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Abstract: As is well known, multi-hop range-free localization algorithms demonstrate pretty good
performance in isotropic networks in which sensor nodes distribute evenly and densely. However,
these algorithms are easily affected by network topology, causing a significant decrease in positioning
accuracy. To improve the localization performance in anisotropic networks, this paper presents a
multi-hop range-free localization algorithm based on Least Square Regularized Regression (LSRR).
By building a mapping relationship between hop counts and real distances, we can regard the process
of localization as a regularized regression. Firstly, the proximity information of the given network
is measured. Then, a mapping model between the geographical distances and the hop distances is
constructed by LSRR. Finally, each sensor node finds its own position via this mapping. The Average
Localization Error (ALE) metric is used to evaluate the proposed method in our experiments, and
results show that, compared with similar methods, our approach can effectively decrease the effect of
anisotropy, thus considerably improving the positioning accuracy.
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1. Introduction

Obtaining accurate location information is a precondition for many applications that are based
on localization technology. Among the existing positioning technologies, GPS satellite positioning
systems rely on their global coverage and high accuracy, and have been widely used [1,2] all over
the world. However, these satellite positioning systems also have some significant shortcomings,
including high energy consumption, a high cost, fixed auxiliary facilities, and the only use of open
space. Since the 1990s, Wireless Sensor Networks (WSNs) have attracted the attention of many relevant
researchers. As an extension of a satellite positioning system, WSNs bring localization methods a low
cost, low power consumption, and no additional auxiliary facilities. In some applications, WSN-based
localization systems still work well while satellite positioning systems may be out of service [3–5].
For example, WSN localization approaches can provide us with a relatively accurate location in
areas where satellite signals are blocked, such as primitive forests and buildings. Some localization
methods of WSNs are based on the characteristics of network connectivity and multi-hop information.
With the help of known nodes, which are called anchors, the unknown nodes can estimate their
locations. Such localization technologies are also called multi-hop range-free localization methods [6,7].
Localization approaches in WSNs can be divided into two types: range-based algorithms [8,9] and
range-free algorithms [10–12]. The range-based (e.g., RSSI-based, Received Signal Strength Indication)
localization algorithms estimate the locations of sensor nodes by measuring their distances or angles
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from the anchor nodes. The range-based localization algorithms can deal with anisotropic networks
and ensure a relatively accurate estimation of sensor locations; however, these algorithms are easily
affected by environmental factors, such as noise and obstacles. In addition, their complexity and
cost also increase with the accuracy requirement. For a large-scale sensor network with many sensor
nodes, it is not reasonable to equip them all with ranging devices. In contrast, range-free localization
algorithms use only the connectivity information among nodes, i.e., they do not require expensive
ranging devices. In the case of large-scale WSN localization applications, the range-free algorithms
would be preferred where sensor nodes are provided with a small amount of resources. Since the
multi-hop range-free positioning technique only needs the hop information between nodes, it can
position unknown nodes without additional devices and thus has been widely used.

The multi-hop range-free localization methods perform rather well in an even and dense network,
which frequently means that a large number of nodes are deployed in a limited area. They seriously
depend on the network topology. Taking Figure 1 as an example, the dotted lines indicate the geometric
distance between nodes A and B, while the red solid lines denote the corresponding hop distances
between them. If the sensor nodes are distributed evenly, the geometric distances will roughly match
the hop distances (refer to Figure 1a). However, this matching relationship will be totally undermined
if there are some obstacles that bend the paths between nodes A and B, leading to a mismatch between
the geometric distances and the hop distances (refer to Figure 1b). We usually call a network like that
shown in Figure 1b an anisotropic network, which has different propagation models and irregular
localization areas. A large deviation between the geometric distances and hop distances may probably
cause a sharp drop in positioning accuracy, which is exactly the reason that the multi-hop range-free
localization methods perform so poorly in anisotropic networks.
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Figure 1. An example of network anisotropy’s impact on the hop distance.

To improve the positioning accuracy in such anisotropic networks, we propose a multi-hop
range-free localization method based on Least Square Regularized Regression, i.e., LSRR-LA (Least
Square Regularized Regression based multi-hop range-free Localization Algorithm). In the case of
LSRR-LA, we build a mapping model between geometric distances and hop counts by using Least
Square Regularized Regression, and then we estimate the locations of unknown nodes in terms of this
model. During the establishment step of this mapping model, structural risk minimization is obtained
by tuning the weights between the empirical risk and a penalty item, thus ensuring enough stability
in, and accuracy of, this mapping model.

The rest of this paper is organized as follows. Related works are briefly introduced in Section 2.
Section 3 describes the proposed LSRR-LA method in detail. Extensive simulation experiments are
conducted to evaluate the performance of LSRR-LA and make comparisons with typical localization
solutions, and the results are reported in Section 4. Finally, Section 5 gives some conclusions.
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2. Related Works

As far as multi-hop range-free localization algorithms are concerned, some popular ones include
DV-hop (Distance Vector hop) [13,14], Amorphous [15], and MDS-MAP (Multidimensional scaling
MDP) [16]. The DV-hop method was first proposed by Dragos Niculescu at the University of Bucharest,
and the basic idea is that one node estimates the distance to another node using the product of the
network per-hop distance and the shortest path between them. The DV-hop algorithm does not need
distance measurement equipment nor angle measurement hardware, and thus it is one of the most
widely used algorithms for wireless sensor networks. It can be simply divided into three steps. First
of all, the unknown nodes calculate the minimal hop counts to anchor nodes by the AODV (Ad hoc
On-demand Distance Vector Routing) protocol. Then, the unknown nodes estimate their Euclidean
distances to anchors by multiplying the minimum hop counts and the per-hop distance together.
At last, the locations of unknown nodes are estimated by using the trilateration or maximum likelihood
method. The Amorphous algorithm is an improved version of DV-hop. Unlike the first step used in
DV-hop, Amorphous relies on another way that is called local hop counts to calculate the minimum
number of hop counts. Furthermore, it also uses a different method to compute the average per-hop
distance. In this way, Amorphous can generally achieve better performance than DV-hop. MDS-MAP,
as another popular method, is a localization method that is based on multidimensional scaling (MDS).
MDS-MAP uses the distance or connectivity information between all nodes at the same time and only
uses the information between the unknown and anchor nodes. It can be used as either a range-based
or a range-free algorithm. In the case of the range-free method, it rebuilds the relative coordinators
of nodes by taking advantage of the pair distance, and obtains the absolute coordinators of nodes
by using coordinate transformation with the help of anchor nodes. The above localization methods
all assume that the nodes are distributed uniformly and densely in networks. However, the real
deployment environment is often complex and changeable; thus, it is almost impossible to satisfy
the ideal condition of uniformity and denseness for nodes to be located. For example, in anisotropic
networks, such as networks with existing obstacles or noise corruption, these multi-hop range-free
localization methods will probably demonstrate poor positioning accuracy.

Recently, designing localization algorithms through machine learning theory has drawn a lot
of attention. These machine-learning-based localization algorithms utilize the correlations between
nodal distribution characteristics and measurement information to construct a mapping model, which
is then applied to estimate the positions of unknown nodes. Compared with the existing methods,
machine-learning-based approaches can more effectively retrieve the fuzzy relations that are hidden
behind information and data. Lim et al. proposed a localization method named Proximity-Distance
Map (PDM) [17], which creates the mapping relationship between hop counts and the real distances of
anchor nodes. Then, this mapping relationship is used to estimate the distance from the unknown
nodes to the anchor nodes. Inspired by the PDM method in [17], Lee et al. presented two improved
localization methods, i.e., Localized Support Vector Regression (LSVR) and Multi-dimensional Support
Vector Regression (MSVR) [18], which regard the relationship between hop counts and distances
as nonlinear and estimate distances by the regression method relying on a Support Vector Machine
(SVM) [19].

Although the methods mentioned above can effectively improve the positioning accuracy in
anisotropic networks, the computational complexity of their core algorithms is very high, which will
cause sensor nodes to fail or die earlier because such nodes will estimate the locations by themselves,
and they are short of computation and memory resources as well. Moreover, the LSVR and MSVR
methods have too many parameters to be considered, which leads to very complex models; thus, they
are not suitable for practical application scenarios. Recently, we proposed a novel DV-hop algorithm
based on Locally Weighted Linear Regression (LWLR-DV-hop), in which the kernel method was
adopted to improve the localization accuracy by raising the weight of neighboring anchor nodes [20].
Although the kernel method used in [20] improved the performance of DV-hop remarkably, it needs
to compute the threshold of the hop count and the kernel parameter k, which definitely gives rise to
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computation complexity. Unlike [20], our proposed method involves only one parameter, and, thus,
it has less computation complexity and can be regarded as an improved version of LWLR-DV-hop.

3. The Proposed Localization Algorithm

In this section, we will describe LSRR-LA in detail. Firstly, we present the localization problem in
Section 3.1 and then deduce a formulated mapping model. Secondly, we will demonstrate the three
steps of LSRR-LA in Section 3.2. Finally, the pseudo-code of LSRR-LA is illustrated.

3.1. Problem Statement

Consider a two-dimensional region of space, where there is a sensor network given by a set of
nodes N = {N1, N2, . . . , Nm+n}, which consists of m anchor nodes and n sensor nodes. The coordinates
of these nodes can be described with definition (1):

cor(Np) = (xp, yp)
T, f or p = 1, ..., m + n. (1)

In WSN N, the positions of m anchor nodes Ni ∈ A, A = {Ni|i = 1, ..., m} are known, while the
positions of the n sensor nodes Nj ∈ B, B = {Nj|j = m + 1, ..., m + n} are unknown. In the case of
multi-hop networks, the hop counts between pair nodes are already known. The Euclidean distance
from node Ni to Nj (i 6= j) can be presented by Equation (2):

dij = ‖cor(Ni)− cor(Nj)‖ =
√
(xi − xj)

2 + (yi − yj)
2. (2)

The hop counts from node Ni to Nj (i 6= j) can be expressed as hij. Taking Figure 1a as an example,
in such a multi-hop network dij is proportional to hij, i.e., dij ∝ hij. Thus, the localization problem can
be formulated as:

Estimate cor(Nk),
Given cor(Ni), dij, and hkt,

(3)

where Ni, Nj ∈ A, Nk ∈ B, and hkt denotes the hop counts between node Nk and node Nt (Nt ∈ A ∪ B).
Assume that the distances and hop counts from Ni to other anchors can be represented by the vectors
yi and xi, respectively. Our aim is to learn a function f : X 7→ Y from m training data {(xi, yi)}m

i=1,
where xi ∈ X and yi ∈ Y. The input space X (hops), is known as the dependent variable, and the output
space Y (distances) is the independent variable. The function f is represented by a linear model

f (x) = wTx, (4)

where w is a m × 1 vector that contains the coefficients of the linear function. Usually, linear least
squares (LLS) is used to determine w. It uses the vertical distance between the observed values yi and
the predictions f (xi), which are known as the residuals ri = yi − f (xi) = yi − wTxi.

In the LLS case, the sum of the squared residuals is minimized, which in matrix form is

S(w) = (y− Xw)T(y− Xw), (5)

with X being the m × m design matrix that combines all of the hop-count vectors, and the m × 1 vector
y combining the distance values:

X =


x1,1 x1,1 · · · x1,m
x2,1 x2,2 · · · x2,m

...
...

. . .
...

xm,1 xm,1 · · · xm,m

, y =


y1

y2
...

ym

, (6)
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where each row corresponds to one input/output example. The coefficients could be optimized by
minimizing Equation (5) as follows:

ŵ = argmin
w

(y− Xw)T(y− Xw). (7)

The minimizer of the problem (7) is

ŵ = (XTX)
−1

XTy. (8)

Thus, to make a prediction for a novel input xnew, we only need to know the model and its
parameters w, which can be represented as

ŵ = argmin
w

(y− Xw)T(y− Xw). (9)

3.2. Localization Algorithm

The proposed LSRR-LA contains the following three parts: the measurement part, the training
part, and the localization part.

Part A (Measurement): Assuming that hi = [h1,i, ..., hm,i]T, i = 1, ..., m is the hop-count vector
from anchor Ni ∈ A to the other anchors, we thus can describe the hop-count matrix of all anchors
as H1 = [h1, ..., hm]. Accordingly, the Euclidean distance vector and matrix between anchors can be
represented as di = [d1,i, ..., dm,i]T, i = 1, ..., m and D1 = [d1, ..., dm], respectively. For any sensor node
Nj ∈ B, it has a hop-count vector to all anchors, hj = [h1,j, ..., hm,j]T, j = m + 1, ..., m + n. Consequently,
matrix H2 = [hm+1, ..., hm+n] indicates the hop-count vectors from all of the sensor nodes to all of
the anchors.

On referring to Formula (10), we express the hop-count matrix H (or the distance matrix D) by
splitting it into four parts. We denote by H1 (resp. D1) the m × m matrix for the anchors versus
themselves, H3 (resp. D3) the n × m matrix for the anchors versus sensors, and H4 (resp. D4) the n × n
matrix for the sensors versus themselves. It is easy to know that H2 = H3

T, D2 = D3
T.

H=

[
H1 H2

H3 H4

]
=



h1,1 h1,2 · · · h1,m
h2,1 h2,2 · · · h2,m

...
...

. . .
...

hm,1 hm,2 · · · hm,m

h1,m+1 h1,m+2 · · · h1,m+n
h2,m+1 h2,m+2 · · · h2,m+n

...
...

. . .
...

hm,m+1 hm,m+2 · · · hm,m+n

hm+1,1 hm+1,2 · · · hm+1,m
hm+2,1 hm+2,2 · · · hm+2,m

...
...

. . .
...

hm+n,1 hm+n,2 · · · hm+n,m

hm+1,m+1 hm+1,m+2 · · · hm+1,m+n
hm+2,m+1 hm+2,m+2 · · · hm+2,m+n

...
...

. . .
...

hm+n,m+1 hm+n,m+2 · · · hm+n,m+n


, D=

[
D1 D2

D3 D4

]
(10)

Note that H1, H3, and H4 are known, while D3 and D4 are unknown. The goal is to predict D3 (or
D2) from H and D1.

Part B (Training): Now, we have the input matrix denoted by H1 and the output matrix
represented as D1, and then we can train our linear model proposed in formula (4). However,
as a difference from (4), here the coefficient vector w becomes a matrix W with m × m, and the outputs
are stored in the matrix D1. Thus, the LLS solution becomes

Ŵ = (HT
1 H1)

−1
HT

1 D1. (11)

In Formula (11), the variation range of the distance matrix D1 is different from that of the
hop-count matrix H1. If the raw data is used directly, the calculation results will be affected due
to the different variation range. We can eliminate this impact by preprocessing operations, such as
normalization, making D1 and H1 have the same scale and to be equally emphasized. In this paper,
the normalized matrices of H1 and D1 are represented by H̃1 and D̃1, respectively.
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When calculating the model parameter W, we use the data of anchor nodes. If we include more
anchor nodes, we will fit the training data more accurately, which means that our model is capable
of minimizing the training errors more effectively. However, the minimization of training errors is
not our goal. We hope that the model can accurately estimate the locations of sensor nodes, that is,
the model should have a generalization capability. With many anchors, fitting the full model without
penalization will result in large prediction intervals, and an LLS regression estimator may not uniquely
exist. In order to avoid over-fitting, it is necessary to add a regularization item or a penalty term to the
model [21]. In addition, because the LLS estimates depend upon (HT

1 H)
−1, there can be problems in

computing W if HT
1 H were singular or nearly singular. In this paper, a term kI (k > 0) is added to the

matrix HT
1 H for remedying this problem. The method is also called Tikhonov regularization, which is

the most commonly used method of regularization of ill-posed problems. Then, the estimated W can
be described as

Ŵ =
(

H̃1
TH̃1 + kI

)−1
H̃1

TD̃1. (12)

Here, the matrix I is an identity matrix. With the regularization term, the model can effectively
avoid over-fitting. The k in the formula is called the hyper-parameters, which is used to balance the
training errors and the regularization items [22]. Considering that H̃T

1 H̃1 will be an ill-conditioned
matrix if ‖H̃T

1 H̃1‖ < 0.01, we simply set the value of parameter k to be 0.01 in the later simulation part.
Part C (Localization): Now, the normalized hop-count matrix H̃3 and the coefficient matrix Ŵ

are used to estimate the normalized matrix D̃3,

D̃3 = H̃3Ŵ. (13)

After obtaining the result of Equation (13), we can derive D3 by using a reverse operation of
D̃3, and then the trilateration method or the maximum likelihood method is used to estimate the
coordinates of unknown nodes [23].

The pseudo-code of LSRR-LA is illustrated in Algorithm 1.

Algorithm 1: LSRR-LA

input: H: hop matrix of the anchors and sensors; D1: distance matrix for the anchors versus themselves; k:
hyper-parameters.
output: {x̂j}

m+n
j=m+1: estimated locations of the sensors.

1 Normalize matrix H1 and D1, output H̃1 and D̃1;
2 Calculate the mapping matrix Ŵ by Equation (12);
3 Normalize matrix H3, output H̃3;
4 Calculate matrix D̃3 by Equation (13);
5 Derive D3 by using a reverse operation of D̃3;
6 Estimate coordinates {x̂j}

m+n
j=m+1 by using maximum likelihood method.

With respect to step 6 in Algorithm 1, for specific details the reader can refer to [23].

4. Performance Evaluations

In this section, we will evaluate the performance of our LSRR-LA in a simulative and experimental
way. First, in Section 4.1, we analyze the complexity of those algorithms that include LSRR-LA and
other classical algorithms, such as DV-Hop, Amorphous, PDM, LSVR, and MSVR. Then, in Section 4.2,
we use the performance metric ALE (Average Localization Error) to evaluate these algorithms in
C-shaped, L-shaped, and D-shaped network topologies. Finally, in Section 4.3, the positioning accuracy
of LSRR-LA is verified in an outdoor experiment.



Sensors 2018, 18, 3974 7 of 17

4.1. Complexity Comparison

The complexity mainly includes two aspects, i.e., communication complexity and computation
complexity. The LSRR-LA method is similar to the DV-Hop, Amorphous, MDS-MAP, PDM, and
LSVR methods. Each node needs to calculate the hop counts by flooding to other nodes, so their
communication cost is equal, which is about O(n2m). Here, n denotes the number of sensor nodes
while m indicates the number of anchor nodes. DV-hop and Amorphous use the Least Squares (LS)
method to estimate the locations of sensor nodes, so they require computation complexity of about
O(m3) [24]. MDS-MAP is a centralized localization method, and its location process can be divided
into three steps: constructing the global shortest paths, executing the MDS algorithm, and converting
the relative coordinates to absolute coordinates. Accordingly, the computation complexity is O(n3),
O(n3), and O(m3 + n), respectively. The PDM method uses TSVD to process data in advance, which
has a computation cost of O(m3) [25]; then, it uses the LS method to continue calculating data, so the
PDM method costs more than DV-hop and Amorphous do. LSVR and MSVR use regression methods
based on SVM, which needs to solve a quadratic programming problem [26]; thus, its computational
complexity is O(m2)~O(m3). LSRR-LA uses the Least Square Regularized Regression method, so the
computation cost is O(m3). Furthermore, its computation cost can be reduced to O(m2logm) by using
the method introduced in [27].

4.2. Simulation Results

We conduct simulations in MATLAB (Jinling Institute of Technology, Nanjing, Jiangsu, China,
version R2016b) and compare the performances of our proposed method with those of the previous
methods, including DV-hop, Amorphous, MDS-MAP, PDM, and LSVR. The communication range of
all of the sensor and anchor nodes is identical, and these nodes are deployed in a 1000 m × 1000 m
square region for all simulations. We assume two types of distribution: regular distribution and
random distribution. In each type of distribution, we considered three types of networks: C-shaped,
L-shaped, and D-shaped. The networks used in the following simulations are presented in Table 1.
Specially, we use the symbol ‘*’ to indicate the anchor nodes and ‘o’ to denote sensor nodes.

Table 1. The simulation scenarios.

C-Shaped L-Shaped D-Shaped

Random distribution
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All of the reported results are the average over 100 trials. We used the ALE to evaluate the
performances of all of the compared methods. The definition of ALE can be briefly formulated as

ALE =

N
∑

i=1
LocationErrori

N
(14)
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where N is the number of unknown nodes. The location error of sensor node i can be formulated as:

LocationErrori =
‖x̂i − xi‖

R
× 100%, (15)

where xi and x̂i denote the real and estimated location of node i, respectively. R is the communication
range of nodes and ‖•‖ represents the Euclidean distance.

The assumptions and simulation parameters are listed in Table 2.

Table 2. The simulation parameters.

Parameter Value

Compared methods DV-hop, Amorphous, MDS-MAP, PDM, LSVR
Size 1000 m × 1000 m

Type of distribution regular and random
Type of network C-shaped, L-shaped, and D-shaped

Anchor node ratio (%) 13.7–31.9%
Communication radius (m) 50–300

DV-hop: Distance Vector hop; MDS-MAP: Multidimensional scaling MAP; PDM: Proximity-Distance Map; LSVR:
Localized Support Vector Regression

4.2.1. Regular Deployment

In the case of regular distribution, the sensor nodes and anchors are deployed uniformly along
with the grids within the network. The size of the grid is set to 45 m × 45 m. We consider five levels of
communication range R: 50 m, 100 m, 150 m, 200 m, and 250 m. Table 3 shows us the ALE results of the
C-shaped network with 44 training anchor nodes. For example, the result of DV-hop is 283.8/92.6% in
the case of R = 100 m, which means that the ALE of DV-hop is 283.8 and LSRR-LA improves the ALE
by 92.6%. The ALE value 283.8 is a percentage, and if we turn this value to an absolute form, it will be
283.8 m (i.e., R*ALE/100). By contrast, the ALE value of LSRR-LA is 21.0, which means the absolute
localization error is 21.0 m.

Table 3. Comparison of the average localization error (ALE) under different radio ranges in the regular
distribution network.

R = 50 m/5% R = 100 m/10% R = 150 m/15% R = 200 m/20% R = 250 m/25%

Number of Anchors M = 44/20%

DV-hop 613.1/93.2% 283.8/92.6% 189.9/78.4% 138.6/71.3% 103.9/65.6%
Amorphous 766.8/94.5% 400.4/94.8% 301.1/86.2% 275.7/85.6% 222.8/83.9%
MDS-MAP 651.8/93.6% 341.8/93.9% 231.1/82.2% 176.2/77.4% 143.8/75.1%

PDM 138.3/69.8% 73.5/71.4% 62.6/34.3% 53.4/25.6% 46.2/22.5%
LSVR 142.7/70.7% 76.2/72.4% 61.8/32.5% 49.3/19.4% 41.5/13.7%

LSRR-LA 41.8 21.0 41.9 39.7 35.8

LSRR-LA: Least Square Regularized Regression based multi-hop range-free Localization Algorithm

We can see from the simulation results in Table 3 that, as the communication range becomes
larger, all of the competing methods demonstrate a performance improvement. However, all of the
methods exhibit a substantial performance improvement except the proposed LSRR-LA method,
which keeps a lower ALE as the communication range R increases gradually. It is clear that the
proposed LSRR-LA method outperforms the previous methods, for it is rather stable and not sensitive
to communication range.

We also considered five different anchor populations: 13.7% of the total nodes (M = 30 anchors),
18.3% (M = 40 anchors), 22.8% (M = 50 anchors), 27.4% (M = 60 anchors), and 31.9% (M = 70 anchors).
Table 3 gives the ALE results of the C-shaped topology when the communication radius R = 100 m.
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From the Table 4, it is obvious that the proposed LSRR-LA greatly outperforms the previous
methods for the C-shaped anisotropic network. All of the competing methods demonstrate a
performance improvement as the network gets denser; however, only the proposed LSRR-LA
exhibits a substantial performance improvement while the previous methods do not exhibit
satisfactory improvement.

Table 4. Comparison of the ALE under different numbers of anchors in the regular distribution network.

M = 30/13.7% M = 40/18.3% M = 50/22.8% M = 60/27.4% M = 70/31.9%

Communication Radius R = 100 m

DV-hop 290.1/90.1% 285.2/92.2% 285.9/93.7% 271.4/94.2% 284.4/95.0%
Amorphous 408.1/92.9% 398.1/94.4% 400.4/95.5% 385.0/95.9% 398.4/96.45%
MDS-MAP 339.3/91.5% 329.7/93.2% 328.0/94.5% 331.8/95.2% 326.9/95.7%

PDM 85.6/66.4% 75.3/70.4% 68.1/73.7% 66.4/76.2% 63.5/77.7%
LSVR 78.4/63.3% 75.3/70.4% 77.1/76.8% 75.4/79.0% 78.4/81.9%

LSRR-LA 28.8 22.3 17.9 15.8 14.2

Figure 2 shows a plot of Tables 3 and 4. Figure 2a depicts the ALE results in terms of Table 2,
where the communication radius varies from 50 m to 250 m. All of them generally conform to the
trend that ALE decreases as the communication radius increases. When the communication radius R is
smaller (R = 50 m), the positioning accuracy of DV-Hop, Amophos, and MDS-MAP becomes very poor.
As the R increases, their localization errors begin to decrease. The LSRR-LA method always maintains
the best positioning accuracy, whether R is smaller (R = 50 m) or R is larger (R = 250 m). Figure 2b
shows the ALE results according to Table 4 where the number of anchor nodes increases from 30 to
70. It can be seen that the ALE change ranges of these algorithms are not violent, and the trend of
ALE decreases gradually as the number of anchor nodes increases. As a result, LSRR-LA exhibits the
best performance.
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Figure 2. The ALE results of C-shaped regular networks.

Figure 3 shows an overall summarization of the six competing methods for the three anisotropic
networks when R = 100 m and M = 20%. In contrast, LSRR-LA demonstrates the best positioning
accuracy for the three different networks, and meanwhile keeps a small standard deviation.
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Figure 3. Comparison of ALE when R = 100 m and M = 20%.

Figure 4 illustrates the localization results of the six methods and highlights the localization
error of each node, when the communication radius R = 100 m and anchors M = 20% (under regular
distribution). The blue circles indicate the estimated positions of the nodes and the blue lines describe
the localization errors. The length of these lines is proportional to the localization errors.
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Figure 4. The localization results of the six algorithms in regular distribution networks (R = 100 m,
M = 20%).

In addition, three-dimensional graphics are used to visualize the performance in order to show
the localization results more clearly. In Figure 5, the three-dimensional (3D) localization results of
LSRR-LA are compared with those of the classic DV-Hop method. The results prove that LSRR-LA
outperforms DV-Hop, especially at the edge of these regions.
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Figure 5. Comparison of the 3D Localization results (R = 100 m, M = 20%).

4.2.2. Random Deployment

Sometimes, in the case of random deployment networks, some nodes cannot be connected
to their neighbors due to the fact that the geometric distance between them may be beyond their
communication range. This may cause a localization method to fail to estimate the locations of these
isolated nodes, so we appropriately improve the total number of nodes and the communication radius
to avoid this. Approximately 350 nodes (including anchor nodes and sensor nodes) are randomly
distributed in an area of 1000 m × 1000 m. Table 5 shows the ALE results of the six methods when the
total number of anchor nodes is 70 (20%) and the communication radius R varies from 100 m to 300 m.

Table 5. Comparison of ALE under different radio ranges in the random deployment network.

R = 100 m/10% R = 150 m/15% R = 200 m/20% R = 250 m/25% R = 300 m/30%

Number of Anchors M = 70/20%

DV-hop 266.4/79.9% 156.3/71.6% 112.6/65.4% 87.4/61.3% 71.5/54.8%
Amorphous 516.2/89.6% 306.5/85.5% 215.5/81.9% 164.9/79.5% 125.6/74.3%
MDS-MAP 333.2/83.9% 224.2/80.2% 169.9 /77.1% 143.5/76.4% 117.3/72.5%

PDM 76.5/29.2% 56.8/21.9% 45.4/14.1% 37.9/10.7% 32.7/1.3%
LSVR 110.4/51.5% 71.9/38.3% 53.5/27.2% 42.8/21.0% 36.4/11.2%

LSRR-LA 53.5 44.4 38.9 33.8 32.3

We can see from the simulation results in Table 5 that, in the case of random deployment, our
proposed LSRR-LA method achieves the best positioning accuracy. For example, when the node
communication radius R = 200 m and anchors number M = 20%, the LSRR-LA method presents an
ALE of 38.9, which is much better than the others.

As shown in Table 6, similar to regular deployment, five different anchor populations are also
considered in random deployment. Here, we just show the ALE results of the C-shaped network
when the communication radius R = 150 m and the number of anchors M is 65, 75, 85, 95, and
105, respectively. All of the competing methods demonstrate a performance improvement as the
network becomes denser; however, these methods do not exhibit satisfactory improvements. Taking
the LSRR-LA method for instance, we notice that its ALE is 38.9 with M = 65 while its ALE is only
decreased to 34.8 with M = 105, which proves that anchor populations have just a little impact on
positioning accuracy in random deployment networks, since it is not the same in the case of regular
deployment networks (refer to Table 4).



Sensors 2018, 18, 3974 12 of 17

Table 6. Comparison of ALE under different numbers of anchors in the random deployment network.

M = 65/18.6% M = 75/21.4% M = 85/24.3% M = 95/27.1% M = 105/30.0%

Communication Radius R = 150

DV-hop 192.2/79.7% 190.6/79.3% 186.4/79.5% 186.9/80.9% 188.2/81.5%
Amorphous 391.7/90.0% 382.4/89.7% 380.4/89.9% 382.0/90.6% 379.9/90.8%
MDS-MAP 225.4/82.7% 226.8/82.6% 230.2/83.4% 228.1/84.3% 230.6/84.9%

PDM 54.8/28.9% 52.1/24.4% 49.9/23.4% 47.8/25.2% 47.5/26.7%
LSVR 51.5/24.3% 49.0/19.7% 47.3/19.0% 46.8/23.7% 46.3/24.8%

LSRR-LA 38.9 39.4 38.3 35.7 34.8

Figure 6 shows us the overall summarization of Tables 5 and 6. Accordingly, Figure 6a depicts the
ALE results of the six algorithms in random deployed networks, when the communication radius varies
from 100 m to 300 m. The positioning accuracy of DV-Hop, Amophos, and MDS-MAP algorithm is
very poor when the communication radius R is small (R = 100 m). Our LSRR-LA always maintains the
highest positioning accuracy regardless of whether R is smaller (R = 100 m) or R is larger (R = 300 m).
Figure 7b shows the ALE results of the six algorithms when the number of anchor nodes is increased
from 65 to 105. We can see that LSRR-LA is still the best in these algorithms.
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Figure 6. The ALE results of C-shaped random networks.
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Similar to Figure 3, Figure 7 also shows an overall summarization of the six competing methods
in random deployment networks, when the communication radius R is 150 m and the anchor node M
is 70. It can be seen from the figure that our LSRR-LA demonstrates the best positioning performance.

Figure 8 gives the localization results of the six algorithms when the communication radius R is
150 m and the number of anchors M is 70. Compared with Figure 4, LSRR-LA presents a rather stable
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performance regardless of whether it is in C-shaped, L-shaped, or D-shaped network; however, it is
not the same in regular deployment networks, for it performs the best in the C-shaped network while
it performs the worst in the D-shaped network.
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Figure 8. The localization results of the six algorithms in random deployment networks.

Similar to Figure 5, we also demonstrate the 3D localization errors in Figure 9 for a better
comparison of positioning accuracy between LSRR-LA and DV-Hop. Our LSRR-LA still outperforms
DV-Hop in the random deployment networks.
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Figure 9. Comparison of 3D Localization results (R = 150 m, M = 70).

4.3. Experimental Results

In this section, we validate the performance of LSRR-LA through a practical experiment. As shown
in Figure 10, a small vacant patch of land is chosen as the experimental field, which is about 25 × 25 m2.
Some bushes, regarded as ‘obstacles’, are growing in the center of this field. A total number of 20 nodes
were used in the experiment, and each node was mounted on a pole with a height of 1.3 m. All of
the nodes are equipped with omnidirectional antennas and IEEE 802.15.4 compatible TI CC2450
transceivers operating in the 2.4 GHz ISM band.
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Figure 10. The real experimental scene.

The distribution of nodes is shown in Figure 11a. We assign a number to each node.
The transmission power is set to 0 dBm; thus, in this environment, each node can communicate
range over a distance of 8 m. The connected graph of the entire network is shown in Figure 11b.
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Figure 11. The network topology.

In the experiments, the anchor ratio is varied from 10% to 30%. The localization performance is
compared using box plots in Figure 12. On each box, the central mark indicates the median while the
bottom and top marks represent the minimum and maximum values, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively.
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Figure 12. Comparison of the ALE under various anchor populations.

Figure 12a–c show the localization results in which the anchor ratio is 10%, 20%, and 30%,
respectively. The boxes represent the results of DV-hop, Amorphous, MDS-MAP, PDM, LSVR, and
LSRR-LA, in that order.

From the figures, it is evident that the positioning accuracy depends proportionally on the number
of anchor nodes for the compared localization algorithms DV-hop, Amorphous, MDS-MAP, PDM,
LSVR, and LSRR-LA. It also proves that our proposed method has much better performance than the
compared methods.

We also use the error cumulative distribution function (CDF) to represent the performance of our
proposed algorithm, as shown in Figure 13. If anchor ratio is 10%, we can see from Figure 13a that the
CDF is 63.8%, 85.5%, and 98.3% when the location error is 0.5 m, 0.8 m, and 1.5 m, respectively. If the
anchor ratio is up to 30%, we can see from Figure 13b that the CDF is 67.1%, 92.8%, and 100.0% when
the location error is 0.5 m, 0.8 m, and 1.5 m, respectively. As a comparison, the LSRR-LA performs best
due to its advantage of the regression model.
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5. Conclusions

In this paper, aiming at improving the positioning accuracy in anisotropic networks, we propose
a localization method based on Least Square Regularized Regression, i.e., LSRR-LA, which considers
the localization problem as a regression problem and constructs a mapping model between hop counts
and Euclidean distance. By using this mapping model, we can estimate the locations of unknown
nodes more accurately and more effectively. Compared with the localization methods DV-hop,
Amorphous, MDS-MAP, PDM, and LSVR, our LSRR-LA outperforms them obviously, especially
in anisotropic networks.
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