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Abstract: This paper presents two approaches for the structural damage identification of a bridge 

from the dynamic response recorded from a test vehicle during its passage over the bridge. Using 

the acceleration response recorded by the vibration sensors mounted on a test vehicle during its 

passage over the bridge, along with the computed displacement response, the bending stiffness of 

the bridge can be determined using either: (1) the frequency-domain method based on the 

improved directed stiffness method with the identified frequency and corresponding mode shape, 

or (2) the time-domain method based on the residual vector of the least squares method with a 

fourth-order displacement moment. By comparing the bending stiffness values identified from the 

vehicle-collected data for the bridge under the undamaged and damaged states that are monitored 

regularly by the test vehicle, the bridge damage location and severity can be identified. Through 

numerical simulations and field tests, the present approaches are shown to be effective and feasible. 
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1. Introduction 

The physical properties of a structure such as stiffness and mass are important for structural 

health monitoring, because variations in these properties indicate the direct occurrence of damage. 

In most of the damage detection schemes, the mass of a structure is usually assumed to remain 

unchanged before and after the occurrence of damage. Accordingly, the change in stiffness of a 

structure is the most crucial dynamic property for damage identification. 

Hou et al. [1] presented comprehensive reviews for the literature on the damage detection of 

structures. Amezquita-Sanchez and Adeli [2] presented a state-of-the-art review of recent articles on 

signal processing techniques for vibration-based SHM. Considering the bending stiffness index 

identification, Maeck [3,4] proposed the bending stiffness estimation approach for structures using 

the frequencies, mode shapes, and their derivatives, which is called the direct stiffness calculation (DSC) 

technique. Xu et al. [5,6] proposed the method of statistical moment-based damage detection (SMBDD) 

for inversely calculating the stiffness of steel-framed structures, which is sensitive to local structural 

damage, but insensitive to measurement noise. By integrating the generalized pattern search 

algorithm with the indirect identification technique using a passing vehicle, Li et al. [7] calculated 

the bending stiffness of a bridge, and pointed out that parameters such as the penalty values and 

mesh features should be further studied. Considering the difficulty of choosing the appropriate 

penalty factors for use in the DSC technique, Yang et al. [8−10] calculated the stiffness through an 
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improved DSC technique for application to practical structures, which was verified both 

theoretically and experimentally. 

Most of the identification techniques for bridges are referred to as the direct identification 

method, since they rely on the data collected by the vibration sensors that are directly mounted on 

the bridge. Blachowski et al. [11] proposed the axial strain accelerations degree of dispersion method 

with PCB piezoelectric accelerometers arranged directly in a truss structure. Kim et al. [12] studied 

Nair’s damage indicator and its statistical pattern with a field experiment of a real continuous steel 

Gerber-truss bridge by the acceleration response of the bridge. Sevillano et al. [13] used a modal 

interval analysis method to address the uncertainty in vibration-based damage detection of a 

concrete frame. Yang et al. [14] proposed the deterministic and stochastic approaches for damage 

identification of experimental benchmark Reinforced Concrete (RC) frame model based on the 

fusing damage index by combining two types of statistical moment. Mao and Wang et al. [15,16] 

investigated the relationships between the dynamic properties and the environmental factors, 

especially the temperature based on the one-year monitoring data under normal operating 

conditions and one typhoon monitoring data by the sensors directly arranged on a Sutong 

Cable-Stayed Bridge. The indirect identification technique differs from the conventional direct 

method for measuring the bridge dynamic properties in that no vibration sensors need to be 

installed on the bridge. Rather, only one or a few vibration sensors need to be mounted on an 

instrumented test vehicle to record its response when passing over the bridge, from which the 

dynamic properties of the bridge are identified. The indirect identification technique, using a test 

vehicle to extract the first few bridge frequencies, was first proposed in 2004 by Yang et al. [17,18], 

and subsequently validated experimentally by Yang and Lin [19]. Originally, the main focus of the 

indirect identification technique is to extract the frequencies of the bridge, which is the most basic 

parameter related to the health status of a bridge. This technique is based on the transformation of 

the recorded data for the test vehicle from the time domain to the frequency domain using fast 

Fourier transform (FFT) [18,19], empirical mode decomposition [20], or other techniques [21–24]. 

Along these lines, Feng and Feng [21] proposed a bridge damage detection procedure that utilizes 

the vehicle-induced displacement response of the bridge, particularly, the curvature of the first 

mode shape, for simulated damage cases. OBrien and Keenahan [22] used a vehicle equipped with 

traffic speed deflectometers (TSDs) for determining the apparent profile of a bridge by an 

optimization algorithm, and showed that the time-shifted difference in the apparent profile can be 

probably used as a damage indicator of the bridge in the presence of noise by simulation. 

Behroozinia and Khaleghian et al. [23] presented a finite element model of the intelligent tire by 

using implicit dynamic analysis for defect tire detection. McGetrick et al. [24] used the test vehicle to 

identify the frequency and damping of a bridge, considering both smooth and rough bridge 

surfaces, and various vehicle speeds. It is noted that the application of the indirect method has been 

mainly focused on the frequency, damping, and indirect parameters with relation to the damage of 

the bridge in previous studies. More significantly, other properties of the bridge—particularly those 

for directly identifying stiffness, which reveals that the health status of a bridge—have not been 

evaluated using the indirect technique. 

In this paper, it is assumed that the test vehicle is allowed to regularly monitor the bridge 

termly. The response of the test vehicle recorded during the current travel is assumed to be the 

damaged state and that of the previous travel is assumed to be the undamaged state. If no damage is 

detected by comparison of the two states, the current state is reset as the undamaged one, and 

another monitoring continues. By comparing the bending stiffness values identified from the 

vehicle-collected data for the bridge under the undamaged and damaged states monitored regularly 

by the test vehicle, the bridge damage location and severity can be identified based on the 

undamaged state. Only the acceleration response of the test vehicle is measured, and the displacement 

response is calculated by integration. Compared with previous studies, the bending stiffness 

estimation approach for each element of the bridge for damage identification is the main object of 

this paper, and the more prominent advantage of the indirect technique. The technique was 

developed by Yang et al. [25], and is used to obtain the mode shape of the monitored bridge by the 



Sensors 2018, 18, 4035 3 of 24 

 

test vehicle response. This mode shape is subsequently utilized to calculate the bending stiffness of 

the bridge, which is referred to as the frequency domain method. Using this method, a reliance on 

assumed penalty factors is necessary. On the other hand, making use of the relationship between the 

displacement response of the test vehicle and the bending stiffness of the bridge [17], the 

fourth-order statistical moment (the fourth-order statistical moment of structural response is 

expressed in terms of a probability density function (PDF)  p x  as    
4

4M x x p x dx



  ,

 where 

x  is the structural response with x as its mean value.) of the displacement response of the bridge is 

computed using the procedure documented in Xu et al. [5,6]. Subsequently, the bending stiffness of 

the bridge is acquired for damage detection, which is referred to as the time-domain method. 

The adopted frequency domain method is a fast, initial evaluation technique for detecting the 

structural condition, since no optimization is required. In contrast, the adopted time domain method 

is a time-consuming, meticulous evaluation technique for damage detection, since all of the relevant 

parameters have to be optimized. In this paper, the used response data of the test vehicle are 

generated by simulation and field experimental tests, where the paper is focused on the feasibility of 

the indirect approach for damage detection, making use of such simulated and recorded data, which 

can be used for updating a real-time identification of structural damage in a timely manner. 

2. Theoretical Background and Formulations 

2.1. Frequency Domain Method 

Figure 1 shows the mathematical model for a test vehicle moving on a bridge. In this model, the 

vehicle is simplified as a moving mass mv, supported by a spring of stiffness kv; the bridge is a 

simply-supported beam of span L, uniform mass density m* per unit length, and uniform bending 

rigidity EI. To focus on the physical behavior of the vehicle, the following assumptions are adopted 

without a loss of generality for the problem. (1) Road surface roughness is ignored in the derivation, 

but is included in one of the studied numerical cases and field tests to evaluate the influence of this 

assumption. (2) Vehicle mass is negligibly small in comparison with the bridge mass. (3) Prior to the 

arrival of the test vehicle, the bridge remains at rest, i.e., zero initial conditions are assumed for the 

bridge, which is acceptable because the bridge vibrations caused by ambient excitations are small 

compared to those caused by moving vehicular loads. (4) Damping is neglected for both the vehicle 

and the bridge, which is acceptable, because the vibrations of both the vehicle and the bridge under 

moving loads are forced vibrations where damping is usually insignificant. (5) The test vehicle 

travels at a constant speed, v, during its passage over the bridge. 

 

Figure 1. Moving test vehicle over a bridge. 

The equations of motion can be written for the vehicle and bridge as follows: 

( ) ( ( ) ( , ) )v v v v x vtm u t k u t u x t    0  (1) 

* ''''( , ) ( , ) ( ) ( )  
cm u x t EIu x t f t x vtδ  (2) 

 
vu

vm
v

u

,EI m

L

x



Sensors 2018, 18, 4035 4 of 24 

 

where ( , )u x t  is the vertical displacement of the bridge, ( )vu t  is the vertical displacement of the 

vehicle, measured from its static equilibrium position, ( )x vt  is the Dirac delta function, and the 

superposed dot and prime denote derivatives with respect to time t and coordinate x, respectively. 

The contact force ( )cf t  is expressed as follows: 

( ) ( ( ) ( , ) )c v v v x vtf t m g k u t u x t      (3) 

where g  is the acceleration of gravity. 

Using the modal superposition method, one can obtain the solution for the acceleration 

response of the test vehicle as follows [18,20]: 

   
 , , ,( ) cos cos cosv n n n v

n

n v n v
u t A t A t A t

L L

π π
ω





     
      

    
 1 2 3

1

1 1


, , , ,cos cosn b n n b n

n v n v
A t A t

L L

π π
ω ω

   
       

    
4 5  

(4) 

where n is the counter for the bridge mode, n v L  is the driving frequency, vω  is the vehicle 

frequency, as shown in Equation (5), and b,nω  is the bridge n-th mode frequency identified by FFT, 

as shown in Equation (6): 

v v vk m/ω   (5) 

, *b n

n EI

L m

π
ω 

2 2

2
 (6) 

The coefficients in Equation (4) are given as follows: 

  ,

, ( ) ( )
( )( )( )

st n v

n

n v v

n v
A

n v n vL S
L L

ωπ

π π
ω ω
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2 2

1
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 (7) 
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where the vehicle-induced static deflection ,st n  of the bridge and the speed parameter nS  of the 

n-th mode of the bridge are defined as follows: 

,
v

st n

m gL

n EIπ


 

3

4 4

2
 (12) 

,

n

b n

n v
S

L

π

ω
  (13) 

To extract the mode shapes of the bridge [25], the component response corresponding to the 

bridge frequency of the n-th mode should be singled out from the vehicle response by a feasible 

filtering technique based on Hilbert transform [25]: 

   
  

,, ,

,

ˆ( ) sin
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π π
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  , , , ,
ˆ ( ) ( ) sin sinb b n b n n b n

n v n v
R t H R t A t A t

L L

π π
ω ω
   

       
   

4 5  (16) 

where the coefficients 4,nA  and 5,nA  are defined in equations (10) and (11), respectively. Equation 

(14) indicates that, in the dynamic response of the test vehicle during its passage over the bridge, the 

component response of the n-th bridge frequency, ,b n
,
 oscillates with a varying amplitude, but 

with a shape identical to the n-th mode shape of the bridge in a sinusoidal form. In other words, the 

bridge component response oscillates within the envelope formed by the mode shape of the bridge, 

as implied by the instantaneous amplitude of the vehicle response. 

With the n-th frequency and corresponding mode shape of the bridge made available by the 

procedure presented above, the bending stiffness of each element of the bridge can be calculated by 

the improved DSC method [8−10]. The improvement to the original DSC technique [3,4] is based on 

the fundamental mechanics of beams, where the bending stiffness EI of each cross-section is equal to 

the modal bending moment M at the same cross-section divided by the corresponding modal 

curvature, namely: 

M M
EI

d dxφ κ
 

2 2
 (17) 

where x is the axis of the beam,   is the mode shape function, and   is the modal curvature. 

Equation (17) is valid for each mode of the beam if the effects of damping and shear deformation are 

ignored. This elementary beam theory can be approximately applied for the damage identification of 

beam structures, along with the indirect identification technique, as discussed in this paper. 

According to the D’Alembert’s principle [26], the cross-section of a beam should be in dynamic 

equilibrium in the presence of inertia force. With the improved DSC method [8−10], the internal 

force at each cross-section can be calculated for the n-th frequency and corresponding mode shape. 

In this study, the modal curvature of the n-th mode shape is calculated using the central difference 
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method [27]. With the modal curvature and internal forces made available for each cross-section, the 

bending stiffness can be calculated for the n-th mode of the beam. Based on this approach, the 

bending stiffness at each node of the bridge model, e.g., using the finite element method (FEM), can 

be obtained from the frequency-domain method. 

In this study, it is assumed that the bridge under investigation is monitored regularly by the test 

vehicle termly, and the acceleration response is recorded from the test vehicle during each passage. 

Such a procedure of comparison is repeated for the bridge throughout its service. The following is a 

summary of the analysis procedure: 

(1) It is assumed that a previous monitoring of the bridge of concern has been completed using the 

procedure stated below, which is regarded as the undamaged state. 

(2) The acceleration response is recorded for the test vehicle during its passage over the bridge for 

the current monitoring, which is suspected as the damaged state. 

(3) Identify the n-th frequency of vibration of the bridge from the recorded vehicle response in the 

previous and current runs of monitoring. 

(4) Recover the n-th mode shape of the bridge from the instantaneous amplitude of the component 

response corresponding to the n-th frequency. 

(5) Calculate the stiffness EI using the n-th frequency and corresponding mode shape for the 

bridge, based on which the structural damage is detected. 

(6) If no damage is detected, then the current monitoring is regarded as the undamaged state, and 

the same procedure of damage detection is repeated for the next monitoring. 

Therefore, the corresponding flowchart is presented in Figure 2. 

Undamaged Model 

To record the acceleration response 
of  the test vehicle during its 

passage over the bridge

To compare the stiffness EI of 
each element of the bridge in 

undamaged and damage state

Damaged Model

To identify the n-th frequency of 
vibration of the bridge from the 

recorded vehicle response

To recover the n-th mode shape 
of the bridge from the 

instantaneous amplitude history

To record the acceleration response 
of  the test vehicle during its 

passage over the bridge

To identify the n-th frequency of 
vibration of the bridge from the 

recorded vehicle response

To recover the n-th mode shape 
of the bridge from the 

instantaneous amplitude history

Based on Eq.(14) Based on Eq.(14)

To detect damage 

location and severity

Identified 

stiffness EI 

Simulation Model 
based on undamaged 

bridge 

Identified 

stiffness EI  

Based on Eq.(6) Based on Eq.(6)

Based on Based on 

Eq.(17) Eq.(17)

 

Figure 2. Flowchart of the frequency domain method. 

2.2. Time-Domain Method 

The statistical moment-based damage detection method is proposed by Xu et al. [5,6] for 

identifying the stiffness properties of a shear building before and after the occurrence of damages 
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using the measured building story responses. Subsequently, for determining the damage location 

and severity in the structure, the stiffness properties identified for the two states are compared. It is 

demonstrated [5,6] that the fourth-order moment, rather than the second-order or the sixth-order 

moments, of the displacement story response is more suitable for identifying the stiffness properties, 

as a tradeoff between the sensitivity of the index to structural damage and the stability to random 

excitation. Such a technique was experimentally verified using shaking table tests for three shear 

building models [5]. 

Unlike previous studies [5,6], the fourth-order moment of displacement is adopted herein for 

the bridge structure using the response data collected by the passing test vehicle. The acceleration 

response of the test vehicle in Equation (4) can be integrated to yield the displacement response  

as follows: 

   
 , , ,( ) cos cos cosv n n n v

n

n v n v
u t A t A t A t

L L

π π
ω





     
      

    
 1 2 3

1

1 1

, , , ,cos cosn b n n b n

n v n v
A t A t

L L

π π
ω ω

   
       

    
4 5  

(18) 

where the coefficients in the above equation are listed below: 

, , , , , ,

( ) ( )
/ , / , /n n n n n n v

n v n v
A A A A A A

L L

π π
ω

    
        

   

2 2

2
1 1 2 2 3 3

1 1
 

, , , , , ,/ , /n n b n n n b n

n v n v
A A A A

L L

π π
ω ω
   

        
   

2 2

4 4 5 5  

(19) 

For the case where the parameters , , ,v vv L m  are constants, the displacement response of 

the test vehicle is only related to the frequency and bending stiffness of the bridge. In practice, it is 

assumed that the structural mass remains unchanged before and after damage [3–10]. Thus, the 

displacement response of the test vehicle is indicative of the bending stiffness of the bridge, which is 

the property exploited in the following discussion. 

In this paper, we assume that a bridge is divided into N elements, and that each element has 

sN  sampling points. For the i-th element of the bridge, the displacement of the test vehicle can be 

given as ( ) [ ( ), ( ),..., ( )]
i i i iv v v v su i u u u N 1 2  Thus, the average displacement response of the test 

vehicle at the i-th element can be computed as follows: 

( )
s

i i

N

v v
js

u u j
N 

 
1

1
 (20) 

Accordingly, the fourth-order moment vector at each element of the bridge can be computed 

from the displacement response of the test vehicle as follows: 

ˆ ˆ ˆ ˆ[ , ,..., ]NM M M M4 41 42 4  (21) 

where the entry for the i-th element is expressed as follows: 

   
4

4
ˆ 


  i i i ii v v v vM u u p u du  (22) 

where ( )
iv

p u  is the PDF of the structural response 
iv
u . Thus, it can be calculated by using 

summation-type relationships as follows [5,6]: 
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ˆ ( ) ( ) ( )
s s s

i i i v i vi i

N N N

i v v v v
j j js s s

M u j u u j u u j u
N N N  

     4 3 2 2 4
4

1 1 1

1 4 6
3  (23) 

First, an initial value is assign to the stiffness EI of the bridge using the value obtained from the 

previous monitoring. With this value, the vehicle response can be solved from Equations (1) and (2). 

Then, the fourth-order moment vector corresponding to the previous monitoring can be computed 

from Equations (18), (21), and (23), which is considered as the theoretical statistical moment vector, 

[ , ,..., ]4 41 42 4NM M M M . Simultaneously, the fourth-order moment vector, 4M̂ , can be 

computed using the test vehicle response recorded during the current monitoring. Therefore, the 

residual vector between 4M  and 4M̂  is calculated as follows: 

ˆ( ) ( )i iF EI M EI M   (24) 

Ideally, if the given vector of the stiffness values of all of the elements EI is equal to the actual 

values, the two norms of the residual vector, ( )F EI , becomes zero. Practically, the vector of the 

optimal stiffness values can be identified by the least-squares method. Giving the EI of an element an 

initial value 0EI  from a previous monitoring, compute the corresponding fourth-order member 

moment, compare the actual value of the fourth-order member moment established from the current 

monitoring to that computed from the initial value 0EI , and finally, minimize ( )F EI  to assess 

the damage condition of the bridge. Based on this approach, the bending stiffness at each element 

can be obtained. 

The time-domain method in the indirect identification technique can be evaluated according to 

the analysis procedure of the following steps: 

(1) Measure the displacement responses of the test vehicle, or calculate the displacement from the 

acceleration response of the test vehicle during its passage over the bridge for the undamaged 

and damaged states. 

(2) The actual statistical moments of the measured displacement responses of the test vehicle with 

the undamaged and damaged states, 4
ˆ
iM , are estimated using Equation (23). 

(3) Given the vector that collects all of the stiffness parameters for all of the elements representing 

the bridge FE model using initial values based on the calculated stiffness, e.g., from the 

frequency-domain method, the theoretical statistical moments of the displacement responses of 

the test vehicle, 4M , are calculated based on the FE model of the bridge and also making use of 

Equation (23). 

(4) Substituting 4M̂  and 4M  into Equation (24), the vector collecting the structural stiffness 

values of all of the elements of the FE model of the bridge can be identified by the constrained 

nonlinear least-squares method for the undamaged and damaged states. 

(5) All of the attributes of the structural damage of the bridge, including the existence, location, and 

severity, can be detected by comparing the identified vector of the stiffness values of the 

undamaged bridge, ˆ uEI , to that of the damaged bridge, ˆ dEI . 

Therefore, the corresponding flowchart is presented in Figure 3. 
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Figure 3. Flowchart of the time-domain method. 

3. Parameters of the Test Vehicle Numerical Study 

In order to investigate the feasibility and limitations of the presented approaches from the 

dynamic response of the passing test vehicle, several numerical cases are studied herein using the 

FEM, based on a well-developed simulation algorithm for vehicle–bridge interaction [17,25]. For the 

considered numerical simulation, the simply supported bridge is one span of the Da-Wu-Lun  

bridge [19], which is a part of the Taiwan Provincial Highway 2 near the northern coast of Taiwan. 

The considered bridge unit is composed of six prestressed I girders, placed at a center-to-center 

distance of 2.8 m, and has a span length of 30 m, as shown in Figure 4. The cross-section of the bridge 

has a total width of 16.5 m with a 20-cm thick concrete deck slab and a five-cm thick Asphalt 

Concrete(AC) pavement layer. The cross-sectional area and moment of inertia of each I girder are 

0.64 m2 and 0.2422 m4, respectively. The concrete of the bridge has an elastic modulus of 29 GPa and 

a material density of 2400 kg/m3. Figure 5 shows the FE model of the considered bridge span with 10 

beam elements (i.e., 11 nodes) where the numbers in circles are the element numbers, and the others are 

the node numbers. 
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Figure 4. Bridge considered for the simulation, (a) bridge elevation, (b) bridge cross-section,  

(c) girder cross-section. 

 

Figure 5. Finite element (FE) model of one span of the bridge with 10 elements. 

The accuracy of the single-mode closed-form solution obtained for the vehicle–bridge couple 

system, and the vehicle response in particular, will be verified by the three-dimensional elements 

and two-dimensional elements for a typical example. As for the above bridge modal, the following 

data are adopted for the test vehicle: mass mv = 500 kg, stiffness kv = 90 kg/m, v = 1 m/s, and zero 

damping. For this vehicle, the vehicle to bridge mass ratio is 1:100. The vertical displacement of the 

vehicle obtained by the three-dimensional element and two-dimensional element approaches have 

been plotted in Figure 6a,b, respectively. As can be seen from Figure 6 and all of the analyzed results, 

the solutions obtained by the two approaches show a high degree of coincidence for the vehicle 

response; however, the analytical results are considered acceptable for the purpose of identifying the 

key parameters involved. Therefore, studying the frequency-domain method and time-domain 

method of the indirect measurement technique as the key point, the simulation model below are all 

based on the two-dimensional element approach for simplicity. 

With the test vehicle acceleration and displacement responses discussed above, several test 

vehicle parameters are required for the indirect technique of bridge damage identification. The test 

vehicle parameters are frequency vω , mass vm , stiffness vk , and speed v. Considering the 

frequency-domain method and based on previous studies [17,25], the ratio of the bridge 

fundamental frequency bω  to vω , i.e., b vr   , is an important design parameter of the field 

test for the intended purpose of stiffness identification. In this study, a test vehicle with 500vm   kg 

and v = 3 m/s, vk  is adjusted for the different values of r, and the EI of the bridge is computed. 

Figure 7 shows results corresponding to r = 0.7 to 1.4 (for nodal point numbers, refer to Figure 5). It is 

noted that the nodes located in the neighborhood of the abutments (nodes 2 and 10) did not 

correspond to accurate results because of the unsuitable combination of the identified mode shape 

from the test vehicle [25] and the improved DSC method [8−10] in the frequency-domain method. 

This is attributed to the higher errors of the identified mode shapes near the boundaries compared to 
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near the mid-span. Except for these nodes, it is shown that when r = 0.7 and 1.4, the calculated EI is 

closed to the specified EI where the difference is below 5%. With r approaching 1.0 from above or 

below, the calculated EI becomes coarser due to resonance where the bridge vibration includes 

significant vehicle vibration in the same frequency band. Accordingly, the calculated EI is inaccurate 

compared with the specified EI; refer to the result for r = 0.9 in Figure 7. An important point follows 

from this discussion, namely, if the natural frequency of the test vehicle is close to the natural 

frequency of the bridge, it is difficult to use the frequency-domain method for damage identification, 

because the collected data include a similar frequency signal for the test vehicle and the bridge. 

Therefore, for the ratio r ≤0.7 or r ≥1.4, the identification of EI is suitable for damage identification. 

  
(a) (b) 

Figure 6. Vertical displacement response of (a) bridge midpoint and (b) test vehicle. 

 

Figure 7. Simulation results of the calculated EI for elements along the bridge for different r values. 

Another considered factor is the constant speed of the test vehicle, v . The calculated EI using 

the frequency-domain method is shown in Figure 8 for speeds ranging from 2 m/s to 7 m/s. It is 

shown that the calculated EI should be based on the vehicle speed not exceeding 6 m/s to obtain 

suitable stiffness identification, not including boundary elements, i.e., nodes 2 and 10. 
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Figure 8. Simulation results of calculated EI with different test vehicle speeds. 

4. Considered Scenarios in the Numerical Study 

Based on the previous section, the following values are considered for the main parameters of 

the test vehicle in this section: mass mv = 500 kg, stiffness kv = 90 kg/m, and v = 3 m/s. The finite 

element (FE) model of the bridge in Figure 5 is adopted with a time step of 0.01 s to demonstrate the 

sensitivity of the detection methods. The acceleration and displacement responses that are 

numerically generated for the test vehicle during its passage over the bridge are processed using the 

procedures outlined above to identify the bridge bending stiffness (EI). The considered damage 

scenarios are listed in Table 1 and identified by D, with a subscript indicating the damaged element 

number. The severity of the damage is denoted by the percentage of reduction from the original 

(undamaged) sectional bending stiffness. 

Table 1. Description of damage scenarios in the numerical simulations. 

Scenario Group Damaged Element(s) Reduction in Element Stiffness (%) 

1 D6 6 D6 = 0 D6 = 10 D6 = 20 D6 = 30 D6 = 40 

2 D3, D6 3 & 6 
D3 = 10 

D6 = 30 

D3 = 20 

D6 = 30 

D3 = 30 

D6 = 30 

D3 = 30 

D6 = 40 

D3 = 20 

D6 = 40 

3 D1, D10 1 & 10 
D1 = 10 

D10 = 10 

D3 = 20 

D6 = 20 

D3 = 20 

D6 = 30 

D3 = 20 

D6 = 40 

D3 = 30 

D6 = 40 

4.1. Frequency-Domain Method 

The fundamental frequency and corresponding mode shape are accurate and convenient 

regarding extraction from the acceleration responses of the test vehicle [25]. When the improved 

DSC method [8−10] is used, only the measurements in one mode are sufficient to identify the 

damage. Using the indirect identification technique, only the fundamental frequency and the 

corresponding mode shape are used to calculate the bending stiffness at the nodes herein. 

To demonstrate the damage detection for a single damage location using the frequency-domain 

method, it is assumed that the bridge in Figure 9 experienced damage Scenario 1 (Table 1). From 

Figure 9, it is clear that the stiffness values at nodes 6 and 7, corresponding to D6, are the lowest. 

Figure 10 shows the EI variation ratio, i.e., stiffness degradation level, at the different nodes. For the 

undamaged state, the corresponding stiffness values at nodes can be calculated from the indirect 

identification technique of from the original design documents. Figure 10a,b shows the variation 

ratio considering the undamaged EI similar to the on-site test immediately after a newly constructed 

bridge using the indirect identification technique, and the specified undamaged EI similar to the 

original design document, respectively. It is indicated that the EI variation ratios at nodes 6 and 7 are 

close to the true values, i.e., the mean values of the damage percentages of the adjacent elements  

(D6 + D5)/2 for node 6 and (D6 + D7)/2 for node 7. Thus, the distribution of EI and the corresponding 
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variation ratio along the bridge are satisfactory for detecting the damage location and severity, 

except in boundary elements 1 and 10. 

Figure 11 shows the calculated EI in the case of multiple damage locations (Scenario 2 of Table 1) 

corresponding to the damaged element 3 (nodes 3 and 4) and element 6 (nodes 6 and 7). Moreover, 

Figure 12a, b indicates the variation ratio with respect to the calculated and specified undamaged EI, 

respectively. The simulation results indicate that the magnitudes of the variation ratio increase with 

the increase of damage severity. 

 

Figure 9. Simulation results of calculated EI for a single damage (Scenario 1). 

  
(a) (b) 

Figure 10. EI variation ratios for a single damage (Scenario 1). (a) Ratio with respect to calculated 

undamaged EI. (b) Ratio with respect to specified undamaged EI. 

 

Figure 11. Simulation results of calculated EI for double interior damages (Scenario 2). 
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(a) (b) 

Figure 12. EI variation ratio for double interior damages (Scenario 2). (a) Ratio of calculated to 

undamaged EI. (b) Ratio of specified to undamaged EI. 

Similar observations can be made for scenarios 1 and 2, as shown in Table 1. Element 6 is 

damaged in both scenarios, with only one damaged element in Scenario 1, and two damaged 

elements in Scenario 2. The calculated EI and corresponding variation ratio exhibit almost no change 

for element 6 in these two scenarios with the same assumed damaged case. This important feature of 

the ability to detect damage locations and severity without the influence of damage of other 

locations is essential for practical applications of structural damage identification. 

4.2. Time-Domain Method 

Using Equation (21), the fourth-order moment vectors of the “measured” displacement 

response of the test vehicle can be estimated for the previously discussed bridge model and test 

vehicle parameters considering different damage scenarios. Thus, the consequent EI of each element, 

which may differ from the calculated EI at each node using the frequency-domain method, can be 

calculated. The identified EI of each element is represented in scenarios, as shown in Figures 13–15. 

According to the time-domain method, the distribution of stiffness is determined for each 

element as shown in Figure 13, showing the lowest stiffness for the damaged element 6. The 

computed ratios of reduction in stiffness for this element of 0.093, 0.194, 0.295, and 0.396 are very 

close to the damaged cases, i.e., D6 = 10%, 20%, 30%, and 40%, respectively. On the other hand, the 

variations of stiffness in undamaged elements of Figure 13 are very small, below 5%. 

 

Figure 13. Simulation results of calculated EI for a single damage (Scenario 1). 
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When two damaged inner elements, 3 and 6, are simulated (Scenario 2), the identified stiffness 

at each element, as shown in Figure 14, is accurate compared to the specified distribution of stiffness. 

The differences of the identified stiffness values and those of the specified ones for the damaged and 

undamaged elements are below 1% and 5%, respectively. As stated previously, the boundary 

elements cannot be identified properly using the frequency-domain method. However, the 

time-domain method permits the EI of the boundary elements to be accurately calculated, as shown 

in Figure 15 for the damaged stiffness of boundary elements 1 and 10. The variations of the stiffness 

between the identified stiffness values and the specified ones are below 1%. 

 

Figure 14. Simulation results of calculated EI for two interior damages (Scenario 2). 

 

Figure 15. Simulation results of calculated EI for boundary damages (Scenario 3). 

Based on the above results, the time-domain method can be used for boundary damage 

identification where the frequency-domain method cannot. However, the frequency-domain 

method is more efficiently computationally compared to the time-domain method, which requires 

solving an optimization problem. For the discussed bridge simulation, calculating EI using the 

time-domain method starting with specified undamaged stiffness for the initial values at each 

element may require extensive computations. However, if the initial stiffness values are identified 

from the application of the frequency-domain method, the computing time that is required to solve 

the optimization problem by applying the time-domain method can be significantly reduced. 
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5. Measurement Error Study 

For a reliable damage detection method, a significant challenge is posed by environmental noise 

in practical applications, e.g., thermal conditions or the effects of the roughness of the road surface. 

In this study, it is assumed that the influence of the environmental effects on the dynamic response 

of the passing test vehicle is represented by white noise. The displacement response of the test vehicle 

with random noise is expressed as follows [28,29]: 

 m calculated p calculatedy y E P y  
 

(25) 

where calculatedy
 is the calculated displacement and acceleration responses of the test vehicle from 

the FE model, pE  is the noise level, P is an independent random variable of Gaussian distribution 

with zero mean and unit standard deviation, and 
 calculatedy

 is the specified standard deviations 

of the calculated displacement responses of the test vehicle. 

5.1. Considering Noise in the Frequency-Domain Method 

To numerically demonstrate the sensitivity of the identified bending stiffness using the 

frequency-domain method, it is assumed that the discussed bridge simulation experienced the 

scenarios that are summarized in Table 1, but with a consideration of different noise levels, as shown 

in Figures 16–18. Using Equation (25), the simulations with added Gaussian random white noise for 

each level of the bridge are repeated 10 times in order to reduce the effects of the random errors 

(similar to 10 in situ measurements). The average of the noisy data is used for the subsequent 

damage detection to estimate the bending stiffness at nodes by the frequency-domain method. 

Figure 16 shows the identified stiffness values of the undamaged case from the calculated results of 

the 10 random realizations corresponding to each considered noise level. As expected, the bending 

stiffness identified from the first mode shape with comparatively low noise level is more accurate 

than that with higher noise level. This indicates that the variation ratios between the identified and 

the specified EI values are below 3%, even if noisy data are used with up to a 20% noise level. 

Moreover, the stiffness can be reasonably identified, even for up to 30% noise levels, except for node 

3, where the errors are over 20%. 

 

Figure 16. Simulation results of calculated EI with different noise levels. 

To evaluate the proposed approach for calculating the bending stiffness under different 

damage scenarios (similar to the above case of the undamaged bridge) with environmental noise, the 

numerical simulations considering the artificial noise prescribed with different levels are performed 

under these damaged scenarios. Figure 17 shows the calculated EI from the data with the noise at 

different levels for damaged element 6 with a 10% and 40% reduction in stiffness. From Figure 17a, 
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the results of the damage identification at a 10% noise level are quite satisfactory, and the lowest EI 

values are observed at nodes 6 and 7 (the end nodes of damaged element 6), identifying the 

damaged location accurately. At the higher noise levels, the proposed approach also revealed the 

stiffness reduction at node 6. However, the EI values at the boundary nodes are even lower than 

those in the specified damaged regions at the noise level of 30%, which would pose an inevitable 

impediment for the efficient damage identification. Furthermore, when the bending stiffness of 

element 6 is presumed to have a 40% reduction in stiffness, all of the results at different noise levels 

meet the requirements of determining the damage location based on the lowest identified EI values, 

as shown in Figure 17b, where the lower EI values at nodes 6 and 7 are apparent. Moreover, as 

expected, due to the increased noise, larger random errors in the calculated EI are observed 

compared with the specified EI. For the scenario of high environmental noise, the curvature that 

fluctuates   in Equation 17 would fluctuate much more due to the amplification of differential 

effects with the /2 2d dx  [8−10]. Accordingly, the calculated EI based on the classical beam theory, 

Equation (17), may lead to an unreasonable stiffness value, especially in the vicinity of damaged 

element(s) with the highest chance of a much higher curvature variation [8−10], and near support 

element(s) with the near-zero curvature [8−10]. Due to the limited number of repeated numerical 

simulations, the results are non-ergodic [30], and the averaging techniques can hardly eliminate the 

interference effects of the Gaussian random noise. Therefore, the “real” signal becomes largely 

contaminated, resulting in increased or decreased values of the measured data at some positions. 

Fortunately, these results indicate that the environmental noise would exert smaller influences on 

the damage identification results when the bending stiffness of the damaged element is significantly 

reduced. 

  
(a) D6 = 10% (b) D6 = 40% 

Figure 17. Simulation results of calculated EI with different noise levels (Scenario 1). 

Figure 18 shows the calculated EI with different noise levels for double-interior damages  

(D3 = 20% and D6 = 30% versus D3 = 30% and D6 = 40%). The reduced stiffness of the two damaged 

elements are generally identified for different noise levels. In addition, the results demonstrate the 

higher damage of element 6 for most of the noise scenarios. However, the calculated results for the 

40% noise level that is shown in Figure 18b illustrate the lower EI values at nodes 3 and 4 compared 

with those at nodes 6 and 7. Therefore, the high environment noise levels would deteriorate the 

efficiency and accuracy of the proposed frequency domain approach to some extent, and make the 

damage identification more complex and less reliable. 
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(a) D3 = 20% and D6 = 30% (b) D3 = 30% and D6 = 40% 

Figure 18. Simulation results of calculated EI with different noise levels (Scenario 2). 

5.2. Considering Noise in the Time-Domain Method 

This section presents the effects of the environmental noise on damage identification using the 

time-domain method. Besides the single and double-element damage scenarios, the scenario of 

damaged boundary elements is also included. As discussed in the previous section, the calculation 

following Equation (25) is repeated 10 times, and the averaged results are attained for the analysis. 

Figure 19 shows the calculated EI at different noise levels for the above-mentioned damage scenarios 

using the time-domain method. It is observed that the differences between the EI values of the 

damaged element(s) are negligible for the different noise levels. Therefore, the environmental noise 

has insignificant effects on the calculated stiffness when using the time-domain method. In addition, 

from Figure 19a, b, the damage of element 6 is clear, and the higher reduction of the bending 

stiffness is accurately reproduced. However, the undamaged boundary elements 1 and 10 can be 

mistaken for “damaged” elements due to the calculated stiffness reduction at high noise levels. This 

may lead to unnecessary inspection fieldwork in the case of slightly damaged elements, as shown in 

Figure 19a. For the scenario of double-element damage, Figure 19c, d reveals the accurate damage 

locations and damage severity. The effects of the environmental noise and the interference between 

the two damaged elements are negligible. Unlike the frequency-domain approach, the damages at 

the boundary elements are well recognized by the time-domain method, as shown in Figure 19e,f. 

Consequently, the time-domain method is advantageous, with higher accuracy, robustness, and 

reliability than the frequency-domain method. 
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(c) D3 = 20%, D6 = 30% (Scenario 2) (d) D3 = 30%, D6 = 40% (Scenario 2) 

  
(e) D1 = 10%, D10 = 10% (Scenario 3) (f) D1 = 30%, D10 = 40% (Scenario 3) 

Figure 19. Simulation results of calculated EI with different noise levels. 

6. Field Test Study 

The Hongxing bridge, located in Fuling District of Chongqing City, is a simply supported 

three-spanned bridge with each span’s length at 20 m, as shown in Figure 20a. The cross-sectional 

moment of inertia is 0.38 m4, and the elastic modulus is 3.0 × 1010 N/m2. The bridge was recently built 

in 2018, and has not been officially open to the public. Therefore, it had little traffic flow, and noise 

interference was relatively weak. According to field investigations, the road roughness is shown in 

Figure 20b; it is suitable for the actual experimental study of the indirect measurement technique. 

Considering the second span as the test beam bridge, researchers kept the speed of the test 

vehicle–car (tractor) system at 1 m/s, as shown in Figure 21. According to the test vehicle going 

across the test beam bridge, the acceleration response of the test vehicle with an acceleration sensor 

installed in the center of the test vehicle could be recorded. For reducing the effect of the surface road 

surface, two different weights of the test vehicle, namely a big vehicle (1100 kg) and small vehicle 

(1050 kg) with the same vehicle frequency, could pass the test beam bridge, respectively. The 

difference between the responses of the two test vehicles could be regarded as the initial acceleration 

response signals. Researchers let the big vehicle and small vehicle pass the second span of the bridge 

three times, respectively, and then were able to use displacement response-measuring technology 

based on the double integral of the recorded acceleration response with zero initial conditions at 

each time. Therefore, there are three displacement responses each for the big vehicle and small 

vehicle. After averaging the displacement responses of the big vehicle and the small vehicle for 

reducing random noise, which is shown in Figure 22, the difference between the displacement 

response of the big vehicle and the small vehicle can be regarded as the initial displacement response 

signal for the analysis procedure of the time-domain method in Section 2.2. The corresponding 

acceleration response calculated by the initial displacement response differential twice can be 

regarded as the initial acceleration signals for an analysis procedure of the frequency-domain 

method in Section 2.1. 
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Figure 20. Hong Xing Bridge of Chongqing City. 

 

Figure 21. Field tests on site. 
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method is shown in Figure 23. Compared to the original EI, the maximum relative error in the 
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however, the identified results are acceptable within an engineering acceptance range. 
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Figure 23. Identified EI results calculated by the frequency-domain method. 

It can also be seen that the identified stiffness EI at the element number calculated by the 

time-domain method is shown in Figure 24, which is obviously better than the results of Figure 23. 

Compared with the original EI, the maximum relative error in the identified stiffness EI occurs in 

element number 10 with a value of approximately 5%, and the remaining EI results are all below 1%. 

It indicated again that the time-domain method is advantageous with higher accuracy, robustness, 

and reliability than the frequency domain method. 

This is a preliminary verification for an indirect measurement technique. It is noted that the 

applicability of the frequency-domain method and time-domain method to practical bridges with 

recorded data from field tests should be further promoted, and details will be presented in  

future publications. 

 

Figure 24. Identified EI results calculated by time-domain method. 

7. Results Discussion 

In the simulation numerical, the results indicated the ability to detect damage locations and 

severity without the influence of damage at other locations in single and double-damage location(s). 

Based on the sensitivity of different environment noise levels to damage identification, it is noted 

that higher environment noise would deteriorate the efficiency and accuracy of the proposed 

frequency-domain approach to some extent, and make the damage identification more complex and 

less reliable. However, the time-domain method is advantageous with higher accuracy, robustness, 

and reliability than the frequency-domain method. A filtering method to reduce the measurement 

noise should be studied in the future. 

In the field test, performing multiple passes on the bridge and then averaging the signals was 

considered to reduce the measurement noise. Two different weight test vehicles with the same 

vehicle frequency were used for reducing the effect of road surface roughness. The results show that 
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the identification can be accepted as an engineering requirement. More technologies and an updated 

designed test vehicle to eliminate these disturbance factors will be promoted in future work. 

8. Conclusions 

This study presents an indirect approach for identifying the structural damage of a bridge from 

a passing test vehicle. Both the frequency-domain and time-domain methods have been embedded 

into the proposed indirect approach, which is numerically examined in the single, double, and 

boundary-damage scenarios considering different noise levels. During the passage of the test vehicle 

over a bridge, the fundamental frequency and corresponding mode shape of the bridge can be 

extracted from the field measurements recorded by the vibration sensors mounted on the test 

vehicle. Subsequently, the stiffness for structural damage identification can be calculated from the 

improved direct stiffness calculation technique, which is referred to as the frequency-domain 

method. For the displacement response measured by the test vehicle, or the twice integration of the 

acceleration response, the fourth-order moment vectors can be calculated from the statistical 

moment-based damage detection method combined into the indirect approach, which is referred to 

as the time-domain method. Through a numerical case study, the main conclusions are as follows: 

1. The proposed indirect approach, including the frequency-domain and time-domain methods, 

requires no parametric inputs, which is more general compared to other structural damage 

identification, e.g., wavelet-based methods. Therefore, the proposed approach can be directly 

adopted for the structural damage identification of in-service bridge structures without 

additional and cumbersome calibration. 

2. The frequency-domain method is advantageous with its high cost efficiency, since it can 

estimate the initial stiffness of the bridge based on the first mode of vibration, and is sufficient 

for identifying damage location(s) apart from the end regions of the bridge. However, this 

method requires that the speed of the passing vehicle should be lower than 6 m/s during the 

measurement, and it is not applicable for damage identification in the boundary nodes. 

3. Although the time-domain method is computationally intensive due to the additional 

optimization steps, it has the advantages of high accuracy, reliability, and robustness, and is 

feasible for use especially in the end regions of the bridge, which is suitable for identifying 

damage location(s) and damage severities. 

4. The field test study shows that the identified results errors from using the frequency-domain 

method and time-domain method are below 16% and 5% respectively; this indicates that the 

two methods are useful for assessment bending stiffness with a practical bridge. Moreover, it 

indicated that the time-domain method is advantageous with higher accuracy, robustness, and 

reliability as compared to the frequency-domain method. 

5. In the practical assessment of the bridge health conditions, the frequency-domain approach is 

suitable in the preliminary phase to estimate the initial damage conditions of the bridge on site. 

Subsequently, in the final phase of the investigation, the time-domain approach can provide 

more detailed and comprehensive results with high accuracy and reliability. 

Since the conclusions are drawn from the analytical analysis, numerical simulations, and initial 

field-test verification, as in the practical applications of the proposed damage detection approach for 

damage identification based on old damaged bridge test, are not included in this paper, and will be 

presented in future publications. It is noted that the modified bending stiffness results by using the 

frequency-domain method, especially for the end regions of the bridge, and high measurement noise 

should be further promoted, and will be presented in future publications. Finally, future research 

should focus on developing techniques and equipment for designing a test vehicle and considering 

it without road closure, and more corresponding parameters with a vehicle–bridge couple system 

associated with practical challenges should be studied. 
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