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Abstract: Many current and future applications of underwater robotics require real-time sensing
and interpretation of the environment. As the vast majority of robots are equipped with cameras,
computer vision is playing an increasingly important role it this field. This paper presents the
implementation and experimental results of underwater StereoFusion, an algorithm for real-time 3D
dense reconstruction and camera tracking. Unlike KinectFusion on which it is based, StereoFusion
relies on a stereo camera as its main sensor. The algorithm uses the depth map obtained from the
stereo camera to incrementally build a volumetric 3D model of the environment, while simultaneously
using the model for camera tracking. It has been successfully tested both in a lake and in the ocean,
using two different state-of-the-art underwater Remotely Operated Vehicles (ROVs). Ongoing work
focuses on applying the same algorithm to acoustic sensors, and on the implementation of a vision
based monocular system with the same capabilities.

Keywords: stereo; underwater; ROV; GPU; real-time; 3D; fusion; camera; tracking; vision

1. Introduction

Applications of computer vision are rapidly growing across a wide spectrum of underwater
operations. Vision systems are increasingly being used as the primary tool for inspection of underwater
sites, in disciplines ranging from archaeology [1] and biology [2], to offshore engineering [3] and
pipeline inspection [4]. This has been facilitated by the increasing industry adoption of remotely
operated vehicles (ROV) and autonomous underwater vehicles (AUV) [5–7], which opens the door
to many new applications for machine vision. A common task is robot navigation, for which
underwater is challenging for many reasons, such as the lack of radio communications, including
global navigation satellite systems (GNSS), and limited sensing technology compared to land or
airborne vehicles. For this purpose, camera and acoustic sensor systems can be used to implement
simultaneous localisation and mapping (SLAM) algorithms to complement inertial navigation systems
(INS), which inevitably suffer from drift. If such algorithms prove sufficiently robust, vision systems
may obviate the need for inertial navigation systems and replace them with image-based target
referenced navigation [8].

An even more demanding task is robotic intervention, where work class ROVs equipped with
underwater manipulators have traditionally been teleoperated from support vessels by human
operators. Significant effort is currently being put towards the automation of such operations
using computer vision [9–12]. In order for an intervention task to be carried out autonomously,
it is necessary to know the structure of the scene around the target and the position of the robot relative
to it. This makes it possible to then implement higher level features such as path planning, obstacle
avoidance, and target identification. Additionally, even in the case of manual operations, providing an
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augmented feedback could increase the ROV pilot’s efficiency multiple times compared to a standard
2D camera stream, which is what is currently being used for teleoperation of manipulators. Due to
offshore operations being particularly expensive, time consuming, and limited by other factors such as
weather, making them more efficient is of great value [13].

The described scenarios would significantly benefit from, or even require, models of the
underwater operating environment generated in real time [14]. Another common example is survey
data which is usually post-processed, and is acquired without real-time feedback about its quality.
This leads to situations where defects in the data, such as areas of interest not being fully covered,
are discovered only after the survey.

This paper presents an underwater StereoFusion algorithm based on KinectFusion [15,16] as
a reliable solution to the described requirements, capable of real-time dense 3D reconstruction
and localisation using an underwater stereo camera. The main contributions of this work are the
implementation of StereFusion, its application on both a custom-built and a commercial ROV, and its
testing in fresh water and in the ocean, under very different visibility conditions.

Section 2 provides a brief background of previous work relevant to the development of
the described system. Section 3 describes the algorithm itself, while hardware and software
implementation details are described in Section 4. Section 5 presents the results from two separate
underwater trials, the first one in a fresh water lake and the second one offshore, in the Atlantic ocean.
The paper concludes with a summary and discussion of ongoing work in Section 6.

2. Background

Reconstruction of 3D geometry using multiple camera images is a well established area of
research [17], popular for a variety of applications. Dense real-time 3D reconstruction is becoming
feasible only recently, with the advent of widely available massively parallel commodity general
purpose computing on graphics processing units (GPGPU). Notable steps towards real-time 3D
reconstruction come from Simultaneous Localisation and Mapping (SLAM) techniques [18], such as
MonoSLAM [19] for single camera visual SLAM using sparse features, and the real-time visual
odometry system from [20]. Vision-based SLAM has been successfully used underwater, both using
monocular [21] and stereo cameras [22].

A different approach from the filter based SLAM systems that preceded it was presented in [23],
where the authors separated the camera tracking given a known map from the map update. Following
the work of [24], which applied easily parallelisable convex optimisation techniques on commodity
GPUs for real-time computer vision applications such as image denoising, Refs. [25,26] presented
real-time dense 3D reconstruction pipelines using the feature-based [23] for tracking. The first system
to use both dense tracking and mapping and capable of real-time processing was presented by [27].

The work presented in this paper is based on KinectFusion [15,16], a very popular real-time surface
reconstruction and camera tracking algorithm designed for RGB + Depth (RGBD) sensors such as the
Microsoft Kinect. Although some attempts have been made to use such sensors underwater [28,29],
they are extremely limited under such conditions. In order to make the system robust and applicable to
existing ROV equipment, this work relies on the application of the KinectFusion algorithm to a stereo
camera setup instead of an active sensor, hence the name StereoFusion, as proposed by [30]. Stereo
vision has been successfully used underwater for mapping and navigation by various authors [31–33].

Alternative methods using acoustic sensors instead of cameras have been explored [34,35].
Most sonars are however not suitable for high precision close range applications due to their low
resolution and relatively high minimum operating range. A hybrid vision-acoustic approach has
been proposed by [36] using a high-end commercial 3D sonar, which aims to provide the robustness
of sonars with the colour information and accuracy of cameras. Such a sonar could be used on its
own in a similar way to a depth camera, except for the absence of colour information. As part of an
ongoing research project, the implementation of this type of system is currently being trialled with
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promising results, but its applications are limited due to the previously mentioned limitations of
currently available sonars.

3. Algorithm

The base algorithm used in this work is an implementation of KinectFusion [15], a real-time 3D
mapping and tracking method developed for use with the Microsoft Kinect and similar RGBD sensors.
Although there has been some research done on using range sensors in water [37,38], the results have
been of very limited practical use due to difficulties in dealing with light refraction and attenuation,
which means that even in good visibility the maximum achievable range is about 20 cm. To overcome
this limitation, the work presented in this paper relies on two synchronised colour cameras producing
a stereoscopic image pair for disparity estimation. Figure 1 shows the overall workflow of the
StereoFusion algorithm.

Figure 1. StereoFusion workflow for iteration k of the algorithm. Here, IL and IR refer to the stereo
pair of RGB images; D and I are the current depth map and RGB image; V and N are the vertex map
and normal map computed from the depth map; V̂ and N̂ are the predicted vertex and normal maps; T
is the camera position; S is the Truncated Signed Distance Functions (TSDF).

3.1. Stereo

Given a pair of rectified [39] left and right images IL and IR, the objective is to find a disparity
map [40] AL that provides correspondences for as many pixels as possible:

IL(u, v) ≈ IR(u + AL(u, v), v). (1)

This is achieved using a basic block matching algorithm [40]. For each pixel (u, v), a Sum of
Absolute Differences (SAD) is computed between that pixel’s region (the template), and a series of
regions in the right image:

SAD(u, v, a) =
NT

∑
i=−NT

NT

∑
j=−NT

|IL(u + i, v + j)− IR(u + i + a, v + j)| , (2)

where 2NT + 1 is the template size and a ∈ α ⊂ R the disparity value for pixel (u, v) in range α.
The search is limited to one dimension (u) thanks to the epipolar constraint [17]. The pixel’s disparity
is then determined by finding the minimum of the SAD:

AL(u, v) = min
a
{SAD(u, v, a)} . (3)

This method has been chosen for its computational efficiency. As analysed in [40], the complexity
of basic implementations of block matching algorithms is O(NU NANT), where NU is the number of
pixels in the image and NA the size of the disparity search range α. By avoiding repeating redundant
computations, the complexity can be reduced to O(NU NA), thus eliminating the influence of the
template’s size.
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Once the disparity map AL is known, a range image, or depth map DL can be computed as:

DL(u, v) = f
B

AL(u, v)
, (4)

where f is the camera’s focal length and B is the baseline, i.e., the spacing between the optical centres
of the left and the right camera.

3.2. Volumetric Model Representation

The 3D reconstruction is stored as a dense voxel volume, where each voxel contains a Signed
Distance Function (SDF) describing its distance to a surface, as described in [41]. The SDF values are
positive in front of the surface and negative behind it. Surfaces are therefore extracted from the volume
by finding the SDF zero crossings, i.e., the set of points in which the SDF equals zero. In practice, only a
truncated version S(p) of the SDF (TSDF) is stored for each point p ∈ R3, such that the true SDF value
is only stored within ±µ of the measured value, thus representing the measurement’s uncertainty.
The TSDF is represented in each point p as:

S(p) =
[

F(p), WF(p), C(p), WC(p)
]

, (5)

where F(p) is its value and WF(p) its weight, the computation of which is described in Equation (7).
Additionally, colour information is stored as C(p) and its corresponding weight WC(p), in order

to be able to make photometric predictions along with the geometric ones.
For a depth map Dk with a known pose Tk, the TSDF at point p is computed as:

FDk (p) = Ψ
(
λ−1 ‖tk − p‖ − Dk(pc)

)
,

Ψ(y) =

{
min

(
1, y

µ

)
, if y ≥ −µ,

null, otherwise,

(6)

where λ =
∥∥K−1 pc

∥∥ is a scaling factor for each pixel ray, K is the intrinsic matrix, pc is the projection of
point p onto the camera’s image plane, and tk is the translation vector from Tk.

For each new depth map Dk, the global TSDF at point p can iteratively be updated as a moving
average defined by a threshold WF

η :

Fk(p) =
WF

k−1(p)Fk−1(p) + FDk (p)

WF
k−1(p) + 1

,

WF
k (p) = min

(
WF

k−1(p) + 1, Wη

)
.

(7)

Compared to a simple running average, this moving average method is robust to dynamic
object motion in the scene. The colour TSDF components Ck(p) and WC

k (p) can be updated in the
same manner.

3.3. Camera Pose Estimation

This section briefly describes the two tracking methods that have been used within the scope of
this work.

3.3.1. Depth Tracking

As presented in [15], depth tracking performs camera tracking exclusively based on the depth
map from the stereo camera. The newly obtained depth measurements Dk are first transformed to
a surface measurement composed of a vertex map Vk and a normal map Nk. A surface prediction
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(V̂k−1, N̂k−1) is generated by raycasting from a viewpoint corresponding to the last known camera
position Tk−1.

An ICP algorithm [42] is used in order to estimate a transformation Tk, which maps the camera
coordinate frame at step k to the global frame. It begins by matching points from the surface prediction
with the live surface measurement, as detailed in [16]. Given a set of corresponding points, each
iteration of the ICP produces a transformation Tk minimising a point to plane objective function [43]:

min
Tk

∑
pc

∥∥∥(TkVk(pc)− V̂k−1(pc)
)T N̂k−1(pc)

∥∥∥ , ∀Dk(pc) > 0. (8)

Assuming small motion between frames, the minimisation is solved according to [44].

3.3.2. Colour Tracking

The colour tracker, as described in [45], relies on the live RGB image Ik, rather than on the depth
map Dk. The first step of the tracker consists of creating a model based prediction of surface points
V̂k−1 and their corresponding colour values Ĉk−1. The prediction is again done from a viewpoint
corresponding to the camera position at step k− 1, like for the depth tracker described in Section 3.3.1.
The cost function to be minimised in this case, however, is an `2 norm of the difference between the
colour of a predicted point and the colour of the corresponding pixel in Ik:

min
Tk

∑
pc

∥∥Ik
(
KTkV̂k−1(pc)

)
− Ĉk−1(pc)

∥∥ . (9)

The minimisation is solved using the Levenberg–Marquardt algorithm [46].

3.4. Raycasting

Raycasting [47] is used to obtain surface predictions both for camera tracking, as seen in Section 3.3,
and for visualisation of the model. The process renders the zero level set Fk(p) = 0 of the current TSDF
into a viewpoint with position Tr.

A virtual ray TrK−1 pc is generated for each pixel pc of the image being rendered. The algorithm
steps through the volume along each ray, looking for a change in the sign of the TSDF values. If the
TSDF values have changed from positive to negative, a surface interface has successfully been detected,
which provides the data for the pixel being rendered.

4. Implementation

4.1. Software

The software implementation is based on the InfiniTAM [48] framework, adapted to work with
the Robot Operating System (ROS) [49] and a stereo camera as the input device. All steps of the
KinectFusion algorithm are very well suited for parallel execution, as described in [16]. For this
reason, all computation is performed on a Graphics Processing Unit (GPU). Modern consumer grade
GPUs typically consist of several hundreds or thousands of processing units. From a general purpose
programming point of view, GPUs can be considered SIMD (single instruction, multiple data) devices.
This means that optimal performance is achieved in cases when the same computation needs to be
performed on a large number of inputs. Every StereoFusion step can be parallelised in such manner,
performing the same operation either for each image pixel or for each voxel in the model volume,
making it perfectly suited for this type of hardware. For the purpose of this work, everything has been
implemented using Nvidia CUDA. The test GPU is an Nvidia GTX 980 Ti, which has 2816 CUDA cores
and 6 GB of global memory. Other relevant components of the computer used are an Intel i7-4930k
processor and 16 GB of RAM. The software has been running on Ubuntu 16.04 with ROS Kinetic Kame.
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4.2. Stereo Rig

The algorithm described in Section 3 has been tested using a stereo RGB camera rig. It consists of
a pair of FLIR (formerly Point Grey) Blackfly GigE Vision cameras (BFLY-PGE-23S6C-C), with global
shutter Sony IMX249 1/1.2” CMOS sensors. These are standard industrial machine vision cameras
enclosed in underwater housings rated to a water depth of 1000 m. The camera and the housing can
be seen in Figure 2. The stereo rig was mounted on the front of two ROVs, as shown in Figures 3 and 4.
The shutters are synchronised through the cameras’ GPIO (General-Purpose Input/Output) pins as
described in [50], where one camera emits a signal that triggers the second one, without the need of an
external signal generator. This is necessary in order to accurately estimate disparities from a stereo
image when motion is involved.

Figure 2. Camera and underwater housing.

All the processing is performed on the surface, using a dedicated computer, described in
Section 4.1, located in the ROV control cabin. In order to communicate with the surface PC through
the two kilometres long ROV umbilical, the Gigabit Ethernet connections are transformed from
copper to optical fibre connections and back to copper using TP-Link Gigabit SFP Media Converters.
Both cameras rely on Power over Ethernet (PoE), which is injected to the Gigabit Ethernet lines
on-board the ROV.

Two Kowa LM6HC wide angle lenses are used in order to have the widest possible field of view
(FOV). Despite the lenses, the FOV would be reduced due to light refraction if the cameras were behind
flat ports, for this reason both enclosures use dome ports. Having a wide FOV allows a relatively large
stereo baseline (40 cm in this case) without sacrificing close range measurements. It is also important
for guaranteeing overlap between consecutive images, and aiding the vision-based tracking algorithm
by reducing the probability of completely losing sight of the observed scene.

5. Results

The algorithm discussed in Section 3 has been tested on two ROV systems under different
conditions. In both cases, the cameras produced RGB images with a resolution of 960× 600 pixels
at 22 frames per second. The frames are processed in real time and for all the presented results the
3D models are being built and updated on-line. The voxel size used for all the presented models is
5 millimetres.

5.1. Good Visibility, Fresh Water

The main results presented in this work have been obtained during trials with an inspection
class ROV in a flooded quarry near Portroe, County Tipperary, Ireland. This quarry is normally
used as a scuba diving centre. Various items have been placed underwater for the entertainment
of divers (e.g., a van, a boat, a car, a bar, computers, etc.). These are interesting targets to test the
described algorithms, thanks to their complex geometry and texture. Additionally, using familiar
targets facilitates qualitative analysis of the 3D models.
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The vehicle used, called ROV Áed and shown in Figure 3, is a custom system built in-house at the
Centre for Robotics and Intelligent Systems (CRIS) at the University of Limerick (UL). It is intended to
be a lightweight highly manoeuvrable inspection ROV capable of operating in strong currents and
other challenging environments.

Figure 3. University of Limerick ROV Áed with the stereo camera setup mounted below the main
piloting camera.

Figure 4. University of Limerick ROV Étaín with the stereo camera setup mounted above the
manipulators.

The cameras have been calibrated underwater on-site, using a 7 × 11 chessboard with the sides of
each square measuring 280 mm, as shown in Figure 5. The chessboard has been printed on an A3 sized
(297× 420 mm) PVC board, which was then attached on a pole in order to submerge it and move it
manually from the side of a pier. The cameras have been calibrated using a pinhole camera model,
and the distortion corrected using the plumb bob model (radial polynomial + thin prism model) [51].
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(a) (b)
Figure 5. Example of a stereo pair used for camera calibration. (a) left camera; (b) right camera.

Figure 6 shows a series of images from a survey of a submerged van, about 4 m in length.
It displays the 3D model, the current frame from the left camera of the stereo pair, and the depth map
calculated in the left camera’s reference frame. The model has been built incrementally, as the ROV
was manually piloted around the van. The camera position was continuously estimated using the
depth tracking method described in Section 3.3.1.

(a) Van survey using depth tracking (b) Van survey using depth tracking

(c) Van survey using depth tracking
Figure 6. Van reconstruction in good visibility. The main panel shows the 3D model, the top right
shows the depth maps, and the bottom right shows the original colour image from the left camera.

Figure 7a–e show images of the algorithm running during a survey of a submerged boat, about
6 m in length. Figure 7f is from a different survey of the same boat, but this time using the colour
tracker from Section 3.3.2. In the quarry, both trackers performed equally well, producing good
reconstructions and providing reliable camera tracking.

5.2. Bad Visibility, Sea Water

Testing has been carried out at sea in Galway Bay, Ireland, with the stereo rig mounted on the UL
work class ROV Étaín. This ROV is a commercial Sub-Atlantic Comanche system, it was launched
from the Irish Lights Vessel (ILV) Granuaile, shown in Figure 8. The target surveyed in this scenario is
a 2 metre tall metal frame with panels that simulate valves, which is used to test manipulator control
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algorithms. Visibility in this case was low, with a lot of particles being moved around by the strong
tidal current, as can be seen in Figure 9.

(a) Boat survey using depth tracking (b) Boat survey using depth tracking

(c) Boat survey using depth tracking (d) Boat survey using depth tracking

(e) Boat survey using depth tracking (f) Boat survey using colour tracking
Figure 7. Boat reconstruction in good visibility.

Figure 8. ROV Étaín inside its Tether Management System, being deployed from the ILV Granuaile.
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Figure 9. The stereo rig (red) on the ROV in bad visibility conditions.

The stereo cameras have been calibrated underwater using the same chessboard and models as
described in Section 5.1. In this case, however, due to physical constraints and safety considerations,
the chessboard could not be moved manually from the side of the ship, therefore it had to be operated
by one of the two Schilling Orion 7P hydraulic manipulators that are on board the ROV, as shown
in Figure 10. Obtaining the necessary images, this way proved to be very challenging and time
consuming for the pilot, mostly due to the manipulator’s inaccurate control and limited motion
capabilities. A consideration for future operations would be to automate the calibration procedure by
predefining the manipulator’s trajectory using the Cartesian control presented in [10].

Figure 11 shows snapshots of the survey, which was performed by manually piloting the ROV in
a circle around the target. Unlike in the scenario described in Section 5.1, in this case, the colour tracker
proved to have a significant advantage over the depth tracker. This is due to the target’s geometry,
i.e., the beams from which the metal frame is composed are relatively thin and do not always appear
clearly in the depth map.

(a) (b)
Figure 10. Example of a stereo pair used for camera calibration with the manipulator. (a) left camera;
(b) right camera.
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(a) Frame survey using colour tracking (b) Frame survey using colour tracking

(c) Frame survey using colour tracking
Figure 11. Metal frame reconstruction in bad visibility. The main panels show the 3D model, the top
right show the range images, and the bottom right show the original colour image from the left camera.
(a) approaching the target; (b) target approached; (c) after moving 90◦ clockwise around the target.

The effect of the floating particles is visible in the reconstruction, especially in Figure 11c, which is
filled with tiny artefacts. Apart from the effects on the 3D model itself, this poses a serious challenge
for camera tracking, which in this case was pushed to its limits. Due to frequent tracking failure,
the survey had to be performed several times before a full circle around the target was successfully
accomplished. Although a model has been obtained, it is clear that a purely vision based system is not
robust enough for reliable operation under such challenging conditions.

5.3. Qualitative Comparison to Post-Processed Photogrammetry

Although StereoFusion does not aim to challenge post-processing techniques in terms of
reconstruction quality, but rather produce usable models in real time, a comparison is nonetheless
useful in order to estimate its results. Figure 12 shows a qualitative comparison of the 3D model
of the boat from Figure 7 with one obtained using the same image sequence with a post-processing
photogrammetry technique. The post-processed model, displayed in Figure 12a, has been generated
using Agisoft PhotoScan [52], a widely used commercial photogrammetry tool. Figure 12b presents
a comparison of the two models aligned with each other, where the green one is the result of
post-processing while the red one is produced in real-time by StereoFusion. For better understanding,
both models are shown in Figure 12c side-by-side. From this comparison, it is clear that the geometry
produced by StereoFusion matches the one obtained in post-processing, although not perfectly. It is
important to note that the post-processed model is only used for qualitative comparison, as it does
not represent ground truth. The exact geometry of the sunken boat used in this sequence is unknown.
However, the targets presented in this work have been intentionally chosen because they are familiar
objects, thus making a qualitative analysis of the presented results more intuitive to the reader.
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(a)

(b)

(c)
Figure 12. Qualitative comparison between StereoFusion and post-processed photogrammetry.
The software used for photogrammetry is Agisoft PhotoScan. (a) textured model obtained from
the boat sequence using Agisoft PhotoScan; (b) overlapping models: the green one is built using
Agisoft PhotoScan and the red one using StereoFusion; (c) models side-by-side: the green one is built
using Agisoft PhotoScan and the red one using StereoFusion.

From these comparative results, StereoFusion can be considered applicable to the underwater
domain. The presented real-time data could be useful in applications such as obstacle avoidance, path
planning, target referenced localisation, object detection, and augmented reality for enhancing the
pilot’s perception.
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6. Conclusions and Future Work

This paper presented underwater StereoFusion, an adaptation of KinectFusion which instead of a
Kinect uses a stereo camera. The software has been tested in two underwater scenarios, using different
vehicles. In good visibility, the system proved capable of reliable operation at video frame rate. Because
it provides real-time dense 3D reconstruction of targets and relative camera tracking, it opens a variety
of new possibilities in underwater robotics. Such a system can be used for applications such as online
verification of survey data, navigation relative to a target, semi and fully autonomous manipulation,
path planning, obstacle avoidance, etc.

As with most underwater vision systems, its main problem is operation in low visibility
environments, as shown in Section 5.2. Although still capable of producing a 3D model, the quality
of both the reconstruction and the tracking significantly decreases. One way to tackle this will be to
aid the camera tracking by exploiting navigation data from the onboard inertial navigation system.
Fusing inertial with vision-based navigation will improve both the estimation quality and the system’s
robustness. Additionally, the system can be made more robust to low visibility by using a 3D sonar,
either instead of the stereo camera, or by fusing the acoustic with vision data in a manner similar to
that described by [36]. Ongoing testing will provide information on the quality of a 3D sonar used as
the only sensor, using the same algorithm described in this paper.

Further ongoing development of the vision-based system is focused on a monocular
implementation, relying on the work of [27,53]. This is particularly relevant for underwater
manipulation automation for multiple reasons. Existing manipulators in the global work class ROV
fleet are typically equipped with a single camera mounted near the gripper (Figure 4), and are not
suited to host a stereo rig due to its size. In addition to mechanical considerations, a fixed baseline stereo
system is not well suited for operation at significantly different distances from the target. As discussed
by the authors in [9], in order to automate manipulation tasks, it is necessary to reconstruct the scene
from a distance while also being able to continuously keep track of the camera as the manipulator
approaches its target. These limitations of stereo methods can be solved by monocular systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ROV Remotely operated vehicle
AUV Autonomous underwater vehicle
SLAM Simultaneous localisation and mapping
GPU Graphics processing unit
GPGPU General purpose GPU
ICP Iterative closest point
SDF Signed distance function
TSDF Truncated SDF
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FOV Field of view
RGB Red, green, blue
RGBD RGB + depth
CMOS Complementary Metal-Oxide-Semiconductor

References

1. Chapman, P.; Bale, K.; Drap, P. We All Live in a Virtual Submarine. IEEE Comput. Graph. Appl. 2010,
30, 85–89, doi:10.1109/MCG.2010.20. [CrossRef] [PubMed]

2. Cocito, S.; Sgorbini, S.; Peirano, A.; Valle, M. 3-D reconstruction of biological objects using underwater video
technique and image processing. J. Exp. Mar. Biol. Ecol. 2003, 297, 57–70, doi:10.1016/S0022-0981(03)00369-1.
[CrossRef]

3. Negahdaripour, S.; Firoozfam, P. An ROV Stereovision System for Ship-Hull Inspection. IEEE J. Ocean. Eng.
2006, 31, 551–564, doi:10.1109/JOE.2005.851391. [CrossRef]

4. Ledezma, F.D.; Amer, A.; Abdellatif, F.; Outa, A.; Trigui, H.; Patel, S.; Binyahib, R. A Market Survey of
Offshore Underwater Robotic Inspection Technologies for the Oil and Gas Industry. Soc. Pet. Eng. 2015,
doi:10.2118/177989-MS. [CrossRef]

5. Antonelli, G. Underwater Robots; Springer Tracts in Advanced Robotics; Springer: Berlin, Germany, 2014;
Volume 96, doi:10.1007/978-3-319-02877-4.

6. Elvander, J.; Hawkes, G. ROVs and AUVs in support of marine renewable technologies. In Proceedings of the
2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–6, doi:10.1109/OCEANS.2012.6405139.
[CrossRef]

7. Allotta, B.; Conti, R.; Costanzi, R.; Fanelli, F.; Gelli, J.; Meli, E.; Monni, N.; Ridolfi, A.; Rindi, A. A Low
Cost Autonomous Underwater Vehicle for Patrolling and Monitoring. Proc. Inst. Mech. Eng. Part M J. Eng.
Marit. Environ. 2017, 231, 740–749, doi:10.1177/1475090216681354. [CrossRef]

8. Ferreira, F.; Veruggio, G.; Caccia, M.; Bruzzone, G. A Survey on Real-Time Motion Estimation Techniques for
Underwater Robots. J. Real-Time Image Process. 2016, 11, 693–711, doi:10.1007/s11554-014-0416-z. [CrossRef]
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