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Abstract: This study proposes a novel FSM compensation system for four degrees of freedom (DOF)
laser errors compensation, which has the advantage of shorter optical path length, fewer elements
and an easier set-up process, meaning that it can be used at different locations. A commercial
software, Zemax, is used to evaluate the function of the proposed FSM compensation system and the
mathematical modelling of the proposed FSM compensation system is established by using a skew-ray
tracing method. Finally, the proposed FSM compensation system is then verified experimentally
using a laboratory-built prototype and the result shows that the proposed FSM compensation system
achieves the ability to compensate the 4 DOF of the laser source.
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1. Introduction

Laser technology is widely utilised in different fields, such as engineering inspection,
communication industry, semiconductor industry, and military industry [1–3]. Moreover, the stability
of the laser device will directly influence the performance and the price of the equipment. However,
the laser light is not a stable light source and it will ramble and shift as the time varies [4–7]. There are
certain studies which mention that the intensity fluctuations of the laser source are related to the input
current [8], while the environmental conditions (e.g., atmospheric), vibrations and thermally-induced
motion may cause the laser to misalign [9]. The laser source drift contains two DOF angular errors and
two DOF displacement errors, although even a small angular error will be magnified by the optical
path length and reduce the quality of the product [10,11]. Therefore, it is necessary to improve the laser
point stability. In order to solve the laser point stability problem, there are different types of methods
which can be used to reduce the laser drift. The passive compensation method reduces the laser drift
by controlling the power or frequency fluctuations of the laser device [12,13]. This method has a lower
cost but also a lower efficiency; it cannot correct the laser point instantly and cannot correct the drift
caused by environmental factors. By contrast, the fast steer mirror (FSM) compensation system can
correct the laser point actively via its closed-loop system, and so it has the advantage of being able
to correct the drift caused by environmental factors and the laser device itself; moreover, it can also
compensate for the laser error instantly and continuously.

The FSM compensation system plays an important role in the free-space optical communications
and auto adaptation optical system for controlling the laser beam direction, because it has good
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dynamic performance [14–16]. In order to correct the 4 DOF laser errors to achieve the best laser point
stability, there are two FSMs and two sensors which are used to correct the two angular errors and two
displacement errors in the conventional FSM compensation system [17]. However, the conventional
FSM compensation system has the disadvantage of longer optical path length, which means that errors
are magnified due to the system’s excessive elements. Therefore, this study proposes a new FSM
compensation system that gives the existing compensation system the advantage of shorter optical
path length, fewer elements, and easier set up at different locations. The proposed FSM compensation
system is characterised using simulation methods and mathematical modelling, then evaluated by
experimentally using a laboratory-built prototype.

2. Design of Proposed FSM Compensation System and Simulations

As shown in Figure 1, a conventional FSM compensation system is constructed using two 2-axes
FSMs, two beam splitters, and two PSDs. In the FSM compensation system, PSDs play the role of
detecting the four DOF laser source errors and the FSM is represented as a mirror that is mounted over
the actuators to steer the output laser beam and compensate for laser errors. In order to achieve better
laser point stability, it is necessary to compensate for all four DOF errors of the laser point. Therefore,
the conventional FSM compensation system needs to place two 2-axes FSMs to compensate for the two
DOF angular errors and the two DOF displacement errors respectively. However, these two 2-axes
FSMs will produce an extra optical path between themselves, which means that the laser point will
involve more environmental disturbance. Moreover, and as mentioned in Section 1, even a small
angular error will be magnified by the optical path length, and thus it is essential to reduce the optical
path length of the optical system.
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Figure 1. Optical path in conventional FSM compensation system.

This study proposes a new FSM structure to reduce the optical path length of the conventional
FSM compensation system. As shown in Figure 2, the new FSM structure modifies the two FSMs to
a new 4-axes FSM structure, which removes the optical path between two FSMs directly and reduces
the environmental disturbance. However, one normal mirror could produce 2 DOF steering only, and
so the Double Porro prisms, which could produce 4-DOF steering are used in the new FSM structure.
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Double Porro prisms are variants of the 90◦ prisms that are used as a pair to displace and invert
a beam; indeed, these are widely employed in binoculars [18–20] and as a beam rotator [21]. As shown
in Figure 3, the 90◦ prism could tilt and shift the laser path when the 90◦ prism is rotated along the
Y-axis and shifted along the Y-axis; as such, when a pair of 90◦ prisms are put together vertically
(which are called Double Porro prisms), they would have the ability of 4 DOF steering. Therefore,
the characteristic of the Double Porro prisms mentioned above is combined with the 4-DOF actuator
to compensate for the laser error.
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Figure 3. The schematic diagram of (a) the angular beam steering and (b) the translation beam steering
of 90◦ prisms laser steering.

In order to verify the function of the proposed FSM compensation system, a commercial software,
Zemax, is used to build the optical path and perform a multi-point laser error analysis which is shown
in Figure 4. The analysis assigns the 2 DOF displacement errors and 2 DOF angular errors from−1 mm
to +1 mm and from −1◦ to +1◦, respectively. Moreover, the distance and the angle between each
interval are 0.1 mm and 0.1◦, respectively. The distributions of 114 laser points are shown in Figure 5.
However, all errors could be compensated for by the Double Porro prisms through the function of
optimisation, which is shown in Figure 6; moreover, the compensated error is under 0.01 µm. The result
verifies that the proposed FSM compensation system has the ability to compensate for 4 DOF laser
errors and there is no singularity in the system.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 16 

 

Double Porro prisms are variants of the 90° prisms that are used as a pair to displace and invert 

a beam; indeed, these are widely employed in binoculars [18–20] and as a beam rotator [21]. As shown 

in Figure 3, the 90° prism could tilt and shift the laser path when the 90° prism is rotated along the Y-

axis and shifted along the Y-axis; as such, when a pair of 90° prisms are put together vertically (which 

are called Double Porro prisms), they would have the ability of 4 DOF steering. Therefore, the 

characteristic of the Double Porro prisms mentioned above is combined with the 4-DOF actuator to 

compensate for the laser error.  

Figure 3. The schematic diagram of (a) the angular beam steering and (b) the translation beam steering 

of 90° prisms laser steering. 

In order to verify the function of the proposed FSM compensation system, a commercial software, 

Zemax, is used to build the optical path and perform a multi-point laser error analysis which is shown 

in Figure 4. The analysis assigns the 2 DOF displacement errors and 2 DOF angular errors from  

−1 mm to +1 mm and from −1° to +1°, respectively. Moreover, the distance and the angle between 

each interval are 0.1 mm and 0.1°, respectively. The distributions of 
4

11  laser points are shown in 

Figure 5. However, all errors could be compensated for by the Double Porro prisms through the 

function of optimisation, which is shown in Figure 6; moreover, the compensated error is under 0.01 

μm. The result verifies that the proposed FSM compensation system has the ability to compensate for 

4 DOF laser errors and there is no singularity in the system. 

 

Figure 4. Compensation of four DOF laser errors in proposed FSM compensation system. 

 

(a) 

 

(b) 
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3. Proposed FSM Compensation Method

Firstly, the proposed FSM compensation system detects the laser drift by two PSDs and uses
a mathematical algorithm to calculate the 2-DOF angular errors (θx, θy) and 2-DOF displacement errors
(δx, δy), following which it calculates the compensation values (θx

′, θy
′, δx

′, δy
′). Thereafter, the system

drives the 4-axes actuator to compensate for the laser source errors.

3.1. Flat-Surface Skew-Ray Tracing Method

The flat-boundary skew-ray tracing method, proposed by Lin [18,22], is used in this study to
build the mathematical algorithm of the proposed FSM compensation system. The transformation
matrix R Ai is relative to the universal coordinate system (R) which is built on the boundary of each
optical element, as shown below:

R Ai =


Iix Jix Kix tix
Iiy Jiy Kiy tiy
Iiz Jiz Kiz tiz
0 0 0 1

 (1)

The vectors
[

Iix Iiy Iiz 0
]T

,
[

Jix Jiy Jiz 0
]T

and
[

Kix Kiy Kiz 0
]T

describe the
orientation of the three unit vectors of coordinate frame i with respect to another coordinate frame
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R, respectively. Vector
[

tix tiy tiz 0
]T

is the position vector of origin of coordinate frame i with
respect to that of another coordinate frame R.

The laser ray is considered as unit direction vector in the flat-boundary skew-ray tracing method,
as shown in Figure 7. Pi−1 and `i−1 express the incident point and incident unit direction vector, while
Pi and `i express the point on the boundary and the reflected ray or refracted ray. They could be
expressed as follows:

Pi−1 =
[

Pi−1x Pi−1y Pi−1z 1
]T

(2)

`i−1 =
[
`i−1x `i−1y `i−1z 1

]T
(3)

Pi =
[

Pix Piy Piz 1
]T

=
[

Pi−1x + `i−1xλi Pi−1y + `i−1yλi Pi−1z + `i−1zλi 1
]T

(4)

λi is the geometrical length from the incident point Pi−1 to the point on the boundary:

λi =
−(IizPi−1x + JizPi−1y + KizPi−1z + tiz)

Iiz`i−1x + Jiz`i−1y + Kiz`i−1z
=
−Bi
Gi

(5)

According to Snell’s Law, when the laser incidents upon a flat surface and is reflected, the unit
direction vector `i could be expressed as follows:

`i =
[
`ix `iy `iz 0

]T
=
[
`i−1x − 2IizGinix `i−1y − 2JizGiniy `i−1z − 2KizGiniz 0

]T
(6)

If the laser incident is refracted, the unit direction vector `i could be expressed as follows:

`i =


`ix
`iy
`iz
0

 =


−nix

√
1− N2

i + (NiCθi)
2 + Ni(`i−1x + nixCθi)

−niy

√
1− N2

i + (NiCθi)
2 + Ni(`i−1y + niyCθi)

−niz

√
1− N2

i + (NiCθi)
2 + Ni(`i−1z + nizCθi)

0

 (7)

Note that ni is normal vector and Ni is the index of refraction defined by Snell’s Law [23,24].
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3.2. Laser Drift Errors Measurement

The proposed FSM compensation system includes two optical paths: the optical path I, which
is from the laser source to PSD 1, and the optical path Π to PSD 2, as shown in Figure 8. In order to
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build the full skew-ray tracing of the proposed FSM compensation system, in the beginning coordinate
system, the homogeneous coordinate transformation matrix of each boundary, incident point, and
incident unit direction vector should be defined. As shown, the reference coordinate system (xyz)0
is built on the laser source, while the coordinate (xyz)i is built on the boundary of optical elements;
moreover, the parameters of the homogeneous coordinate transformation matrix of the coordinate
system (xyz)i relative to (xyz)i+1 are shown in Table 1. Li is the straight-line distance between each
coordinate system.
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Table 1. Coordinate transformation matrix parameters of laser drift errors measurement.

i i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 6

Optical
Element

Double Porro
Prisms

Double Porro
Prisms

Double Porro
Prisms

Double Porro
Prisms BS PSD 1 PSD 2

Iix 1 1 1/
√

2 0 1/
√

2 1/
√

2 1/
√

2
Iiy 0 0 0 0 0 0 0
Iiz 0 0 −1/

√
2 1 −1/

√
2 −1/

√
2 1/

√
2

Jix 0 0 1/2 0 0 0 0
Jiy 1/

√
2 0 1/

√
2 1 1 1 1

Jiz 1/
√

2 −1 1/2 0 0 0 0
Kix 0 0 1/2 −1 1/

√
2 1/

√
2 1/

√
2

Kiy −1/
√

2 1 −1/
√

2 0 0 0 0
Kiz 1/

√
2 0 1/2 0 1/

√
2 1/

√
2 1/

√
2

tix L2x L3x L4x L5x L7x L8x L8x
tiy L2y L3y L4y L5y L7y L8y L8y
tiz L2z L3z L4z L5z L7z L8z L8z

The incident point and incident unit direct vector of the laser source relative to the reference
coordinate system are defined as:

P0 = [ 0 0 0 1 ]
T

, `0 = [ 0 0 1 0 ]
T

(8)

A transformation matrix T1 is used to distinguish between 2-DOF angular errors (θx, θy) and
2-DOF displacement errors (δx, δy) of laser drift:

T1 =


1 0 0 δX
0 1 0 δY
0 0 1 0
0 0 0 1




1 0 0 0
0 cos(θX) − sin(θX) 0
0 sin(θX) cos(θX) 0
0 0 0 1




cos(θy) 0 sin(θy) 0
0 1 0 0

− sin(θy) 0 cos(θy) 0
0 0 0 0

 (9)
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Furthermore, the laser source containing 2-DOF angular errors (θx, θy) and 2-DOF displacement
error (δx, δy) could be written as:

P0
′ = T1P0, `0

′ = T1`0 (10)

The laser ray on the coordinate (xyz)0 would incident to the first optical boundary (xyz)1, then
reflect to the next optical boundary (xyz)2. The incident point 1P1 and the reflected ray 1`1 on the first
optical boundary, which are relative to coordinate (xyz)1, could be calculated by using Equation (4)
to Equation (6) and the parameter of the homogeneous coordinate transformation matrix 1 A0 of the
coordinate system (xyz)0 relative to (xyz)1, as shown in Table 1. Now the 1P1 and 1`1 are considered
as the incident point and the incident unit direct vector of the next optical boundary (xyz)2; as such,
the same method mentioned above is then used to obtain the incident points 2P2 and 2`2 on the second
optical boundary, which are relative to coordinate (xyz)2. Sequentially, the incident point and the
incident unit direct vector on each optical boundary could be obtained. Finally, the spot coordinates
on PSD 1 and PSD 2 could be obtained as simultaneous higher order equations in four variables
as follows:

PPSD1 =
[

X1
(
θx, θy, δx, δy

)
Y1
(
θx, θy, δx, δy

)
0 1

]
(11)

PPSD2 =
[

X2
(
θx, θy, δx, δy

)
Y2
(
θx, θy, δx, δy

)
0 1

]
(12)

After the whole flat-boundary skew-ray tracing, the relationship between PSD 1, PSD 2, and the
four laser drift errors is built as Equations (11) and (12), where, X1, X2, Y1 and Y2 are the coordinate
values of X and Y direction on PSD 1 and PSD 2, respectively. The four laser drift errors could be
obtained after solving Equations (11) and (12):

θx = f1(X1, X2, Y1, Y2) (13)

θy = f2(X1, X2, Y1, Y2) (14)

δx = f3(X1, X2, Y1, Y2) (15)

δy = f4(X1, X2, Y1, Y2) (16)

3.3. Laser Drift Errors Compensation

This section builds a new coordinate system to calculate the compensation values of the
Double Porro prisms, which is shown in Figure 9. The parameters of the homogeneous coordinate
transformation matrix of the coordinate system (xyz)i relative to (xyz)i+1 are shown in Table 2.Sensors 2018, 18, x FOR PEER REVIEW  9 of 16 
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Table 2. Coordinate transformation matrix parameters of laser drift errors compensation.

i i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 8

Optical
Element

4-Axes
Actuator

Double
Porro Prisms

Double
Porro Prisms

Double
Porro Prisms

Double
Porro Prisms

4-Axes
Actuator BS PSD 1 PSD 2

Ni 1 reflected reflected reflected reflected 1 reflected
Iix 1 1 1 1/

√
2 0 1/

√
2 1/

√
2 1/

√
2 1/

√
2

Iiy 0 0 0 0 0 0 0 0 0
Iiz 0 0 0 −1/

√
2 1 −1/

√
2 −1/

√
2 −1/

√
2 1/

√
2

Jix 0 0 0 1/2 0 0 0 0 0
Jiy 1 1/

√
2 0 1/

√
2 1 1 1 1 1

Jiz 0 1/
√

2 −1 1/2 0 0 0 0 0
Kix 0 0 0 1/2 −1 1/

√
2 1/

√
2 1/

√
2 1/

√
2

Kiy 0 −1/
√

2 1 −1/
√

2 0 0 0 0 0
Kiz 1 1/

√
2 0 1/2 0 1/

√
2 1/

√
2 1/

√
2 1/

√
2

tix L1x L2x L3x L4x L5x L6x L7x L8x L8x
tiy L1y L2y L3y L4y L5y L6y L7y L8y L8y
tiz L1z L2z L3z L4z L5z L6z L7z L8z L8z

The coordinate system (xyz)1 and (xyz)6 are set under the Double Porro prisms, which simulate
the motion of the 4-axes actuator. The incident point and incident unit direct vector of a laser source
that contains 4-DOF errors could be written as:

P0
′ = T1P0, `0

′ = T1`0 (17)

Note that the angular errors (θx, θy) and displacement errors (δx, δy) are known to be constant in
this sub-section. The laser ray on the coordinate (xyz)0 would incident to the first virtual boundary
(xyz)1, then refract to the next optical boundary (xyz)2. The transformation matrices T2 and T3 are
used to describe 2-DOF angular motion (θx

′, θy
′) and 2-DOF displacement motion (δx

′, δy
′) of Double

Porro prisms:

T2 =


1 0 0 δx

′

0 1 0 δy
′

0 0 1 0
0 0 0 1




1 0 0 0
0 cos(θx

′) − sin(θx
′) 0

0 sin(θx
′) cos(θx

′) 0
0 0 0 1




cos(θy
′) 0 sin(θy

′) 0
0 1 0 0

− sin(θy
′) 0 cos(θy

′) 0
0 0 0 0



T3 =


1 0 0 −δx

′

0 1 0 −δy
′

0 0 1 0
0 0 0 1




1 0 0 0
0 cos(−θx

′) − sin(−θx
′) 0

0 sin(−θx
′) cos(−θx

′) 0
0 0 0 1




cos(−θy
′) 0 sin(−θy

′) 0
0 1 0 0

− sin(−θy
′) 0 cos(−θy

′) 0
0 0 0 0


(18)

Of particular note here are the homogeneous coordinate transformation matrix 0 A1
′ of the

coordinate system (xyz)1 relative to (xyz)0 and 5 A6
′ of the coordinate system (xyz)5 relative to

(xyz)6, which contain 4-DOF variables to transfer the boundary of Double Porro prisms. These are
expressed as follows:

1 A0
′ = T2

1 A0 (19)

6 A5
′ = T2

6 A5 (20)

The incident point 1P1 and the refracted ray 1`1 on the first virtual boundary, which are relative to
coordinate (xyz)1, could be calculated by using Equation (4) to Equations (6), (7) and (19). The same
method mentioned in the last section is used sequentially to obtain the incident point and incident
unit direct vector on each optical boundary. Finally, the spot coordinates on PSD 1 and PSD 2 could be
obtained as simultaneous higher order equations in four variables as follows:

PPSD1 =
[

X1
(
θx
′, θy

′, δx
′, δy

′) Y1
(
θx
′, θy

′, δx
′, δy

′) 0 1
]

(21)

PPSD2 =
[

X2
(
θx
′, θy

′, δx
′, δy

′) Y2
(
θx
′, θy

′, δx
′, δy

′) 0 1
]

(22)
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The relationship between PSD 1, PSD 2 and 4-DOF motion of Double Porro prisms is built as
Equations (21) and (22), where, X1, X2, Y1 and Y2 are the coordinate values of X and Y direction on
PSD 1 and PSD 2, respectively. Consequently, the four laser drift errors could be obtained after solving
Equations (21) and (22):

θx
′ = f1(X1, X2, Y1, Y2) (23)

θy
′ = f2(X1, X2, Y1, Y2) (24)

δx
′ = f3(X1, X2, Y1, Y2) (25)

δy
′ = f4(X1, X2, Y1, Y2) (26)

4. Experimental Setup and Results

The prototype of the proposed FSM compensation system is set on the optical bench as shown in
Figure 10. As can be seen, this experiment involves the use of a He-Ne laser (EL01A, 632 nm, 10 mW,
LASOS, Jena, Germany), a 2-axis linear translation stage, a 2-axis rotation stage, a “Stewart Platform”
type hexapod (HXP50-MECA, Newport, Irvine, CA, USA), a double Porro prims composed of two
hollow-roof prism mirrors, a beam splitter and two dual-axis lateral PSDs (SPOTANA-9S-USB-L,
DUMA OPTRONICS, Nesher, Israel). A He-Ne laser is used as the light source, which is firstly set on
the 2-axis linear translation stage.
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Figure 10. Photograph of experimental setup.

Following this, the laser source incidents to a mirror which is set on the 2-axis rotation stage
and then reflects to the Double Porro prisms which are set on a 6-axis hexapod. The laser beam is
then directed into a beam splitter (BS). Finally, the laser beam is split into PSD 1 and PSD 2 by the
BS. The 2-axis linear translation stage and 2-axis rotation stage are applied to produce 4-DOF laser
errors, namely θx, θy, δx and δy, at the same time. The 6-axis Hexapod is a parallel kinematic motion
device that provides 6-DOF motion, which is applied to produce 4-DOF motion θx

′, θy
′, δx

′ and δy
′ to

compensate for the laser errors. The progress of the experiment is as follows. In the beginning, 4 DOF
laser errors, θx, θy, δx and δy, are produced by the linear translation stage separately, following which
PSD 1 and PSD 2 detect the signals of the laser spots. Moreover, a commercial software, MATLAB, is
used to solve the laser errors and the compensation values through the reading of two PSDs. Lastly,
the Double Porro prisms are driven to compensate for the 4 DOF laser errors.

Figure 11a,b show the experimental results for the variation of positions of light spots on the PSDs
with and without the compensation, when the laser error is δx = 50 and δx = −50 µm, respectively.
As shown in Figure 11a, the readings of PSD1 and PSD are −50 and 50 µm when δx = 50 µm. After
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compensating for the laser error, the readings of PSD 1 and PSD 2 are reduced to approximately 0 µm,
which means that the laser error of δx = 50 µm is compensated for by the proposed FSM compensation
system. The same is seen in Figure 11b, where the result shows that the readings of two PSDs are
reduced to around 0 µm, which means that the laser error of δx= −50 µm is compensated for by the
proposed FSM compensation system. Figure 12a,b show the experimental results for the variation
of positions of light spots on the PSDs with and without the compensation, when the laser error is
δy = 50 and δy = −50 µm, respectively. As shown, both the laser errors of δy = 50 and δy = −50 µm are
compensated for by the proposed FSM compensation system. Figure 13a,b show the experimental
results for the variation of positions of light spots on the PSDs with and without the compensation,
when the laser error is θx = 0.1 and θx = −0.1◦, respectively. As shown, both the laser errors of θx = 0.1
and θx = −0.1 degrees are compensated for by the proposed FSM compensation system. Figure 14a,b
show the experimental results for the variation of positions of light spots on the PSDs with and without
the compensation, when the laser error is θy = 0.1 and θy = −0.1◦, respectively. As shown, both the
laser errors of θy = 0.1 and θy = −0.1◦ are compensated for by the proposed FSM compensation system.
Figure 15 shows the experimental results for the variation of positions of light spots on the PSDs
with and without the compensation when the laser error has 4 DOF errors of θx = −0.1◦, θy = −0.1◦,
δx = −50 µm and δy = −50 µm. As shown, 4 DOF laser errors are compensated for by the proposed
FSM compensation system. It demonstrates the feasibility of the proposed FSM compensation system.
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5. Error Analysis

The mathematical modelling of the proposed FSM compensation system is established by using
a skew-ray tracing method. However, the real optics system is not exactly the same as the mathematical
model due to installation errors of each optical element. The installation errors affect the reading of the
PSD and reduce the optical accuracy directly. Therefore, it is essential to analyse the influence of each
installation error for the optical elements.

For the purpose of installation error analysis, each optical element is provided with 6 DOF
installation errors respectively in order to observe the influence of installation error on the FSM
compensation system; moreover, the coordinate system is shown in Figure 9. Figures 16–19 show the
installation error analysis of double Porro prisms, BS, PSD 1 and PSD 2 when laser errors are δx = 1
mm, δy = 1 mm, θx = −1◦ and θy = −1◦.

The translational installation errors (′δx, ′δy and ′δz) and the rotational installation errors (′θx
′θy and ′θz) are defined as −0.5 mm to −0.5 mm and −0.5◦ to −0.5◦. As shown in Figures 16–19,
the installation errors of ′δz, ′θx, ′θy and ′θz of each optical element affect the accuracy of the laser error
measurement, but ′δx and ′δy do not. Furthermore, the result of installation error analysis shows that
the installation error ′θz of PSD 2 is critical in the FSM compensation system due to the fact that it has
the longest optical length.
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6. Conclusions

This study has presented a new FSM compensation system with Double Porro prisms to
compensate for the 4 DOF laser errors of the laser source, which is characterised by shorter optical
path length, fewer elements and easier set up at different locations. The performance of the proposed
FSM compensation system has been evaluated using a laboratory-built prototype. The experiment
results show that the proposed FSM compensation system can eliminate 97% of the laser errors. This
implies that the proposed FSM compensation system has the ability to measure and compensate for
laser errors.
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Abbreviations

θx The laser angular error which rotates along the x axis.
θy The laser angular error which rotates along the y axis.
δx The laser displacement error which translates along the x axis.
δy The laser displacement error which translates along the y axis.
θ′x The angular motion of Porro prisms which rotate along the x axis.
θ′y The angular motion of Porro prisms which rotate along the y axis.
δ′x The displacement motion of Porro prisms which translate along the x axis.
δ′y The displacement motion of Porro prisms which translate along the y axis.
R Ai The pose matrix i with respect to coordinate system R.
I The unit vector of the coordinate system i on the x direction with respect to the coordinate system R.
J The unit vector of the coordinate system i on the y direction with respect to the coordinate system R.
K The unit vector of the coordinate system i on the z direction with respect to the coordinate system R.
t The position vector of the origin of the coordinate system i with respect to the coordinate system R.
Pi−1 The incident point of light source.
Pi The incident point at the ith optic boundary.
`i−1 The incident unit direction vector of a light source at point Pi−1.
`i The unit directional vector of a light ray after being reflected or refracted by optic boundary.
′θx The installation error which rotates along the x axis.
′θy The installation error which rotates along the y axis.
′θz The installation error which rotates along the z axis.
′δx The installation error which translates along the x axis.
′δy The installation error which translates along the y axis.
′δz The installation error which translates along the y axis.
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