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Abstract: Bad data as a result of measurement errors in secondary substation (SS) monitoring
equipment is difficult to detect and negatively affects power system state estimation performance
by both increasing the computational burden and jeopardizing the state estimation accuracy. In this
paper a short-term load forecasting (STLF) hybrid strategy based on singular spectrum analysis
(SSA) in combination with artificial neural networks (ANN), is presented. This STLF approach is
aimed at detecting, identifying and eliminating and/or correcting such bad data before it is provided
to the state estimator. This approach is developed to improve the accuracy of the load forecasts
and it is tested against real power load data provided by electricity suppliers. Depending on the
week considered, mean absolute percentage error (MAPE) values which range from 1.6% to 3.4%
are achieved for STLF. Different systematic errors, such as gain and offset error levels and outliers,
are successfully detected with a hit rate of 98%, and the corresponding measurements are corrected
before they are sent to the control center for state estimation purposes.

Keywords: measurement errors; singular spectrum analysis (SSA); artificial neural networks (ANN);
bad data (BD) detection

1. Introduction

Power system state estimation (PSSE) has become an essential tool of energy and distribution
management systems (EMS, DMS) aimed at controlling and planning of electric power grids [1,2].
With the advent of renewable energy along with the penetration of distributed energy resources (DERs),
state estimation is assuming an expanded and prominent role. Determining factors, such as reliability
and security, which have an influence upon service continuity, and economics, in terms of operating
costs in power grids, greatly depend on the accuracy of the system state estimation, which in turn
relies on the availability of reliable measurement data taken throughout the power system.

The power system state estimation is implemented by the control center (CC) which receives
the measurement sets obtained from all the substations located throughout the network. These
measurements range from bus voltages to bus real and reactive power injections, and branch reactive
power flows in the power grid. Each substation is equipped with electronic instrumental transducers
(EITs) which collect the analogue signals, process them and send the data to the CC.

The control center assumes, therefore, a crucial role in checking that the system satisfies the
operational goals and ensures the power system reliability and security through the analysis of meter
measurement data and power system models. However, the measurement data is not always accurate,
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on account of electromagnetic interferences, defective meters, noise in instruments and communications
channels, errors in modeling pseudo measurements and false data injection attacks [1,3]. Such inaccurate
measurements are commonly referred to as “bad data” (BD).

Many contributions to state estimation (SE) algorithms have been made in the past few
decades [2,4–8]. Among them, weighted least squares (WLS) or least absolute value (LAV) estimators
are commonly used in SE [4,5,8] Furthermore, the availability of historical databases allows the
extraction of information necessary to produce measurement forecasts, which can be integrated
into the SE process. This scheme is known as forecasting-aided state estimation (FASE) [6,9].
These methods are, however, significantly affected by bad measurements resulting in poor state
estimates [2,6]. Consequently, a pre-estimation BD detection in measurements is an important part of
the SE problem. Unfortunately, not all BD can be detected and eliminated by a pre-estimation process.
Therefore, virtually all WLS-based estimators systematically implement post-estimation detection and
identification methods with more advanced features [4].

In general, SE methods along with BD detection suffer from a main drawback, which questions
the feasibility of their implementation in a real-time framework: the computational complexity, which
is approximately proportional to the number of measurements used by the state estimator in the
presence of BD. For instance, the computation of the residual covariance matrix in WLS algorithms,
which requires the calculation of a subset of the elements in the inverse of the sparse gain matrix,
is computationally intensive [8]. Furthermore, the processes of SE and BD detection need multiple
state estimations, i.e., it is an iterative process, which further increases the computational time since a
re-estimation of the system is needed after every BD elimination.

To overcome this drawback, the amount of BD provided to the state estimator should be reduced
by implementing a BD pre-filtering stage at a decentralized level in the substations. The proposed
approach has all the advantages of decentralized methods: (1) scalability which is increased by
reducing the communication overhead; (2) robustness to changes in the network configuration; (3)
and computation and bandwidth overhead reduction at the control center level. More importantly,
this decentralized approach eases the computational burden in the control center. Whereas BD
post-estimation has received a lot of attention in literature in the past few years, BD pre-filtering
lacks systematic procedures or new techniques at a decentralized level. The approach presented in
this paper takes advantage of the computational resources, which are being installed in Secondary
Substations in order to extend the real-time monitoring to Low Voltage (LV) grids. This is one of the
main contributions of this paper.

This paper presents a strategy to filter the quantity of BD provided to the SE algorithms thereby
significantly reducing the number of iterations required for the SE and BD detection and elimination.
In particular, the strategy developed is aimed at detecting and identifying permanent meter failure,
namely offset and gain errors, and meter malfunction in the measurement equipment (EITs), installed
in secondary substations. The technique is based on short-term load forecasting (STLF), which in turn
relies on a hybrid singular spectrum analysis—artificial neural network (SSA-ANN) approach for
improved forecasting accuracy. Generally, in secondary substations, STLF has not been commonly
used as an effective tool for error detection. It should be noted that at SS level, erroneous data is
prevalent (up to 25% inaccurate measurements) which seriously jeopardizes the SE accuracy and
forecasting [10].

In the literature, there are many examples of using hybrid approaches based on SSA for forecasting
in many different fields. In [11] SSA is used for eliminating the noisy component of the time series
and a local linear neuro-fuzzy model (LLNF) to forecast several well-known time series with different
structures and characteristics. An integrated model based on ANN and SSA is presented in [12]
and is applied to forecast short-term wind speed. Recently, this model has also been used in [13,14]
for precipitation forecasting. In [15] authors study the importance of hybrid models for forecasting
of hydrological data. The hybrid SSA-ANN model used in this paper differs from previous works
in several ways: firstly, the grouping stage is automatized; secondly, it considers the residual as an
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important piece of information for the forecasting process; finally forecasting results are used for
BD detection.

The remainder of this paper is organized as follows. In Section 2 a global description of the
system and the strategies developed for the BD detection are described. Section 3 analyzes the STLF
framework, and the results achieved are shown in Section 4. Finally, some conclusions are drawn in
Section 5.

2. System Description

Secondary substations (SSs) are being provided with more intelligence in order to get a more
accurate and realistic view on LV grids and to filter and analyze data before it is sent to the control
center [16]. Consequently, SSs can play an important role in this decentralized architecture, allowing
the data flow to be optimized, thereby reducing the data that reaches the control center for analysis
and decision-making.

With this in mind, Figure 1 shows a general view of the system presented in this paper and a
flowchart of the algorithm implemented based on an iterative process. The main software components
are represented in the substation processing unit. The data management module collects substation
measurement data and stores it in the real time data base (RT DB). This data management module
is, therefore, connected to the LV side by current transformers (CTs) and voltage transformers (VTs),
which measure currents and voltages respectively. Furthermore, measurement units provide active
and reactive power every ten minutes. For the case study, hourly average active power is considered.
All the measurements are stored in the local data base, although they can be read and stored remotely
in the control center database.

The bad data detection module implements the hybrid SSA-ANN-based algorithm for the
detection, identification, and correction of the BD. This algorithm is depicted in the flowchart in
Figure 1. By using the proposed algorithm, BD is both detected and identified in the following step
(bad data processing). Gain and offset errors in the measurement equipment are detected, quantified
and used to correct, if possible, the erroneous measurements before they are sent to the control center.
In the event of erroneous measurements, which do not fall into the patterns for the gain and the offset
errors, forecast measurements are sent instead.

Figure 1. General view of the system implemented in the SS.
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3. Short Term Load Forecasting Framework

In this section, the hybrid approach for STLF based on singular spectrum analysis (SSA) and
artificial neural networks (ANN) is explained. In Figure 2 a block diagram of the prediction is shown in
outline. The algorithm proposed in this paper consists of three different steps: (1) data preprocessing
based on a SSA decomposition and a grouping stage to obtain the independent components of the time
series (Model 1), namely trend, periodicities and residual. These components are then individually
forecasted before the reconstruction step. By using SSA the forecasting process is boosted, since the
extracted components show less complexity than the original time series, thereby facilitating the ANN
learning process; (2) ANN-based STLF step in which the whole time series is predicted based on ANNs
(Model 2); and (3) finally, by using mean absolute percentage error (MAPE), the weighted arithmetic
mean of both forecasting datasets is calculated.

Figure 2. Hybrid forecasting framework.

From a practical point of view, the process of forecasting works as follows. The input data
stream (Figure 2) is provided by the data acquisition module (Figure 1) and the database on which
the historical data is stored. This dataset is simultaneously fed to the SSA-ANN-based forecasting
model (Model 1) and ANN-based forecasting model (Model 2). Regarding Model 1, by using SSA
the dataset is decomposed in several additive components in the shape of groups of eigentriples
which are individually forecasted. Then a 24-h prediction of the load is obtained through a SSA-based
reconstruction stage. As far as Model 2 is concerned, the 24-h forecast is carried out by using an
ANN-based strategy. Finally, the accuracy of both forecasts is assessed by using MAPE and their
weighted mean constitutes the final prediction. It is, therefore, a combined strategy which chooses
the more accurate prediction of the two models mentioned before, by giving more priority to that
prediction with less MAPE. The weights are updated on a daily basis so as to compensate for any
time-dependent variation.

In principle, ANNs should be able to approximate and generalize any nonlinear function to any
degree of accuracy. The load dataset is a time series which displays trend and different levels of
seasonality (daily, weekly and annual), which makes it nonstationary. The nonstationary aspect of
many time series is a significant factor which hinders the ANN prediction performance. Therefore,
it seems reasonable to remove from the load series the somewhat deterministic information, enhancing
the ANN learning ability for modelling the important features. However, in STLF, seasonal patterns
can interact with exogenous variables, mainly meteorological variables, and clearly influence the load.
Therefore, short-term load forecasting strategies should take seasonal patterns into consideration
to capture this correlation, with the exception of the annual seasonality, since STLF timeframes are
substantially shorter in length than the annual cycle.

As far as the trend is concerned, ANN-based forecasting of trend time series is not straightforward
on account of the bounded feature of the activation function used for the neurons of the hidden
layer. This fact can have undesired effects on the dataset normalization i.e., values that are out of the
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range used for normalization. It is important to note that in STLF a trend is a valuable indicator of a
systematic drift in the data caused by, for instance, a sensor drift. Hence, removing the trends from
the data may be detrimental, since trends are useful in detecting systematic errors in measurements.
In order to deal with this issue, expected values of trend caused by systematic errors are considered
when normalizing. In this work the inputs to the ANN have been normalized to [−1,1].

3.1. Introduction to Singular Spectrum Analysis

Basic SSA decomposes a time series YT = (y1, . . . , yT) of length T into several components and
reconstructs the series by eliminating the noise, i.e., the high frequency components of the noisy power
load, provided that the signal can be separated from the noise. SSA consists of two main stages namely,
decomposition and reconstruction, which, in turn, include two separate steps. The first step in the SSA
decomposition is called embedding and consists in defining the trajectory matrix, X = [X1, . . . , XK]

where Xi =
(
yi, . . . , yi+L−1

)
, the number of columns K = T− L + 1 and the window length L ≤ T/2.

The trajectory matrix X is based on L lagged copies of the time series and can be written as follows:

X = [X1, . . . , XK] =


y1 y2 · · · yK

...
. . .

...
yL yL+1 · · · yT

 (1)

The value of the window length L depends upon the time series features. For instance, when the
time series includes an integer-period component, L should be defined proportional to that period.
The aim is to select a window length that produces separable and independent components to capture
the trend and oscillations in the time series. Hence it is important that each L lagged copy of the
time series incorporates an essential part of the behavior of the initial series [17,18]. The second step
consists in computing the matrix S = X · XT and determining the eigenvalues λi being i = 1, . . . , L
taken in the decreasing order of magnitude (λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0) where d = max{i : λi > 0}
and the corresponding eigenvectors Ui = (U1, U2, . . . , Ud) of the matrix S by applying singular
value decomposition (SVD). The trajectory matrix X can then be expressed as the sum of d rank one
elementary matrices X = X1 + . . . + Xd where d is the number of non-zero eigenvalues of the matrix
S as stated above. The elementary matrices can be expressed by the triples:

Xi =
√

λiUiVT
i (2)

where Vi =
(

XT· Ui

)
/
√
λi, (i = 1, . . . , d) are the factor vectors, λi are the eigenvalues,

√
λi are the

singular values of X and the set
{√

λi
}

is called the spectrum of X. The collection (
√
λi, Ui, Vi) is called

ith eigentriple of the matrix X. Therefore, X can be expressed as follows:

X = X1 + X2 + . . . + Xd =
√

λ1U1VT
1 +

√
λ2U2VT

2 + . . . +
√

λdUdVT
d (3)

The plot of the singular values in decreasing order is called the singular spectrum and can be
used to calculate the index r(r < d). Index r indicates the number of components corresponding to
the largest eigenvalues of X that allows the signal from noise to be separated. In the simplest way,
the grouping step consists in approximating X by the sum of the first r elementary matrices, and it can
be expressed as:

X ≈ X1 + X2 + · · ·+ Xr (4)

Finally, the fourth step deals with the reconstruction of the one-dimensional series. By taking
the average of the diagonals of each elementary matrix, elementary time series, which represent the
different components of the behavior of the original time series, can be obtained.

The work presented in this paper introduces some improvements in order to automatize the
grouping step of the algorithm so it can be used independently of the data being considered. To achieve
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this purpose, the grouping phase, based on some quality features, automatically selects those eigentriples
that represent the trend and oscillations in the signal. Firstly, an initial window length L suitable for
extracting the trend and most periodicities is selected. A value of L = 24× 7× 4 (four weeks window
length) works well as the main frequencies are dividers of this value or are close to it. In the second
step, the number of eigentriples to represent has to be determined. The importance of each eigentriple
is directly proportional to the amplitude of its eigenvalue, so it is possible from the singular spectrum
(Figure 3) to select those eigentriples that contain the most information in the signal, i.e., the most variance
explained. The remaining eigentriples constitute the residual, which still contains signal information as
strong separability is not always possible. The absence of strong separability is not a problem since a
well-trained ANN can extract the signal pattern from the noise in the residual.

Figure 3. Singular spectrum.

The eigentriples that carry the most variance explained are then grouped in the third phase of the
SSA process. To do so, the weighted correlation of the eigentriples (Figure 4a) is used to cluster them
when a percentage of correlation is accomplished. After several simulations, a minimum correlation of
0.6 has been selected to group the eigentriples (Figure 4b).

Figure 4. Correlation matrix. (a) Eigentriples selected. (b) Groups selected.

3.2. SSA-ANN-Based Load Forecasting Strategy

Both forecasting models (Model 1 and Model 2 in Figure 2) are based on neural networks on
account of their approximation ability for non-linear mapping and generalization. Depending on the
model considered, the process of forecasting s individually applied to each group of eigentriples from
the SSA decomposition step and the residual (Model 1), or to the whole time series (Model 2).

In this paper the ANN topology is based on a nonlinear autoregressive with exogenous
inputs (NARX) model where the load is explained by the historical values of the load i.e., lagged
observations, the temperature and the day of the week and month, which are crucial for the ANN
to keep track of the seasonal components and weather fluctuations [19]. The ANN has three layers:
(1) an input layer, whose inputs depend on the data to be forecast; (2) a hidden layer with a number
of neurons, which depends on the complexity of the function to be learned and the training set used;
and (3) a 24-neuron output layer since a static approach is implemented, which forecasts the 24-h load
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simultaneously. The transfer functions for the neurons of the hidden and output layers are log-sigmoid
and linear respectively.

Regarding the input layer, the input data depends on the model. Whereas in Model 1, the input data
set consists of different samples from the corresponding group of eigentriples, in Model 2, the input
data set is based on the whole time series. In both cases the data structure consists of: (1) hourly
load of the previous day; (2) hourly load of the previous week same day; (3) hourly load taken the
same day, two weeks before the day to be forecasted; (4) hourly dry-bulb temperature of the same
day; and (5) the weekday and the month, expressed by cosine functions. As for the hidden layer, in
Model 1, all the ANNs used for forecasting the groups of eigentriples have 8 neurons in the hidden
layer, which provide the best prediction results. As far as the residual is concerned, a 20-neuron hidden
layer offers the best performance as they are more difficult to predict. In model 2, 20. neurons are used
as well.

3.3. Bad Data Processing. Error Correction/Elimination

The next step in the algorithm presented in this paper consists in processing the BD due to offset
and gain errors and measurements which are very large or very small. Offset and gain errors can
be identified and corrected and/or eliminated before they are sent to the control center. However,
complete elimination of these errors requires properly calibrated and maintained measuring equipment.
Measurements which are very large or very small are commonly known as outliers, which must be
removed from the data base and replaced by the forecast data in order to avoid missing data. An outlier
detection method based on principal component analysis (PCA) has been used in this work [20,21].

Offset and gain errors (Figure 5a,b) can be easily detected and identified due to their systematic
effects in the measurement data. It is important to characterize both errors so that the remaining
sources of deviation of the measured data from the forecasting load can be attributed to random effects.
Offset errors are additive and can be represented by a positive or negative term in the measured data.

Figure 5a shows the load measured deviation due to the offset error, which is compared against
the full scale. Gain errors, on the other hand, are multiplicative and affect all the measurements
proportionally. Figure 5b shows a comparison between the measured, the forecast and the ideal load,
over a period of seven days for an offset error Figure 5a and a gain error Figure 5b of −8%.

Figure 5. Errors to be detected. (a) Offset error. (b) Gain error.

The worst-case scenario is that both errors can occur together and with different signs. Considering
that gain and offset errors are uncorrelated, they can be described as follows:

mlp(t) =
(

ilp(t)·α
)
+ β (5)

where mlp represents the measured load profile, ilp. is the ideal measurement load profile, i.e., when
no errors occur, and α and β represent the gain and offset errors, respectively.
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By using the strategy presented previously, the forecast load profile flp(t) can be determined.
Since the process of forecasting introduces a random error ef(t), Equation (5) can be rewritten as:

mlp(t) =
(

flp(t) + ef(t)·α
)
+ β = flp(t)·α+ ef(t)·α+ β (6)

Needless to say, the better the load prediction, the smaller the error introduced. However,
this error can be negligible as it is a random error with mean 0. Therefore, by using different averaging
processes, Equation (6) can be reformulated as:

mlp(t) = flp(t)·α+ β (7)

Differentiating both terms in Equation (7) leads to:

∆mlp(t)
∆t

=
∆
(

flp(t)·α+ β
)

∆t
=

∆flp(t)
∆t

·α (8)

then, the following equation can be obtained by solving for α:

α =
∆mlp(t)/∆t

∆flp(t)/∆t
=

∆mlp(t)

∆flp(t)
(9)

Finally, substituting the gain error into Equation (7), and solving for β leads to:

β = mlp(t)− flp(t)·α (10)

The proposed system is able to estimate the value of gain and offset errors independently.
Erroneous measurements can be corrected if they follow the offset and gain pattern, i.e., if the deviation
between the mlp and flp can be expressed in terms of α and/or β and, therefore, a correction can be
applied to compensate for the effect. Outliers, on the other hand, are replaced by forecasted values.
The same applies for missing data.

3.4. Load Forecasting Accuracy Assessment: Weight Calculation

The performance of the different forecasting strategies is shown in Figure 6, which includes for
two days: (1) real measurements; (2) forecasted results for both models; and (3) final results when the
weighted average is applied. From the results yielded by both SSA-ANN (Model 1) and ANN (Model 2)
approaches, some conclusions can be drawn. Firstly, the most significant deviations of the forecasting
values from the real measurements occur at the turning points of the forecast load curve. Secondly, in some
cases Model 1 offers a good prediction (last 24 h of Figure 6) whereas in others, Model 2 works better
(first 24 h of Figure 6). Consequently, a combination of both models can offer a good global prediction.

Figure 6. Forecasted data for two different consecutive days. First 24 h when Model 1 offers a bad
prediction and last 24 h when the opposite occurs.
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The mean absolute percentage error (MAPE) is chosen to assess the forecast accuracy is defined
as follows:

MAPE =
1
T
·

T

∑
t=1

∣∣∣∣Ptm − Ptf
Ptm

∣∣∣∣·100 (%) (11)

where Ptm and Ptf denote the measured and forecast power at instant t, respectively, and T is the length
of the horizon considered in the prediction, i.e., 24 h in this work.

The forecast time series for the power consumption can be written as:

Ptf = wf1·Ptf1 + wf2·Ptf2 (12)

where Ptf1 and Ptf2 denote the forecast consumption for the Model 1 and Model 2 respectively and wf1
and wf2 are the corresponding weights that define the relative influence of the forecast power in the
final prediction.

The weights are calculated by means of the individual MAPEs, as follows:

wf1 =
MAPE2

MAPE1 + MAPE2
wf2 =

MAPE1

MAPE2 + MAPE1
(13)

where MAPE1 and MAPE2 represent the forecasting error for the Model 1 and Model 2, respectively.
Mean errors may differ as a function of the day of the week, especially between working days

and weekends. With the aim of averaging out these differences and updating the weights on a daily
basis, the average MAPE for T forecast values and N days is considered, which can be formulated as:

MAPEj =
1
N
·

N

∑
n=1

(
1
T
·

T

∑
t=1

∣∣∣∣∣Ptmj − Ptfj

Ptmj

∣∣∣∣∣·100

)
(%) (14)

for j = [1, 2], T = 24 and N = 7.
In Figure 7a weekly MAPE is shown for every model. It can be observed that sometimes the first

model shows better performance than the second and vice versa. However, the weighted average
prediction always shows the best performance. As a result, the weighted average prediction will be
used to detect gain and offset errors. In order to demonstrate the difference in forecasting accuracy
between both models, the weekly Wilcoxon signed-rank test is carried out and its results are shown in
Figure 7b. The Wilcoxon signed-rank test [22] is used to compare the significant differences in terms
of central tendency between two equal-length data sets: the errors of the forecast strategies being
compared. The statistic W of the Wilcoxon signed-rank test is shown as Equation (15):

W = min
{

r+, r−
}

(15)

where r+ represents the sum of ranks in which the first model is larger than the second one and
r− represents the sum of ranks when the opposite occurs. If W meets the criterion of the Wilcoxon
distribution under N degrees of freedom, then, the null hypothesis of equal performance of these
two compared models cannot be accepted [23,24].

Figure 7b shows the values of r+ and r− for both models, and the value of W. If the value of
W is above the black line depicted in the figure, the test indicates that the null hypothesis under
α = 0.05 should be accepted, showing that both models are similar enough. As can be seen from
the figure, the value of W is usually under the black line, this value corresponding indistinctly with
Model 1 and in other cases with Model 2, so it can be assumed that the performance of both models
are complementary and the weighted average prediction provides better results.

In the field of STLF many works have been published and many types of strategies have been used
showing the good performance of the techniques proposed in the papers. In this regard, for comparison
purposes, it is complicated to reproduce the experiments presented in other works because either,
the data set is not available or the explanatory variables are different or simply because the experimental
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setup has not been described in detail. This clearly does not facilitate comparison. Another challenging
issue is the lack of standardized benchmarks: there is no a widely accepted model and dataset for
benchmarking in STLF. Finally, although many papers use MAPE for quality assessment, there is
no uniformity and it can be used for different time scales and horizons. Nevertheless, in the case
study presented in this paper, two benchmark models can be used in order to assess the quality of the
predictions, namely: (i) Seasonal ARIMA model and (ii) SSA-based model. Both models can be used
for benchmarking purposes since they are accurate enough to capture the prominent features of the
predictor variables.

Figure 7. Model 1 and Model 2 comparison. (a) MAPE weekly prediction for both models and weighted
average. (b) Weekly Wilcoxon signed-rank test under α = 0.05.

The MAPE, the normalized root mean square error (NRMSE) and their non-normalized
expressions are used to compare results, and are defined by the following Equations (16)–(19):

MAPE =
1
T
·

T

∑
t=1

∣∣∣∣Ptm − Ptf
Ptm

∣∣∣∣·100 (%) (16)

MAE =
1
T
·

T

∑
t=1
|Ptm − Ptf| (kW) (17)

NRMSE =

√√√√ 1
T
·

T

∑
t=1

(
Ptm − Ptf

Ptm

)2
·100 (%) (18)

RMSE =

√√√√ 1
T
·

T

∑
t=1

(Ptm − Ptf)
2(kW) (19)

where and Ptf denote the measured and forecast power at instant t, respectively, and T is the number
of forecast days, i.e., 200 days in this work, considering a 24-h horizon.

The error indicators are shown in Table 1. It can be seen that the weighted average model gives
the best performance.

Table 1. Error indicators for all prediction models used in this work.

Model MAPE (%) MAE (kW) NRMSE (%) RMSE
(kW)

Weighted average 2.3341 34.5086 3.0682 46.2174
Model 1 (SSA-ANN) 3.1879 46.5177 4.0850 60.3397

Model 2 (ANN) 3.0596 46.1990 4.0892 63.5167
SARIMA prediction 3.3283. 48.1560 4.1985 60.6915

SSA prediction 5.9462 83.9145 7.7610 107.4200
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4. Experimental Results: Error Detection.

The system described in this paper has been tested against real data sets obtained from different
SSs located in the Community of Madrid. This data contains hourly recorded information from several
SSs in the period ranging from 1 June 2013 to 31 December 2016.

The data set is split into three groups: (1) the training subset (70%), which is used to train the ANNs;
(2) the validation subset (15%) used to ensure that the ANN is generalizing and to prevent overfitting;
and (3) the test subset employed for a completely independent test of network generalization. Different
values of offset and gain are inserted in the data set and are successfully detected.

Regarding gain and offset error detection, an approach to error analysis, similar to that introduced
in [25], has been implemented. The equipment involved in the data acquisition, mainly current
transformers and measurement equipment, introduces an inherent measurement error, the value of
which has been quantified. The transformers account for an error not higher than ±1% [26,27] and
the measurement equipment can introduce an error that ranges from ±0.5% to ±1% depending on
the manufacturer [28]. Therefore, under normal operating conditions, an average value ±2% can be
considered a conservative estimate for the maximum inherent error introduced by the measurement
equipment. With this in mind and to avoid detection of false gain and offset errors, a minimum
threshold of ±4% has been considered.

In order to obtain an average error value, the measured error estimation is filtered by using a
recursive least square algorithm (RLS). A prediction time (Tp), which, in this context corresponds with
the period of time considered to estimate the current gain and offset errors, must be defined. Needless
to say, the longer the prediction time, the more precise the estimate. However, a Tp which is too long
can undermine the algorithm’s effectiveness, since an early error detection is to be desired. A Tp of
7 days has therefore been defined considering that in measurement equipment, gain and offset errors
evolve slowly in time.

In order to verify the accuracy of the detection of the normalized error, defined as the combination
of the offset and gain errors, Equation (20) is used:

εnorm =

√
(εα − α)2 + (εβ − β)2

εα2 + εβ2 (20)

where α and β represent the detected errors and εα and εβ are the injected errors for the gain and
offset, respectively. Likewise, Equation (21) defines a threshold above which an alarm warning
is generated. Taking into account the previously mentioned inherent error introduced by the
measurement equipment, the threshold is set to 4%:

δ =

√
α2 + β2 (21)

By using Equation (21) and setting different values for εα and εβ, ranging from±1% to±5%, several

scenarios are considered (Table 2): (1) when both
√

εα2 + εβ2 and δ are greater than 4%, this is regarded
as a true positive (TP), which means that the combined error has been successfully detected, otherwise,

i.e., when δ ≤ 4%, it is a false negative (FN); and (2) when both
√

εα2 + εβ2 and δ are less than or equal
to 4%, this is regarded as a true negative (TN), otherwise, i.e., when δ > 4%, it is a false positive (FP).

Table 2. Scenarios for the error detection.

δ>4% δ≤4%√
εα2 + εβ2 > 4% TP FN√
εα2 + εβ2 ≤ 4% FP TN
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Table 3 depicts several values of εnorm, which have been calculated for a random week. Figure 8,
on the other hand, shows a more general case in which all the weeks for the error detection are
considered. In this figure the envelope represents the worst-case scenario, i.e., the worst week regarding
the detection errors for the offset and gain. It can be noticed from Figure 8, that the normalized
error follows a zero-centered bi-dimensional normal distribution. Figure 9 shows, represented as a
percentage, the false positives (FP) and false negatives (FN) for each week, taking into account the
criterion explained in Table 2 and the values used in Table 3.

It can be concluded, therefore, that the algorithm accuracy does not greatly depend upon the
existing offset and gain. However, this accuracy does depend upon the performance of the load
forecasting algorithm.

Figure 8. Normalized detected error (εnorm) as a function of the injected error for the weeks under study.

Table 3. Normalized error (εnorm) as a function of the injected error for a random week.

εnorm
εβ

−5% −4% −3% −2% −1% 0% 1% 2% 3% 4% 5%

εα

−5% 0.071 0.078 0.086 0.111 0.112 0.120 0.138 0.152 0.178 0.162 0.147
−4% 0.094 0.106 0.120 0.134 0.146 0.150 0.171 0.205 0.207 0.186 0.164
−3% 0.103 0.120 0.141 0.167 0.190 0.201 0.223 0.258 0.247 0.210 0.180
−2% 0.112 0.135 0.167 0.212 0.269 0.301 0.316 0.328 0.291 0.256 0.213
−1% 0.118 0.146 0.190 0.269 0.423 0.602 0.499 0.415 0.362 0.278 0.225
0% 0.120 0.150 0.201 0.301 0.602 ∞ 0.713 0.464 0.382 0.286 0.229
1% 0.118 0.146 0.190 0.269 0.423 0.702 0.574 0.415 0.362 0.281 0.227
2% 0.130 0.157 0.195 0.248 0.314 0.353 0.363 0.363 0.318 0.280 0.233
3% 0.120 0.140 0.165 0.195 0.222 0.235 0.257 0.284 0.273 0.251 0.215
4% 0.110 0.125 0.141. 0.158. 0.171. 0.177 0.197. 0.232 0.251 0.222 0.196
5% 0.100 0.110 0.121 0.131 0.138 0.141 0.159 0.193 0.215 0.198 0.179

Figure 9. False alarms as a function of the week.
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5. Conclusions

Power system state estimation is a crucial functionality which ensures reliability and security
of power grid operation. Measurements provided by secondary substations are important since LV
networks are no longer passive on account of the growing presence of DG connected to the LV grid.

However, bad data in the shape of incorrect measurements and/or outliers can have a significant
impact on the state estimation. Early detection of bad data in monitoring devices in secondary
substations, i.e., at a decentralized level, is, therefore of enormous importance. This paper has
proposed a novel approach to detect bad data in the electronic instrumental transducers (EITs) with the
aim of enhancing PSSE. The strength of the contribution made in this work lies in using a highly
accurate STLF strategy based on SSA and ANNs.

Finally, the strategy can be extended to other exogenous variables provided that there is data
available, such as electricity price, consumer types and other weather factors, e.g cloud cover. Further
research could also be done on applying this strategy to solar power forecasting with different
forecasting granularity.
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