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Abstract: We present an electrochemical, microfluidic system with a working electrode based on
an ordered 3D array of pencil leads. The electrode array was integrated into a plexiglass/PDMS
channel. We tested the setup using a simple redox probe and compared the results with computer
simulations. As a proof of concept application of the device we showed that the setup can be used
for determination of dopamine concentration in physiological pH and ultrasensitive, although only
qualitative, detection of p-nitrophenol with a limit of detection below 1 nmol L−1. The observed
limit of detection for p-nitrophenol is not only much lower than achieved with similar methods but
also sufficient for evaluation of exposure to pesticides such as methyl parathion through urinalysis.
This low cost setup can be fabricated without the need for clean room facilities and in the future,
due to the ordered structure of the electrode could be used to better understand the process of
electroanalysis and electrode functionalization. To the best of our knowledge it is the first application
of pencil leads as 3D electrochemical sensor in a microfluidic channel.
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1. Introduction

Pencil leads consist of high quality graphite powder (27–60%) mixed with mica, to which a
polymeric binder is sometimes added [1]. As graphite is one of the most popular electrode materials
(together with precious metals such as Au and Pt) it is only reasonable that researchers are trying to
take advantage of this easily available and low-cost electrode substrate. When compared with other
electrode materials pencil graphite is extremely low cost, and thus can be disposable. It is readily
available all over the world, does not require polishing and in some cases presents higher sensitivity
than glassy carbon electrodes (a characteristic attributed to a higher surface area) [2,3]. Graphite’s sp2

hybridization results in its high conductivity as well as strong adsorption properties [3].
The first reports concerning the use of pencil graphite as an electrode material date back to 1954

when pencil served as a reference electrode for polarographic measurements (cited in [4]). Afterwards
commercial pencils found application as: anodes for polarography [4], electrodes and diffracting objects
in hydrodynamic spectroelectrochemical studies [5] and finally as working electrodes for stripping
voltammetry [6]. Nowadays pencil graphite electrodes (PGE) can be used directly, or embedded in
insulating polymers and micropipette tips. Graphite rods are also used to draw electrodes on paper in
order to achieve fully disposable and low cost paper-based analytical devices [7].

We would like to exploit one more asset of pencils, which, as far as we are aware, has as yet gone
unmentioned, i.e., their format. The diameter of novel pencil leads can be as small as 100 µm in case
of test devices [8] and 200 µm for commercially available graphite rods (e.g., the nominal diameter
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of a Pentel Orenz lead is 0.2 mm, but in reality they are 0.25 mm). This size allows the fabrication
of 3D assemblies of graphite posts which can be enclosed in microfluidic channels forming chemical
and biochemical reactors or sensors. Two main advantages of this approach are: (1) more efficient
utilization of the analyte; depending on the size of the electrode and the flow rate as little as few percent
of the analyte might be detected in a typical experiment using traditional microband electrodes [9–11],
sample calculations are presented in Figure 1; (2) the regular structure of the proposed electrode
array is easier to simulate than a non-ordered 3D assembly (e.g., in the form of a sponge) which can
help to better understand both functionalization of the electrode material and electroanalysis using
such assemblies. Until now three-dimensional electrodes were mainly explored in dielectrophoretic
separation [12], or as parts of capacitors [13] and fuel cells [14] but not so much in sensing.
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In this paper we describe the construction and characterization of a microfluidic device 
equipped with an array of 16 pencil leads combined into a working electrode. The detection of p-
nitrophenol and dopamine, the latter in the presence of the interfering substances ascorbic and uric 
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p-Nitrophenol is one of the simplest phenol derivatives and it is also listed as a priority pollutant 
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fungicides, organic dyes and pharmaceuticals [2]. It causes formation of methemoglobin, liver and 
kidney damage and can lead to death at high exposure levels [20,21]. p-Nitrophenol persists in 
industrial and agricultural wastewaters, not only as a direct contaminant but also as a biodegradation 
product of parathion and methyl parathion [21]. Urinary p-nitrophenol can serve as a biomarker of 
exposure to the abovementioned pesticides [22]. 

Dopamine is one of the most important neurotransmitters—crucial for the brain’s reward and 
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Figure 1. Concentration profiles of the analyte (mol L−1) in a simplified electrochemical reaction in
a microfluidic channel calculated using COMSOL. (A) using a microband electrode (side view) and
(B) using 16 vertical posts as electrodes (top view). The channel dimensions, flow rates (Vf) and
over-potential are the same in both systems. Red color denotes high concentration and blue color low
concentration. In (A) the collection efficiency is a mere 3% compared to 81.5% in (B).

Pencil graphite electrodes are also rarely applied in microfluidic systems. Pencils can
be arranged along the side walls of the microchannel forming microelectrodes for studies on
electrokinetic phenomena (alternating current electroosmosis, induced-charge electro-osmosis,
and dielectrophoresis) [15] or embedded in the bottom of the channel to form microband electrodes
used for hydroxyl radical detection [16]. The three dimensionality of graphite rods was, as far as
we are aware, only explored in a microfluidic fuel cell in which pencil leads were stacked along the
channel. That system consisted of 12 pencil anodes, 12 cathodes and five spacers filling the channel to
its entire height. This assembly allowed for single pass fuel utilization levels up to 78% [17].

Several groups have drawn attention to differences between pencils of different grade, which
determines the clay/graphite ratio, and from different manufactures, which both should be taken into
account when working with this kind of electrodes. Detailed information regarding composition and
electrochemical behavior of different pencil leads can be found in the literature [18,19].

In this paper we describe the construction and characterization of a microfluidic device equipped
with an array of 16 pencil leads combined into a working electrode. The detection of p-nitrophenol and
dopamine, the latter in the presence of the interfering substances ascorbic and uric acids, were chosen
as a proof of concept applications of the proposed device.

p-Nitrophenol is one of the simplest phenol derivatives and it is also listed as a priority pollutant
by the U. S. Environmental Protection Agency [20]. Applications of p-nitrophenol include pesticides,
fungicides, organic dyes and pharmaceuticals [2]. It causes formation of methemoglobin, liver and
kidney damage and can lead to death at high exposure levels [20,21]. p-Nitrophenol persists in
industrial and agricultural wastewaters, not only as a direct contaminant but also as a biodegradation
product of parathion and methyl parathion [21]. Urinary p-nitrophenol can serve as a biomarker of
exposure to the abovementioned pesticides [22].

Dopamine is one of the most important neurotransmitters—crucial for the brain’s reward and
motor systems. Like other catecholamines, dopamine is also biosynthesized from a tyrosine precursor.
Also as most catecholamine neurotransmitters, dopamine is electroactive and can be detected on a
number of electrode materials, including metals and carbon [23,24]. The biggest challenge in the
detection of this compound in physiological pH are the interfering species, such as ascorbic acid,
which concentration can be as high as 0.5 mmol L−1 in the extracellular fluid of the brain [24].
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2. Materials and Methods

2.1. Device Fabrication

The pencil leads were positioned in a 4 × 4 grid of orifices which were drilled in two pieces of
1.5 mm poly(methyl methacrylate) (PMMA) using a computer controlled micromilling machine. Both
layers of PMMA also contained four holes for the standard screws used for assembly of the device and
two orifices used for positioning. Inlet and outlet as well as an orifice for the reference electrode of
standard construction were drilled in one of the layers. The microfluidic channel (0.3 × 3 × 20 mm) was
fabricated in a polydimethylsiloxane (PDMS) gasket using a 3D printed nylon mold. The gasket was
positioned between the two PMMA parts. The device is schematically presented in Figure 2. To achieve
proper alignment of the electrodes, pencil leads were pushed through the orifices in the top and bottom
PMMA layers. In initial experiments only one positioning layer was used, but electrochemical studies
showed very low reproducibility of such systems, as it was not possible to guarantee that all electrodes
passed through the whole height of the channel all the way to the bottom.
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RE—reference electrode.

2.2. Electrochemical Characterization

The electrochemical cell consisted of a three-dimensional pencil graphite electrode (4 to 16 leads),
an Ag/AgCl (sat. KCl) reference electrode of standard construction and a steel counter electrode which
also formed the inlet of the device. All leads (Pentel Orenz HB 0.2 mm) were connected to form one
working electrode but in principle each lead could also be addressed separately. All electrochemical
experiments were performed on a PGSTAT 20 potentiostat (Metrohm Autolab, Herisau, Switzerland).
A syringe pump (Pump 11 Elite, Harvard Apparatus, Holliston, MA, USA) was used to ensure
constant flow rate. In order to characterize the device a series of experiments with 1 mmol L−1

ferrocenedimethanol (FcDM) in 0.1 mol L−1 KNO3 was carried out. The flow rate was varied from 0 to
1000 µL min−1 and the electrode consisted of 4 to 16 graphite posts (from 1 to 4 lines of 4 pencil leads).
Measurements were performed on at least three devices for each of the four electrode configurations.

Significant drift of the signal was observed for the first measurements in each new device, thus an
electrochemical pretreatment procedure was implemented. The potential was scanned from −0.1 to
0.5 V, at 100 mV s−1 shifting the flow rate from 25 to 750 µL min−1 until the signal reached a stable
value (usually around 75 scans). The need for electrochemical activation may arise from the porous
nature of the pencil graphite electrode. It was already shown that electrochemical pretreatment of such
electrodes increases their active surface area as well as their hydrophilicity by formation of oxygenated
functionalities (i.a. phenolic, carbonyl, carboxyl). Such pretreatment also ensures the cleanliness of the
electrode surface [2,3].
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2.3. Computer Modeling Using COMSOL Multiphysics

Computations were performed with COMSOL Multiphysics 5.2a on a computer equipped with
an IntelCore i7-3930 processor, 48 GB of RAM and a Windows operating system. A single calculation
was usually completed within 2–8 min. The calculated electrochemical response of the system was
based on a two-dimensional model of the microfluidic channel with pencil pillars (see Figure 1B).
First, the hydrodynamic conditions inside the channel were calculated with application of the Laminar
Flow (spf) module. The calculated flow was used in the Transport of Diluted Species (tds) module
to determine the electrochemical response, which was described using Butler-Volmer-type equations.
The simulation of the electrochemical reaction Red � Ox + ne− was made with application of the
fluxes of both oxidized and reduced species at the electrode surface. The inward flux at the electrode
surfaces is described by the equations:

Φ0,Ox = k f [Ox]− kb[Red] (1)

Φ0,Red = −kb[Ox] + k f [Red] (2)

The forward kf, and reverse kb, rate constants were represented by:

k f = k0 exp
(
−α

nF
RT

η

)
(3)

kb = k0 exp
(
(1 − α)

nF
RT

η

)
(4)

where k0 is the standard rate constant, Ox and Red were used as the concentration of the oxidized
and reduced form of the redox species, respectively, η represents the over-potential, α is the transfer
coefficient, n number of electrons, F the Faraday constant, R the universal gas constant, and T the
temperature. The current was calculated by integration of Φ0,OxnF over the surface of the pencil pillars.
For the calculation we used k0 = 5 × 10−6 m s−1, D = 1× 10−9 m2 s−1, α = 0.5, n = 1. In the case of
resistive posts, the applied potential at the electrode was calculated as ηR = η − RI, where R is the
resistance and I the calculated current. ηR was then used instead of η in Equations (3) and (4).

2.4. Neurotransmitter Sensing

First tests were performed using pencil leads prepared with:

(1) the standard pretreatment procedure –cycling between −0.1 to 0.5 V in 1 mmol L−1 FcDM, 0.1 mol
L−1 KNO3,

(2) oxidized by cycling between 1.2 to 1.8 V in 0.1 mol L−1 NaOH solution, 25 cycles, 100 mV s−1

(3) oxidized by application of constant potential of 1.8 V in PBS solution (pH 7.4) for 600 s, the latter
was shown to result in a graphene like surface when applied to glassy carbon electrodes [25].
In this case pre-treatment was applied to enhance the electrode performance (we evaluated the
impact on the current and peak separation while performing measurement of the interferents).

After analysis of the SEM images and voltammetric data ‘graphene’ pretreatment was chosen
for consecutive tests. Cyclic voltammograms registered in a solution of FcDM after application
of abovementioned pretreatment procedures are presented in Figure S5 of the Supplementary
Information (SI).

Both square wave, and differential pulse voltammetry were used to perform initial tests but SWV
resulted in better resolved peaks in case of mixtures and higher signal to noise ratio. The measurement
parameters were as follows: frequency 8 Hz, step 0.00105 V, amplitude 50 mV, scan rate 84 mV s−1.
Measurements were performed in physiological pH (7.4) to mimic the environment of real samples.



Sensors 2018, 18, 4037 5 of 12

2.5. p-Nitrophenol Assay

Preliminary studies confirmed strong adsorption of p-nitrophenol on graphite, which resulted in
a significant decrease of the oxidation peak for each consecutive scan. Therefore it was necessary to
find a regeneration protocol, which could be applied after each measurement to clean the electrode
surface from the adsorbed p-nitrophenol. A literature search was performed in order to select potential
cleaning protocols, which could be applied to regenerate the electrode surface in a microfluidic setup,
as standard treatment based on mechanical removal of the deposit through polishing could not be
applied in our system. The tested regeneration protocols included:

(1) electrochemical oxidation in 0.2 mol L−1 NaCl, pH 3, different potentials (up to 4.5 V) and times
of treatment (up to 20 min) tested;

(2) electrochemical oxidation in 1.5% H2O2, 0.2 mol L−1 NaCl, pH 3 [26], different potentials (up to
4.5 V) and times of treatment (up to 20 min) tested;

(3) adsorptive displacement using iodine and thiosulfate [27]. After each measurement solution of
40 mmol L−1 of iodine in ethanol was passed for 10 min (25 µL min−1), next electrochemical
cell was cleaned with deionized water. Chemical reduction of iodine to iodide was achieved
using 0.5 mol L−1 sodium thiosulfate in water (3 min, 25 µL min−1), after which the system was
cleaned with distilled water and considered ready for the next measurement.

(4) NaOH oxidative cycling which was earlier applied as a pretreatment step in the dopamine assay.
After each measurement, the surface was regenerated with 25 scans between 1.2 to 1.8 V in
0.1 mol L−1 NaOH solution.

Adsorptive displacement (method no. 3) and NaOH oxidative cycling (method no. 4) were chosen
for subsequent studies as oxidation in hydrogen peroxide allowed for the regeneration of the electrode
surface only at very high potentials (4.5 V) and intense evolution of gas accompanying the procedure,
resulted in leakage of the microfluidic system, when the procedure was applied repeatedly. Up to
20 min treatment in sodium chloride did not exert any positive effect on the electrode surface.

After optimization of the pH, measurement parameters and the regeneration protocol,
electrochemical analysis was performed in pH 4.0 acetate buffer in case of adsorptive displacement
protocol (3) and in PBS pH 7.4 in case of NaOH oxidative cycling (4) using Differential Pulse
Voltammetry from 0.2 to 1.25 V, with a 5 mV step, 150 mV modulation amplitude and 50 ms modulation
time, scan rate 10 mV s−1.

3. Results

3.1. Characterization

As shown in Figure 3A the shift between diffusion (peak shaped) to convection (sigmoidal shaped
voltammogram) controlled mass transport [28] occurs around 100 µL min−1, which is slightly higher
than observed for calculations (50 µL min−1, Figure 3B). The difference can be partially attributed to the
fact that calculations were performed in 2D, thus they do not take into account slower flow observed
near the top and bottom of the channel. Chronoamperometry measurements presented expected
results with steady increase of the limiting current from four, eight to 12 posts. In the experimental data
a higher increase was observed between 12 to 16 posts (three to four lines of graphite rods) which may
be due to disturbances in the flow caused by the more complex grid of electrodes. Despite the complex
structure of the system, the reproducibility between devices, as seen in Figure 4A was quite high
(mean value of standard deviation around 3% of the signal for assemblies of 16 pencil posts).

The results of the simulations show (Supporting Information Figure S2), that the current
increases almost linearly with increasing flow rate. At first sight this is in disagreement with the
experimental results. However, the chronoamperometry was measured at low overpotential (at 0.35 V
vs. Ag/AgCl/KClsat), and the system possesses some uncompensated resistance as well. Adding
these parameters to the simulations reproduces the experimental data quite well (Figure 4B).



Sensors 2018, 18, 4037 6 of 12
Sensors 2018, 18, x FOR PEER REVIEW  6 of 12 

 

  
(A) (B) 

Figure 3. (A) Cyclic voltammetry studies of oxidation of FcDM performed for different flow rates (0–
1000 µL min−1). Electrode cell consisted of a 3D working electrode formed from 16 graphite posts, steel 
counter electrode and an Ag/AgCl reference. Scan rate 100 mV s−1. (B) Calculated cyclic 
voltammograms for the 16 electrode post system. 

The almost linear increase of the current with Vf might be surprising if compared to the behavior 
of a microband electrode, where the limiting current scales as Vf 1/3. A somewhat better comparison 
might instead be the wall-jet, where the power is ¾ so a power close to unity does not seem 
unreasonable. Although mass transport to a cylinder in uniform flow is a classic problem in fluid 
dynamics (see e.g., [29]), with approximate analytical solutions, we could not find any analyses 
concerning cylinders in a channel. Calculations of flow and heat transfer in fin-tube heat exchangers 
are very similar to our system, but usually at much higher Reynolds numbers [30]. At low flow rates, 
when the Peclet number between the pillars is below 40 we see an increased influence of diffusion 
(indicated by a Sherwood number as low as 2–3). We also see that the depletion zones between the 
pillars start overlapping (cf. zone III and IVa in [9]). This leads to a decrease in the current. Results of 
those calculations are shown in Supporting Information Figures S3 and S4. We can see this more 
clearly in the experimental data since the 2D simulation does not take into account the slower flow 
close to the top and bottom of the channel which exacerbates the effect of low flow rate. 

  
(A) (B) 

Figure 4. Limiting current registered for 3D working electrodes formed from four to 16 graphite posts 
(four posts/one line –black, eight posts/two lines –red, 12 posts/three lines –blue, 16 posts/four lines –
green). Chronoamperometry performed at 0.35 V vs. Ag/AgCl. (A) Experimental data, standard 
deviation calculated for n = 3 devices, (B) Calculated data. 

  

Figure 3. (A) Cyclic voltammetry studies of oxidation of FcDM performed for different flow rates
(0–1000 µL min−1). Electrode cell consisted of a 3D working electrode formed from 16 graphite
posts, steel counter electrode and an Ag/AgCl reference. Scan rate 100 mV s−1. (B) Calculated cyclic
voltammograms for the 16 electrode post system.

The almost linear increase of the current with Vf might be surprising if compared to the behavior
of a microband electrode, where the limiting current scales as Vf

1/3. A somewhat better comparison
might instead be the wall-jet, where the power is 3/4 so a power close to unity does not seem
unreasonable. Although mass transport to a cylinder in uniform flow is a classic problem in fluid
dynamics (see e.g., [29]), with approximate analytical solutions, we could not find any analyses
concerning cylinders in a channel. Calculations of flow and heat transfer in fin-tube heat exchangers
are very similar to our system, but usually at much higher Reynolds numbers [30]. At low flow rates,
when the Peclet number between the pillars is below 40 we see an increased influence of diffusion
(indicated by a Sherwood number as low as 2–3). We also see that the depletion zones between the
pillars start overlapping (cf. zone III and IVa in [9]). This leads to a decrease in the current. Results
of those calculations are shown in Supporting Information Figures S3 and S4. We can see this more
clearly in the experimental data since the 2D simulation does not take into account the slower flow
close to the top and bottom of the channel which exacerbates the effect of low flow rate.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 12 

 

  
(A) (B) 

Figure 3. (A) Cyclic voltammetry studies of oxidation of FcDM performed for different flow rates (0–
1000 µL min−1). Electrode cell consisted of a 3D working electrode formed from 16 graphite posts, steel 
counter electrode and an Ag/AgCl reference. Scan rate 100 mV s−1. (B) Calculated cyclic 
voltammograms for the 16 electrode post system. 

The almost linear increase of the current with Vf might be surprising if compared to the behavior 
of a microband electrode, where the limiting current scales as Vf 1/3. A somewhat better comparison 
might instead be the wall-jet, where the power is ¾ so a power close to unity does not seem 
unreasonable. Although mass transport to a cylinder in uniform flow is a classic problem in fluid 
dynamics (see e.g., [29]), with approximate analytical solutions, we could not find any analyses 
concerning cylinders in a channel. Calculations of flow and heat transfer in fin-tube heat exchangers 
are very similar to our system, but usually at much higher Reynolds numbers [30]. At low flow rates, 
when the Peclet number between the pillars is below 40 we see an increased influence of diffusion 
(indicated by a Sherwood number as low as 2–3). We also see that the depletion zones between the 
pillars start overlapping (cf. zone III and IVa in [9]). This leads to a decrease in the current. Results of 
those calculations are shown in Supporting Information Figures S3 and S4. We can see this more 
clearly in the experimental data since the 2D simulation does not take into account the slower flow 
close to the top and bottom of the channel which exacerbates the effect of low flow rate. 

  
(A) (B) 

Figure 4. Limiting current registered for 3D working electrodes formed from four to 16 graphite posts 
(four posts/one line –black, eight posts/two lines –red, 12 posts/three lines –blue, 16 posts/four lines –
green). Chronoamperometry performed at 0.35 V vs. Ag/AgCl. (A) Experimental data, standard 
deviation calculated for n = 3 devices, (B) Calculated data. 

  

Figure 4. Limiting current registered for 3D working electrodes formed from four to 16 graphite posts
(four posts/one line –black, eight posts/two lines –red, 12 posts/three lines –blue, 16 posts/four lines
–green). Chronoamperometry performed at 0.35 V vs. Ag/AgCl. (A) Experimental data, standard
deviation calculated for n = 3 devices, (B) Calculated data.



Sensors 2018, 18, 4037 7 of 12

3.2. SEM Analysis

Figure 5 shows SEM images of pencil electrodes before and after electrochemical pretreatment.
After oxidation, individual flakes of graphite can be discerned, resulting in a much higher surface area
as compared to the compact structures of mildly treated and untreated pencils. EDX analysis indicated
that the granules seen on untreated pencil lead are mainly formed from Zn, and are mostly removed
even by mild electrochemical treatment (Figure 5A,B).

3.3. Neurotransmitter Detection

Both oxidative pretreatment procedures resulted in about one order of magnitude increase in the
current in case of dopamine sensing, compared to pencils cycled only in mild conditions. Comparison
of the current increase after different procedures is presented in SI Figure S5. This can probably be
attributed to the enhanced surface area also noted in the SEM images. Prolonged cycling in NaOH
(Figure 5C,E) resulted in a less reproducible signal, which might be related to loosely attached thin
graphite flakes, which would detach upon touch and at higher flow rates (particles are seen in the
outflow during longer experiments). This negative effect was not observed on pencils oxidized at
constant potential in PBS (‘graphene’ pretreatment Figure 5D,F). Therefore this pretreatment was
chosen for subsequent experiments.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 12 

 

3.2. SEM Analysis 

Figure 5 shows SEM images of pencil electrodes before and after electrochemical pretreatment. 
After oxidation, individual flakes of graphite can be discerned, resulting in a much higher surface 
area as compared to the compact structures of mildly treated and untreated pencils. EDX analysis 
indicated that the granules seen on untreated pencil lead are mainly formed from Zn, and are mostly 
removed even by mild electrochemical treatment (Figures 5A,B).  

3.3. Neurotransmitter Detection 

Both oxidative pretreatment procedures resulted in about one order of magnitude increase in 
the current in case of dopamine sensing, compared to pencils cycled only in mild conditions. 
Comparison of the current increase after different procedures is presented in SI Figure S5. This can 
probably be attributed to the enhanced surface area also noted in the SEM images. Prolonged cycling 
in NaOH (Figures 5C,E) resulted in a less reproducible signal, which might be related to loosely 
attached thin graphite flakes, which would detach upon touch and at higher flow rates (particles are 
seen in the outflow during longer experiments). This negative effect was not observed on pencils 
oxidized at constant potential in PBS (‘graphene’ pretreatment Figures 5D,F). Therefore this 
pretreatment was chosen for subsequent experiments. 

 
Figure 5. SEM images of pencil electrodes (side of the pencil shaft) magnification 50,000×: (A) before 
modification, (B) after cycling between −0.1 to 0.5 V (C) after oxidation in NaOH, (D) after “graphene” 
treatment. Magnification 75,000×: (E) after oxidation in NaOH, (F) after “graphene” treatment. 
Analysis performed with a Nova NanoSEM 450 microscope. 

As seen in Figure 6 it was possible to differentiate dopamine and uric acid using the oxidized 
‘graphene’ like pencil leads. Even though separation of ascorbic acid was not completely possible, 
the registered signal for this compound is sufficiently low as compared with uric acid and dopamine 
to allow reliable analysis in most sample types. Tests were performed with dopamine concentrations 
ranging from 100 nmol L−1 to 10 mmol L−1 and as can be seen in Figure 7 a close to linear response 
was registered for samples between 10 µmol L−1 to 1 mmol L−1 after which saturation occurred. 
Sample square wave voltammograms used for the construction of the calibration curve as presented 
in SI Figure S6. These measurements were performed at physiological pH 7.4. It is known that 
dopamine can polymerize to block the electrode at this high pH [11] but no such negative effect was 
observed in the presented system. 

Figure 5. SEM images of pencil electrodes (side of the pencil shaft) magnification 50,000×: (A) before
modification, (B) after cycling between −0.1 to 0.5 V (C) after oxidation in NaOH, (D) after “graphene”
treatment. Magnification 75,000×: (E) after oxidation in NaOH, (F) after “graphene” treatment.
Analysis performed with a Nova NanoSEM 450 microscope.

As seen in Figure 6 it was possible to differentiate dopamine and uric acid using the oxidized
‘graphene’ like pencil leads. Even though separation of ascorbic acid was not completely possible,
the registered signal for this compound is sufficiently low as compared with uric acid and dopamine
to allow reliable analysis in most sample types. Tests were performed with dopamine concentrations
ranging from 100 nmol L−1 to 10 mmol L−1 and as can be seen in Figure 7 a close to linear response
was registered for samples between 10 µmol L−1 to 1 mmol L−1 after which saturation occurred.
Sample square wave voltammograms used for the construction of the calibration curve as presented in
SI Figure S6. These measurements were performed at physiological pH 7.4. It is known that dopamine
can polymerize to block the electrode at this high pH [11] but no such negative effect was observed in
the presented system.
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3.4. p-Nitrophenol Assay

3.4.1. Adsorptive Displacement (Method n◦ 3)

Although it was possible to clearly discern samples containing as low as 1 nmol L−1 of
p-nitrophenol from blank buffer samples the analysis was only qualitative (Figure 8). Although
the chosen regeneration protocol allowed to fully clean the electrode from adsorbed p-nitrophenol
(stable measurements in buffer solution, detection of p-nitrophenol possible after each regeneration)
as seen in Figure 8 the current was not reproducible - the signal for 1 µmol L−1 can be lower than
for 100 nmol L−1. This behavior may be attributed to changes in the electrode surface after the
regeneration. Changes in flow rate, the time of the iodine displacement or recovery steps did not
greatly influence the reproducibility of the measurement.

3.4.2. NaOH Oxidative Cycling (Method n◦ 4)

The NaOH regeneration protocol used subsequently allowed for more consistent results in terms
of baseline and the level of the signal; unfortunately it induced other problems. After treatment with
NaOH the p-nitrophenol peak split in two. It was already described by Jiang et al. [31] that in alkaline
solutions oxidation of nitrophenols is mostly a two-step process with two peaks corresponding to
oxidation of a phenolate to phenoxy radical and subsequently to phenoxy cation. Regardless the time
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a buffer solution was passed through the channel after NaOH treatment, the electrode reaction of
p-nitrophenol was still a two-step process (Figure 9) where the ratio between the peaks was inconsistent
between experiments. Inconsistencies in peak ratio can be attributed to different retention of the base
solution between graphite flakes and difficulties associated with measuring of such two-step reactions
in flow conditions.

Although our assay only provided qualitative information, the response for concentrations as low as
1 nmol L−1 was still easily distinguishable from the background, which is well below limits of detection
provided by other pencil lead devices described for this compound (1.1 µmol L−1 for the paper-based
assay [21], 7.48 µmol L−1 for bismuth-modified pencil [32], 1.9 µmol L−1 for copper modified pencil
electrodes [33] and 11 nmol L−1 for a multiwalled carbon nanotube/graphite pencil electrode in a flow
injection system with a pre-concentration step [34]). The ability of the system to clearly discern samples
with such low concentration (1 nmol L−1) is enough to clearly discern people suffering from pesticide
poisoning (e.g., methyl parathion) in need of relocation and treatment from “no action needed” groups,
including more strict norms applicable to children from 1 to 16 years of age [22].
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(the same method as tested for dopamine detection). Array of 16 posts, flow of 100 µL min−1.

This system can be fabricated even in resource limited settings, without the need for clean room
facilities, and uses only readily available materials and reagents thus it could potentially serve as a
screening tool for pesticide poisoning in parts of the globe where microfabrication techniques are still
a luxury. This kind of system could potentially be used together with smartphone-based detectors [35]
and in this way reach a wider public.
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4. Discussion

We have presented a novel microfluidic device equipped with a 3D electrode assembly of regular
structure which can be fabricated without the use of clean room facilities. Even though experiments
were performed using a commercial reference electrode, setup was also tested with a homemade
reference, constructed according to [36] proving that all three electrodes could be fabricated from
readily available materials (syringe needle, pencil leads, glass capillary). Experimental characterization
of the device was backed with computer simulations which demonstrates proper functioning of
the system and let us believe that this kind of device can serve in the future to better explain
mechanisms behind electroanalytical assays as well as elaborate methods of electrode functionalization.
Our system is extremely versatile as the proposed fabrication method allows for development of
different electrode setups and the pencil rods can be replaced with other electrode materials such as
gold or platinum wires.

To further characterize our device we chose two proof-of-concept applications: dopamine and
p-nitrophenol sensing. We have shown the possibility of dopamine detection in the range from 10 µmol
L−1 to 1 mmol L−1, which is comparable with other works on pencils [37,38] but is still high when set
together with many currently described electrodes, or the physiological range (basal concentration
of dopamine ~20 nmol L−1 in rat cerebrospinal fluid [39]). Detection of dopamine in the presence
of interferents, in a physiological range is a separate challenge, as it is often impossible to separate
peaks of different compounds when measured in mixture [40]. To achieve this separation electrodes
are often modified with different catalysts, which was already presented by us [11] and many others.
Quite limited blocking of the electrode, even at physiological pH observed in our system is a clear
advantage. The detection limit and linear range could be improved with appropriate electrode
modification which we plan to explore in the future, taking advantage of the architecture of our device.
To address the problem of measurement of complex mixtures, or real samples, electrodes in each line
of the device could be modified with different materials, thus providing the possibility of machine
learning assisted discrimination (electronic tongue).

The second proof-of-concept application, the detection of p-nitrophenol, proved to be especially
troublesome. This compound was already detected using pencil graphite electrodes, but the
paper-based assay with drawn electrodes [21] took advantage of the low price of pencils and
disposability of such devices. When not enclosed in a microfluidic channel the electrode surface
could also easily be regenerated by polishing off the layers with adsorbed analyte. In our case each
consecutive assay had to be preceded with a regeneration step, and even though several procedures
were tested restoration of the initial electrode surface proved to be a challenge (lack of contamination
after regeneration but notable changes in surface area). Nevertheless the response for concentrations as
low as 1 nmol L−1 was still easily distinguishable from the background. Such a low level of detection
allows to assess pesticide poisoning through urinalysis. Therefore a system of this kind—easy to
fabricate and operate (thanks to enclosure of the electrodes in a microfluidic channel), using readily
available materials and methods of fabrication, could potentially serve as a point of care device in
resource limiting settings.
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s1, Figure S1: Cyclic voltammetry studies of oxidation of FcDM performed for different flow rates, Figure S2:
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pretreatments, Figure S6: Square wave voltammetry of dopamine solutions of different concentrations.
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