, the delta output file ∆t sent by the DIoT will contain not only
the literal bytes and tokens to be used for file update, but also another field reporting the new chunk
size dt+1. Furthermore, in AH-rdiff, an additional flag is employed for signaling if the use of signatures
is convenient or not (Figure 5). However, it is worth noting that the addition of dt+1 and flag has in
general an absolutely negligible impact on the delta file dimension since they can be represented in
principle by only a few bits (at most, a couple of bytes).

rsync

AC-rsync

AS-rsync

Figure 5. Delta structure in original rsync, AC-rdiff and AH-rdiff respectively.

As detailed in Section 3.2, the original rsync algorithm entails that every time a synchronization
procedure is performed, the cloud generates two lists of reference signatures,R and S and sends them
to the DIoT in order to start a new synchronization procedure. However, the presence of this download
transmission may not be convenient, especially in networks where costs are dependent on the amount
of data traffic exchanged. For instance, service fares proposed by some NB-IoT network providers
are bounded to a fixed traffic threshold, beyond which additional costs may be required [32,33].
Therefore, while the uplink data traffic is optimized thanks to the use of AC-rdiff and AH-rdiff, a proper
management of downlink communication should be also provided to save spectral resources and limit
the potential costs related to the traffic volume.
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In this direction, we present a solution where the DIoT generates its own reference signature
lists, so that the downlink interaction with the cloud is limited to very sporadic cases. Specifically,
the idea is that once the adaptive algorithm (AC-rdiff or AH-rdiff ) has returned the new chunk size dt+1,
the DIoT organizes its current file FDIoT,t in chunks of size dt+1 bytes and calculates the corresponding
signatures setsR and S to be used as reference in the next file synchronization. It is worth highlighting
that this procedure is exactly the same as performed by the cloud in the original rsync framework.
In that case, the cloud generates the new signatures lists on its updated file FC,t, entailing that FC,t
has become equal to FDIoT,t. Therefore, the sets R and S calculated by the cloud on FC,t will be the
same ones computable from FDIoT,t at DIoT side. The proposed reference signatures self-generation
approach avoids the cloud to spend data traffic to transmitR and S , but it also provides energy saving
as explained in the next section. On the other hand, it requires a further computational effort from
the DIoT that can however be considered as negligible since the device’s power consumption mainly
concerns data transmission and reception mechanisms. Finally, it is worth noting that the downlink
communication from the cloud to the DIoT is significantly reduced but not completely cut. In fact,
the signature lists transmission from the cloud remains available and acts as a sort of reset when
unexpected events, such as DIoT formatting, malfunctions, or failed updates, occur, compromising the
DIoT-cloud connection.

5. Power Consumption Analysis

In general, power consumption is not considered a critical issue for the cloud since it is referred
to as an actively powered entity (as a data center is). On the other hand, energy saving is fundamental
for IoT devices that are typically battery supplied, to support mobility. Following the model given
in [34], the total energy consumption for IoT devices can be derived as the sum of four components:

Etot = Etx + Erx + Eprc + Esys (7)

where Etx refers to data communication, Erx to sensing and data reception, Eprc to the processing
and Esys to the other minor functionalities of the considered device. However, by assuming Esys is
negligible and considering Eprc as included in data transmission and reception processes, it is possible
to recast Equation (7) in the classic energy consumption models developed for Wireless Sensor
Networks (WSNs):

Etot = Etx + Erx = Ptx
Ds

vUL
+ Prx

Dr

vDL
(8)

with the total energy consumption of DIoT being described as a function of their transmission and
reception activity [35,36]. Specifically, the transmit power Ptx takes into account the energy spent
to run the electronic hardware (mainly related to the digital-to-analog signal conversion and power
amplification), while the received power Prx is defined by the energy employed for maintaining the
device in active mode and processing the received signals [37]. vDL and vUL refer to the download
and upload data rate, respectively. Finally, Ds and Dr represent the data volume to send and receive.
In particular, considering Equation (8) in the context of data synchronization returns Ds as the ∆
containing the information transmitted from the DIoT to the cloud for its update, and Dr as the reference
information (that is the signatures lists) sent by the cloud to let the DIoT perform its file processing and
∆ generation. The parameters Ptx, Prx, vDL and vUL are instead specific to the employed technology,
therefore not dependent of the data synchronization mechanism. As an additional comment, it is worth
noting that the implementation of AC-rdiff and AH-rdiff algorithms in a communication framework
with reduced cloud-to-DIoT transmission such as one proposed in the previous section returns the
following benefits. First, the optimization of ∆, that is Ds, implies the optimization of Etx. Second,
the reference signatures self-generation approach allows a significant reduction of Dr, therefore making
the Erx negligible with respect to Etx. Therefore, we show that Etot becomes mainly dependent of Etx.
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Battery-supplied DIoTs are typically designed for sporadic data transmissions, thus remaining
idle for most of time, except for narrow active mode time windows. Time and energy spent in both
these possible states allow the device battery lifetime to be measured as [38]:

L(te) =
C · SF

Etx(te) + Ebg
(9)

where C and SF is the battery capacity and safety factor, respectively, Etx the average energy
consumption component taken from Equation (8) and Ebg the DIoT background electronic hardware
consumption. Both Etx and L are averaged on te, representing the time interval between two
consecutive data transmissions (that is, two file synchronization events).

Finally, we would like to remark that the power consumption analysis here reported has been
rephrased to consider those aspects characterizing the file synchronization at the application layer.
Moving down towards the network access layer, cloud-DIoT handshaking mechanisms and data
framing are performed. Moreover, each specific layer protocol considers the introduction of additional
information. Therefore, as the weight of Ds and Dr might be different from the one considered for
our purpose, the model in Equations (8) and (9) should be conveniently handled. However, since ∆
represents the largest part of the total amount of data exchanged between two nodes, we believe that
the proposed analysis may help to emphasize the importance of an efficient data synchronization
protocol, especially in low-power IoT scenarios.

6. Numerical Results

The performance of the proposed AC-rdiff and AH-rdiff algorithms have been evaluated in terms
of generated data traffic amount and DIoT power consumption. To this aim, we have developed a
MATLAB-based simulator where the file synchronization between two parties, e.g., a DIoT and the
Cloud, has been implemented. Specifically, first a byte string A, representing the file stored at cloud
side, is created. Then another string, namely B, equal to A except for some modified parts, is generated.
B acts as the file at DIoT side, so A is updated to B by resorting to different synchronization algorithms.
Simulations have considered files, the dimension of which is equal to 3 kB. Taking into account the
discussion reported in Section 1, the choice of such file dimension makes the simulation framework
fairly realistic with respect to the scenarios described in Table 1 where limited-size data are handled
(the file may represent some kind of measure coming from a sensor, or it may contain multiple
information collected within a time interval but to be sent only at specific time hours of the day).
Specifically, we have implemented file synchronization according to the following algorithms:

• rsync32,128: the classic rsync mechanism as in [23] that considers the use of a 32-bit rolling checksum
and a 128-bit MD5 hash, with a static chunk size equal to 500 bytes.

• rdiff 32,128: the algorithm parameters are the same used in [23], except for the chunk size that is set
to 40 bytes, so letting the double signature provide a compression ratio rc = 2 (the name rdiff is
used only to differentiate the current algorithm from the previous rsync).

• rdiff 16,64: as the dimension of the files to be synchronized is limited, two smaller signatures are
considered, a 16-bit rolling checksum and a 64-bit cyclic redundancy check respectively, with the
chunk size equal to 20 so to obtain rc = 2.

• AC-rdiff 16,64: the proposed algorithm uses a 16-bit rolling checksum and a 64-bit cyclic
redundancy check as signature, while the chunk size is dynamically adapted (the step size
in Equations (1)–(3) was set to µ = 0.5).

• AH-rdiff 16,64: based on the chunk size returned by the adaptive algorithm (µ = 0.5), either a
signature-based approach with a 16-bit and 64-bit signatures or a signature-free procedure is used.

All the algorithms listed above are implemented within a synchronization framework where the
DIoT calculates by itself the reference signatures without receiving them from the cloud (an exception
is represented by the very first synchronization event when the DIoT is initialized with the reference
signatures coming from the cloud).
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6.1. Data Traffic Performance

Figure 6 shows the amount of generated data traffic for the considered synchronization algorithms,
expressed as a percentage with respect to the entire file dimension (having 100% of generated traffic
means essentially that the DIoT is sending the whole file to the cloud). The changed bytes have been
individually, randomly sorted within the file FDIoT,t. The results, averaged over 100 simulations, are a
function of the file update percentage, indicating how much the current file FDIoT,t is changed with
respect to its previous version FDIoT,t−1.
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Figure 6. Performance of the considered file synchronization algorithms as a function of the file update
percentage. Random update distribution within the file is assumed.

As expected, rsync32,128 is completely inefficient as the chunk size d = 500 bytes is too large with
respect to the entire file dimension. In fact, it is very hard to find matching chunks, especially when the
update percentage grows. On the other hand, rdiff 32,128 and rdiff 16,64 show better performance since
the considered chunk size is much smaller than in 500 bytes. However, in both cases the generated
data traffic reaches 100% rapidly as the update percentage of the file increases. Finally, AC-rdiff 16,64
and AH-rdiff 16,64 provide best performance thanks to the fact that the chunk size is dynamically tuned
according to the measured update percentage. This fact can be appreciated especially for high update
percentages, where other fixed chunk size-based algorithm are inefficient. As explained in Section 4.2,
the AC-rdiff algorithm considers a lower bound regarding the minimum chunk size, while AH-rdiff
has no constraints since if the chunk dimension is lower than the signature sum size, the system simply
switches from the signature-based to the signature-free approach. For this reason, AH-rdiff 16,64 is
better performing than AC-rdiff 16,64.

The same analysis reported in Figure 6 has been performed considering a different scenario where
the updated bytes within FDIoT are characterized by a burst distribution, the dimension of which is
sorted following a Gaussian probability density function with mean µburst = 5 and variance σ2

burst = 6.25
(the size of new byte chunks ranges from 2 to 15 bytes). From a data synchronization point of view, this
latter case is more favorable than the previous one where the bytes to be changed were individually
and randomly distributed since, for a given update percentage, having a more compact distribution of
the updates returns a higher possibility to find matching chunks, thus reducing both the processing
time and the amount of bytes to be transmitted to the cloud. This fact is confirmed by the results in
Figure 7 where it is possible to observe how all the considered algorithms show better performance
with respect to the previous case of Figure 6. However, the higher efficiency of AC-rdiff and AH-rdiff
mechanisms is clearly evident even in this scenario.
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Figure 7. Performance of the considered file synchronization algorithms as a function of the file update
percentage. Burst updates distribution within the file is assumed.

Finally, we have simulated 30 consecutive file synchronization procedures, reporting in Table 2
the average traffic percentage generated according to the algorithms under investigation. The first
column of Table 2 also shows the standard deviation of the results, which is quite uniform for all
the considered algorithms except for rsync32,128. This is because rsync32,128 generates an average data
traffic that essentially approaches the entire file size of 3 kB, so the deviation is very small. On the
other hand, with the other algorithms returning lower average results, the standard deviation assumes
larger values. For each considered synchronization event, the file update percentage has been sorted
following a log-normal distribution with µud = 2.5 and σud = 0.8 (the update percentage associated
with the s-th synchronization procedure, with s = 1, 2, . . . , 30, indicates how much the file at time t = s
is changed with respect to its previous version at time t = s− 1). The changed bytes within the file have
been instead burst-sorted. Furthermore, Table 2 also shows the chunk dimension considered by each
algorithm. For AC-rdiff and AH-rdiff the mean value is reported, which is identical since the chunk size
is adapted following the same approach (left column of Table 2). Specifically, in Figure 8 it is possible
to appreciate how the chunk dimension dynamically changes in time (the figure also reports the chunk
dimension considered in rdiff 16,64 a reference value). The x-axis reports 30 ticks corresponding to the 30
synchronization procedures, each one labeled with the respective considered file updated percentage
value. The trend of the chunk size adaptation strictly depends on the file update percentage. In fact,
for high percentage values the chunk size decreases, while for small updates the chunk dimension
grows. When instead the chunk does not change, it means that despite different update percentages,
the algorithm has recognized no convenient size variations.

Table 2. Average data traffic generated by different synchronization algorithms.

Average Traffic (Standard Dev.) Average Traffic Percentage Chunk Dimension
(kByte) (%) (Byte)

rsync32,128 2.96 (0.03) 98.89 500
rdiff 32,128 2.28 (0.49) 76.31 40
rdiff 16,64 1.85 (0.47) 61.72 20
AC-rdiff 16,64 1.68 (0.41) 56.01 14
AH-rdiff 16,64 1.67 (0.39) 55.94 14
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Figure 8. Chunk dimension adaptation as the synchronization events occur.

As an additional comment, we observe that the choice of file dimension equal to 3 kB does not
limit validity of the results, since the goal of the proposed analysis is to evaluate the byte traffic-saving
percentage provided by the considered algorithms. In fact, file synchronization protocols can handle
dimension mismatching between the DIoT and cloud files. In general, it is important to observe that,
when the chunk dimension is similar to the entire file size, static chunk-based algorithms are inefficient
since it is hard to find matching chunks if a significant part of the file needs to be updated. On the
other hand, when the file dimension grows with respect to the chunk, the performance improves.
However, thanks to the adaptive approach, AC-rdiff and AH-rdiff are essentially not sensitive to the
file size, thus providing good performance in any scenario.

6.2. Power Consumption Performance

The results obtained from the data traffic analysis have been exploited to measure the DIoT
power consumption. The reference signatures self-generation approach characterizing the DIoT allows
the energy spent for data reception to be neglected, so we have simplified the measure of power
consumption of Equation (8) by only referring to the transmission component. By doing so, we can
evaluate how the byte traffic saving provided by the different synchronization algorithms impacts on
the device power consumption and battery lifetime. Specifically, the average data traffic reported in
Table 2 has been considered as the transmitted data volume Ds. Concerning the other parameters Ptx

and vUL introduced in Equation (8), we refer to the most popular LPWAN technologies on the market,
namely Sigfox [7], LoRa/LoRaWAN [39,40], and NB-IoT [10] (Table 3). Therefore, we have evaluated
the DIoT energy consumption of a single synchronization procedure for different algorithms as shown
in Figure 9, with the error bars referring to a 95% confidence interval.

Finally, the measures reported in Figure 9 have been exploited to estimate the battery lifetime
following Equation (9). Regarding the battery parameters, we have chosen C = 27.7 Wh and SF = 1/3
as in [38,41]. The background device power consumption has been neglected to make the analysis
specifically referring to the data exchange context. Furthermore, we have considered the scenario
where a file synchronization procedure is performed once a day, thus returning a te = 24 h. Therefore,
the battery lifetime, expressed in years, is described in Table 4 as a function of the considered LPWAN
technologies and file synchronization algorithms.
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Table 3. LPWANs Technologies Parameters.

Ptx (dBm) vUL (kb/s)

Sigfox 14 0.6
LoRa/LoRaWAN 14 5.5
NB-IoT 23 20
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Figure 9. Power consumption, measured in milliwatt second, of a single synchronization procedure
considering different LPWAN technologies and algorithms.

Table 4. Device battery lifetime, measured in years, considering the scenario where the 3 kB file
synchronization is performed once every 24 h. Results are shown as a function of the LPWAN
technology and file synchronization algorithm.

Sigfox LoRa/LoRaWAN NB-IoT

rsync32,128 0.10 0.85 0.39
rdiff 32,128 0.12 1.10 0.50
rdiff 16,64 0.15 1.34 0.62
AC-rdiff 16,64 0.17 1.47 0.68
AH-rdiff 16,64 0.17 1.50 0.69

By jointly observing the results in Figure 9 and Table 4 it is possible to appreciate how the data
traffic saving provided by AC-rdiff and AH-rdiff returns, as expected, significant benefits in terms
of DIoT energy consumption. Furthermore, it is also evident that the amount of data exchanged
impacts on the performance of the employed LPWAN technology. In fact, traffic volumes in the order
of kilobytes (as considered in the simulations) makes use of Sigfox unfeasible since the very low
data rate characterizing this technology unavoidably leads to long transmission times and, therefore,
to high power consumption. On the other hand, LoRa/LoRaWAN and NB-IoT are better suited to
the considered traffic volume. However, the presented scenario with 3 kB files daily updating is quite
unusual in the IoT, since the amount of exchanged data is typically much lower. We have intentionally
chosen this framework to stress the performance provided by the proposed synchronization algorithms.
Moreover, considering more realistic circumstances where the daily traffic volume is in the order of a
few hundreds of bytes, the battery lifetime values in Table 4 will increase, reaching the 5–10 years life
usually claimed for IoT devices.
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7. Conclusions

This paper dealt with data synchronization in IoT LPWANs. In this context, two adaptive
algorithms, namely AC-rdiff and AH-rdiff, have been presented to optimize the amount of data to
be exchanged when the synchronization between a DIoT and the Cloud is performed. The aim is to
reduce the amount of traffic exchanged, still preserving the ideal synchronization, thus saving energy
and increasing the DIoT lifetime. The performance analysis here reported has highlighted a significant
traffic volume saving when the proposed algorithms are used with respect to other solutions currently
adopted in remote synchronization. Furthermore, reducing the data to be transmitted leads also
to improve the DIoT energy saving, representing a very challenging issue in the IoT, and therefore
extending device battery lifetime. Future works will consider a more complex scenario where multiple
DIoTs share the same cloud storage resources. In that case, an opportune time synchronization protocol
among parties must be provided to let both the cloud and DIoTs perform file updates without incurring
problems of access and worthless data duplication.
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