
sensors

Article

Protection of Superconducting Industrial Machinery
Using RNN-Based Anomaly Detection for
Implementation in Smart Sensor †

Maciej Wielgosz 1,2,* , Andrzej Skoczeń 3 and Ernesto De Matteis 4

1 Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science
and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland

2 Academic Computer Centre CYFRONET AGH, ul. Nawojki 11, 30-072 Cracow, Poland
3 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology,

al. Adama Mickiewicza 30, 30-059 Cracow, Poland; skoczen@agh.edu.pl
4 CERN European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland;

ernesto.de.matteis@cern.ch
* Correspondence: wielgosz@agh.edu.pl; Tel.: +48-12-617-27-92
† This paper is an extended version of “Looking for a Correct Solution of Anomaly Detection in the LHC

Machine Protection System” published in the Proceedings of the 2018 International Conference on Signals
and Electronic Systems (ICSES), Kraków, Poland, 10–12 September 2018.

Received: 27 October 2018; Accepted: 11 November 2018; Published: 14 November 2018 ����������
�������

Abstract: Sensing the voltage developed over a superconducting object is very important in order
to make superconducting installation safe. An increase in the resistive part of this voltage (quench)
can lead to significant deterioration or even to the destruction of the superconducting device.
Therefore, detection of anomalies in time series of this voltage is mandatory for reliable operation
of superconducting machines. The largest superconducting installation in the world is the main
subsystem of the Large Hadron Collider (LHC) accelerator. Therefore a protection system was built
around superconducting magnets. Currently, the solutions used in protection equipment at the LHC
are based on a set of hand-crafted custom rules. They were proved to work effectively in a range
of applications such as quench detection. However, these approaches lack scalability and require
laborious manual adjustment of working parameters. The presented work explores the possibility of
using the embedded Recurrent Neural Network as a part of a protection device. Such an approach
can scale with the number of devices and signals in the system, and potentially can be automatically
configured to given superconducting magnet working conditions and available data. In the course
of the experiments, it was shown that the model using Gated Recurrent Units (GRU) comprising
of two layers with 64 and 32 cells achieves 0.93 accuracy for anomaly/non-anomaly classification,
when employing custom data compression scheme. Furthermore, the compression of proposed
module was tested, and showed that the memory footprint can be reduced four times with almost no
performance loss, making it suitable for hardware implementation.

Keywords: anomaly detection; recurrent neural networks; neural networks compression; LHC

1. Introduction

The benefit of using superconductivity in industrial applications is well understood.
However actual application of superconducting devices is still limited by difficulties in the maintenance
of cryogenic stability of superconducting cables and coils. In many cases, it is hard to design
safe superconducting circuit. A small mechanical rearrangement releases enough energy to initiate
local avalanche process (quench) leading to loss of superconducting state and next to overheating

Sensors 2018, 18, 3933; doi:10.3390/s18113933 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4401-2957
https://orcid.org/0000-0002-0708-7538
https://orcid.org/0000-0003-3582-4459
http://www.mdpi.com/1424-8220/18/11/3933?type=check_update&version=1
http://dx.doi.org/10.3390/s18113933
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 3933 2 of 22

of the machine and then even to melting. Therefore superconducting machines require a special
protection system.

In general, such a system consists of data producers and processing servers. The producers are
electronic devices located close to individual superconducting machines which require protection.
This device (producer) is capable of collecting and processing data and generating the activation signal
for local actuators. The servers are capable of storing and analyzing data delivered by producers
through the network.

The overarching research goal is to improve data processing within the producers and to move
a part of the analysis task into them in order to reduce network load. The preliminary results
of this research were presented in Ref. [1], which focused on testing the suitability of Recurrent
Neural Networks (RNNs) for this application. In this work, the additional aspects for hardware
implementation, especially model compression, are explored.

The presented research main contributions are as follows:

• development of a neural algorithm dedicated to detecting anomaly occurring in the voltage time
series acquired on the terminals of superconducting machines in electrical circuits,

• design and verification of the complete processing flow,
• introduction of the RNN-based solution for edge computing which paves the way for low-latency

and low-throughput hardware implementation of the presented solution,
• development of a system level model suited for future experiments with the adaptive grid-based

approach; the software is available online (see Supplementary Material section).

1.1. Protection System for Superconducting Machinery

One of the biggest superconducting systems is installed at the Large Hadron Collider (LHC)
accelerator at the European Organization for Nuclear Research (CERN). Despite its scientific purpose,
the LHC should be considered as a huge industrial system. The final product of this factory is the
total number of particle collisions. During the steady operation, every second, 40,000,000 collisions
are performed in three different interaction points. The LHC consists of a chain of superconducting
magnets. The chain is located in an underground circular tunnel, 100 m under the Earth’s surface.
The Figure 1 presents the view on the magnet’s chain. The perimeter of the tunnel is about 27 km long.
Superconducting magnets, responsible for shaping the beam trajectory, are crucial elements of the
accelerator that require permanent monitoring. The details of the design of the LHC accelerator are
described in Ref. [2].

When the LHC collides particles, even a tiny fraction of energy stored in each proton beam can
cause a magnet to leave the superconducting state. Such an occurrence is named a quench, and it
can severely damage the magnets in case of machine protection procedures failure. These procedures
mainly relay on triggering the power down of the whole accelerator when resistive part of voltage on
one superconducting element exceeds a predefined threshold. This study concerns only a protection
system of superconducting elements inside the LHC.

A protection system known as Quench Protection System (QPS) has been installed at the LHC since
the beginning and it successfully works since ten years of the LHC operation. The detailed description
of the existing system can be found in Refs. [3,4]. The protection unit, visible in Figure 1, installed under
the magnet performs acquisition, processing and buffering of samples of voltage existing between
terminals of the superconducting coil. These units are end-points of a massive distributed system
covering the whole length of the LHC. The acquisition is performed using Analog-to-Digital Converter
(ADC). The processing relies on filtering and compensation of inductive voltage. The pure resistive
voltage is compared with the threshold, and the output of comparator activates actuators and generates
trigger signals for other subsystems of the LHC. The actuators are also included to the yellow rack
installed under each magnet in the tunnel (see Figure 1). The task of actuators is to inject energy to the
objective coil in order to heat it homogeneously.

Sensors 2018, 18, 3933 3 of 22

Figure 1. The LHC tunnel. The blue cryostat contains superconducting main dipole magnets.
The protection unit is visible on the floor under the magnet (yellow rack). The photo taken by
A.S. in 2007.

The data is continuously buffered in a circular buffer. Some of the samples (both total and resistive
voltage) are directly transmitted to the CERN Accelerator Logging Service (CALS) database in the
cloud. The CALS serves permanent monitoring of almost every device in the CERN’s accelerator’s
complex. The sampling rate for this service is very low, in the best case it is 10 Hz (100 ms). The circular
buffer consists of two parts. The first part is filled with samples all the time in a circular manner.
The second part is filled only in case of triggering or in case of a request sent by an operator. A trigger
(or a request) freezes first part of the buffer. Then the whole buffer is transmitted to a cloud and stored
in a dedicated database Post Mortem (PM) System. Examples of voltage time series taken from this
database are presented in Figure 2. The sampling rate of the PM data is much higher, and in our case,
it is 500 Hz (2 ms).

Figure 2. The presentation of a contents of URES field of two PM data files for one of the superconducting
magnets (with electrical current 600 A). The voltage range of the ADC is from −256 mV to 256 mV.
Time 0 ms refers to trigger (request) time stored in the field QUENCHTIME in the PM data files.

The presented protection system underwent many upgrades introduced during breaks of the LHC
operation. However, the emergence of new superconducting materials opens a question concerning
detection algorithms for application in the future protection system again. Such experiments are

Sensors 2018, 18, 3933 4 of 22

conducted in SM18 CERN’s facility (see Figure 3), currently testing the magnets for the High Luminosity
LHC phase.

Figure 3. Test facilities of SM18 for testing MQXFS inner triplet quadrupole magnet, including the rack
used for the data acquisition and tests (photos provided by E.M.).

1.2. State of the Art

Anomaly and novelty detection methods have been researched over many years [5–7] which
resulted in the development of many successful algorithms. They may be in general divided into
three different categories of density-based, distance-based and parametric methods. In addition
to the standard procedures, neural algorithms in a majority of cases employing RNN-based
architectures [8–11] slowly pave the way to the basic set of the anomaly detection procedures.

Training dataset is different for novelty and outlier detection. In novelty detection, it is not
contaminated by anomalies—all outliers need to be removed beforehand. On the contrary, the training
procedure of the outlier detection model involves incorporating anomalous data into the training
dataset. Both flows employ an unsupervised approach as a training procedure, although some of
the procedures may be boosted using some external hyper-parameters such as contamination factor,
thresholds or max features that are taken into account in the training process.

In this work three different algorithms were used as a baseline for the RNN-based approach
proposed by the authors: Elliptic Envelope, Isolation Forest (IF), and One-Class Support Vector Machine
(OC-SVM) [12–18]. Elliptic Envelope belongs to a set of methods with an underlying assumption of
known distribution (usually Gaussian) for normal data and all the points distant from the center of the
ellipse are considered outliers. The Mahalanobis distance [19] is used as a measure of distance and an
indicator that a given data point may be considered as an outlier.

Another useful method, invented in 2008, is the Isolation Forest [20] which performs anomaly
detection using the random forest. The underlying concept of this approach is based on an idea of a
random selection of features and a random selection of split within the tree nodes between maximum
and minimum values of the selected features. A concept of the decision function in IF algorithm
defines deviation of an averaged path over a forest of random trees. Random partitioning creates
significantly shorter paths for anomalies which results from the fact that outliers are concentrated close
to extreme values of features which in turn locates them on the border of the trees.

OC-SVM is usually considered to be a novelty-detection method, and the training data should not
contain outliers. It performs well in high-dimensional space where there is no assumption regarding

Sensors 2018, 18, 3933 5 of 22

the distribution of the underlying data. However, if the data is well distributed (e.g., Gaussian) the
Isolation Forest or Elliptic Envelope may perform better.

The presented methods assume the spatial structure of the data with no temporal relationships.
There is a set of methods such as ESD, ARIMA, Holt-Winters [21,22] which take time component
into account and have proven to be effective. However, due to their complexity, it is challenging to
implement them in very low-latency systems in hardware.

When detecting anomalies in time series, RNNs are both scalable and adaptable which is
critical when it comes to design and implementation of complex anomaly detection systems [23–25].
RNNs were introduced long ago [26] and have been successfully applied in many domains [8],
according to the authors’ knowledge, there are no studies on the performance of compressed RNNs in
anomaly detection. Nevertheless, several works on effective quantization and compression of RNNs
are available [27,28]. Consequently, decision was made to explore the feasibility and performance of
several compression techniques of RNNs in low-latency anomaly detection domain of LHC machinery
monitoring. Furthermore, the adopted approach addresses both data and coefficients quantization
with in-depth analysis of correlation of employing different techniques.

2. Materials and Methods

2.1. Quantization Algorithm

2.1.1. Previous Work

In the authors’ previous works concerning superconducting magnets monitoring Root-Mean-
Square Error (RMSE) [24] and both static [23] and adaptive data quantization [1,25] approaches were
used. Based on experiments conducted and described therein, a conclusion can be drawn that RNNs
can be used to model magnets behavior and detect anomalous occurrences.

The initially introduced RMSE approach had several drawbacks, the main of which was a necessity
to select an arbitrary detection threshold. In Ref. [23], the static quantization was used, mapping
the input data into a set of m equal-width bins. This method, however, resulted in sub-par results,
stemming from the uneven distribution of the samples in the bins, up to the point where nearly all
samples occupied only one or two bins (see static samples counts in Figure 4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1

10

100

1000

10,000

100,000

1,000,000

10,000,000

cumulative_amplitude recursive_adaptive adaptive static

bin number

sa
m
pl
es

in
bi
n

Figure 4. Samples per bin for PM dataset URES channel (m = 32). Note the logarithmic scale.

In Ref. [25], an approach based on adaptive data quantization and automatic thresholds selection
was introduced. Adaptive data quantization resulted in much better use of bins and consequently
significantly improved the accuracy results. Its principle of operation is mapping the input space to a

Sensors 2018, 18, 3933 6 of 22

fixed number of categories (bins) in such a way, that all categories have (ideally) the same samples
cardinality (see Appendix A.1 for more details). Resulting bins widths are uneven, explicitly adjusted
to each of the input signal channels (see adaptive samples counts in Figures 4 and 5 to compare bin
edges generated with various approaches).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.2

0.4

0.6

0.8

1

cumulative_amplitude recursive_adaptive adaptive static

edge number

ed
ge

va
lu
e

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0.000005

0.000025

0.000045

0.000065

0.000085

0.000105

0.000125

edge number

ed
ge

va
lu
e

cumulative_amplitude recursive_adaptive adaptive static

(b)
Figure 5. Full (a) and zoomed-in (b) bin edges for PM dataset URES channel (m = 32). Please note
that adaptive quantization algorithm effectively yields only 10 bins, since some edges values occur
multiple times.

2.1.2. Other Quantization Approaches

The drawback of adaptive algorithm is that it can effectively generate fewer bins than requested
when some values occur in the dataset in significant numbers (see Figure 5). To mitigate this
effect, which became apparent when working with PM data, a modification of adaptive algorithm,
called recursive_adaptive, was introduced. The m + 1 initially found edges are treated as candidates,
and if duplicates are detected, the recursive process is started. At first, the duplicated edges are added
to the final edges list, and all repeating values are removed from the dataset. Then, the remaining
data is used as an entry point to find m + 1–number of final edges new edge candidates. The process is
repeated until there are no duplicates in candidate edges or there is no more data left in the dataset.
As a result of this process, the bins are more evenly used.

An alternative edge-finding algorithm, called cumulative_amplitude, is based on the idea of
equalizing the sum of the samples amplitudes in each bin. As in adaptive algorithm, before edges
selection, the samples are normalized and sorted. Then, the threshold value is computed as a sum of
amplitudes of samples left in the dataset divided by the required edges number (see Appendix A.2 for
equations). Contrary to the adaptive approach of determining the edges based on the samples count,
in cumulative_amplitude the edge value is chosen when the sum of samples’ amplitudes crosses this

Sensors 2018, 18, 3933 7 of 22

threshold. As a result, the maximal values are not grouped with smaller ones. It may, however, level the
differences between smaller values, that may contain crucial information. In the implementation,
the concept described above was modified to also use recursive duplication removal, with the threshold
value determined anew for each recursion level.

2.2. Implementation Overview

The presented anomaly detection system was created in Python, using Keras [29] library, with both
Theano [30] and Tensorflow [31] backends depending on availability. The reference methods were
implemented using scikit-learn [32] library. It is prepared to work with normalized data, with all the
available data (both training and testing) used during the normalization process. The focal system
modules and data flow can be seen in Figure 6.

The number of input categories (in_grid), the bins’ edges calculation algorithm (in_algorithm),
the history window length (look_back), the model and its hyper-parameters used during the anomaly
detection process and other options are specified in the configuration file. The particular setup is also
saved while results are reported, ensuring the particular test environment can be recreated even if
configuration included several possible values. Each of the input channels is quantized using the same
grid/algorithm combination.

Detector

Model
Analyzer

regression

classification

classification

or
anomaly
detection
results

data
preparationdata

Figure 6. High-level system architecture. c© 2018 IEEE. Reprinted, with permission, from Wielgosz, M.;
Skoczeń, A.; Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the LHC Machine
Protection System. 2018 International Conference on Signals and Electronic Systems (ICSES), 2018,
pp. 257–262 [1].

The model is an abstraction layer over the actual classifier. Currently implemented models include
Random (for baseline testing), Elliptic Envelope, Isolation Forest, OC-SVM, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU).

Depending on the system configuration (Figure 6), some models can be used for either
classification or regression. In the regression mode, the model is trained on data without anomalies and
yields the output that needs to be further processed by the analyzer to obtain anomaly detection results.

In the classification mode, used in the experiments presented in this paper, the model is trained
using data containing anomalies (except for models belonging to the novelty detection category).
Instead of trying to predict the next (quantized) value, it directly classifies the sample as either anomaly
or not.

The models can be roughly divided into the ones working with either spatial (Elliptic Envelope,
Isolation Forest, OC-SVM) or temporal data (LSTM, GRU). Relevant data preprocessing and
structuring, as well as model training and testing, is coordinated by one of the possible detectors.
The model/detector combination used in particular setup is defined in configuration file. This option
ensures the system extensibility since the detector does not need to know about all possible models
in advance.

Currently, the experiments are carried out using the software implementation of the system.
The target system, however, will need to be implemented in hardware to ensure it complies with
latency requirements. To fit the Neural Network (NN) model onto the Field-Programmable Gate
Array (FPGA) or Application-Specific Integrated Circuit (ASIC) board, it needs to be compressed while
retaining the high accuracy (Figure 7). The ready module can potentially be used as a stand-alone
detector or in conjunction with the currently used system (Figure 8).

Sensors 2018, 18, 3933 8 of 22

too low
RNN Model
software

RNN Model
hardware

model
compression optimized

RNN Model
software

optimization for hardware

testing
prediction
accuracy

Figure 7. Design flow for hardware implementation. c© 2018 IEEE. Reprinted, with permission,
from Wielgosz, M.; Skoczeń, A.; Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the
LHC Machine Protection System. 2018 International Conference on Signals and Electronic Systems
(ICSES), 2018, pp. 257–262 [1].

acquisition
trigger

LHC Machine
Component

filtering,
processing
& anomaly
detection

decision
Post-Mortem
Storage

Logging Service

RNN-based Detector
hardware

Figure 8. Proposed system. c© 2018 IEEE. Reprinted, with permission, from Wielgosz, M.; Skoczeń, A.;
Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the LHC Machine Protection System.
2018 International Conference on Signals and Electronic Systems (ICSES), 2018, pp. 257–262 [1].

2.3. Model Complexity Reduction

Deep Learning models have a range of features which render them superior to other similar
Machine Learning models. However, they usually have high memory footprint as well as require
substantial processing power [33]. Computing requirements are especially crucial when it comes
to embedded implementation of Deep Learning models in edge processing nodes like in the case
of the system described in this paper. Fortunately, there are multiple ways to mitigate these issues
and preserve all the benefits of the models, for example by using techniques such as pruning and
quantization [28].

During a quantization, a floating-point number x from a quasi-continuous space of IEEE-754
notation is mapped to fixed-point value q, represented using total bits. The total is conventionally
equal to 8 or 16, which are bit-widths supported by GPUs and the latest embedded processors.
For FPGA and ASIC it is, however, possible to use an arbitrary number of bits. The quantization is
done separately for each layer’s weightsW .

2.3.1. Linear Quantization

The linear quantization used during experiments can be described by the following equation:

q = s · clip
(⌊

x
s
+

1
2

⌋
, 1− 2total−1, 2total−1 − 1

)
, (1)

where scaling factor:

s =
1

2total−1−dlog2 max(W)e (2)

and clipping function:

clip(a, min, max) =

min if a < min,

a if min ≤ a ≤ max,

max otherwise.

(3)

Sensors 2018, 18, 3933 9 of 22

2.3.2. MinMax Quantization

The minmax quantization used during experiments can be described by the following equation:

q = s ·
⌊

x−min(W)

s
+

1
2

⌋
+ min(W), (4)

where scaling factor:

s =
max(W)−min(W)

2total − 1
. (5)

Also tested was log_minmax quantization, where:

q = sign(x) · eminmax(ln |x|) (6)

2.3.3. Hyperbolic Tangent Quantization

The tanh quantization used during experiments can be described by the following equation:

q = arctanh
(

s ·
⌊

tanh(x) + 1
s

+
1
2

⌋
− 1
)

, (7)

where scaling factor:

s =
2

2total − 1
. (8)

The main idea behind coefficients quantization is using a dynamic range of the available number
representation to its fullest, and meet the requirements of the hardware platform to be used for
deploying the system at the same time. In our implementation, the so-called dynamic fixed-point
notation was used. It allows emulating fixed-point number representation using floating-point
container. It is worth noting that most of edge computing platforms require linear quantization due
to the fixed, a priori defined size of internal registers and arithmetic processing elements. FPGA and
custom-designed ASIC which this work is targeting have no such limitation.

3. Results

A series of experiments were conducted to practically examine performance of the proposed
methods. Different configurations of the module setup were used in order to expose impact of
different parameters of the proposed algorithm on the overall performance of the anomaly detection
system. Furthermore, the performance of the proposed solution was compared with a range of
state-of-the-art algorithms.

3.1. Dataset

The dataset used in the experiments contained 2500 series retrieved from PM database,
with 64-16-20 training-validation-testing split. 2415 of those series had a length of 1248 samples,
while the remaining 85 series had a length of 1368 samples. For each of the series, the four input
channels were available:

UDIFF—total voltage measured between terminals of superconducting coil,
URES—resistive voltage extracted from the total voltage UDIFF using the electric current IDCCT,
IDCCT—current flowing through superconducting coil measured using Hall sensor, and
IDIDT—time derivative of the electric current IDIDT calculated numerically.

Anomalies were marked based on the value of QUENCHTIME field found in PM data, with each
anomaly starting at the indicated point and continuing until the end of a series. As such, the data can
be considered to be weakly labelled. 874 training and 225 testing series contained anomalies and over
26% of samples in the dataset were marked. Over 84% of the anomalies had a length of 750 samples,

Sensors 2018, 18, 3933 10 of 22

over 7%—566, and over 4%—1320. The length of the remaining anomalies varied between 214 and
908 samples.

Before the start of experiments, the data was normalized. The example data series (and results)
visualizations can be seen in Figures 9 and 10. Even in just those two figures, it can be seen that the
quenches vary in shape and it is really difficult to find apparent similarities just by visual examination.
This makes tasks of data labeling and manual verification of the detection results not feasible without
heavy experts involvement.

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012 U_RES

0.000

0.001

0.002

0.003

0.004

0.005
U_DIFF

0.125

0.150

0.175

0.200

0.225

0.250

I_DCCT

400 600 800 1000 1200
samples

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225
I_DIDT

Figure 9. Example single series results visualization (in_grid = 32, in_algorithm = adaptive,
look_back = 256). Red line across all subplots marks the QUENCHTIME and gray spans indicate the
anomalies found by the system.

Sensors 2018, 18, 3933 11 of 22

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012 U_RES

0.0024

0.0026

0.0028

0.0030

0.0032 U_DIFF

0.125

0.130

0.135

0.140

I_DCCT

200 400 600 800 1000 1200
samples

0.006

0.007

0.008

0.009

0.010

0.011

0.012

I_DIDT

Figure 10. Example single series results visualization (in_grid = 32, in_algorithm = recursive_adaptive,
look_back = 128). Red line across all subplots marks the QUENCHTIME and gray spans indicate the
anomalies found by the system.

3.2. Quality Measures

During the experiments two main quality measures were used: F-measure and accuracy.
While F-measure is better suited to evaluate the results of anomaly detection, in case of PM data
the relative lack of imbalance between anomalous and normal samples (especially factoring in the
required history length) makes the accuracy also a viable metric.

Additionally, the NN models quantization results are usually measured in terms of accuracy, so its
usage allows to relate our results with others found in literature. For example, the drop in accuracy
resulting from quantization should be no higher than one percentage point [34].

An accuracy can be defined as:

Sensors 2018, 18, 3933 12 of 22

accuracy =
tp + tn

tp + tn + fp + fn
, (9)

where:

• tp—true positive—item correctly classified as an anomaly,
• tn—true negative—item correctly classified as a part of normal operation,
• fp—false positive—item incorrectly classified as an anomaly,
• fn—false negative—item incorrectly classified as a part of normal operation.

An F-measure is calculated using two helper metrics, a recall (10), also called sensitivity, and a
precision, also called specificity (11):

recall =
tp

tp + fn
, (10)

precision =
tp

tp + fp
. (11)

The β parameter controls the recall importance in relevance to the precision when calculating an
F-measure:

Fβ = (1 + β2) · recall · precision
recall + β2 · precision

. (12)

During the experiments two β values were used, 1 and 2, to show the impact of the recall on the
final score. Recall as a quality assessment measure reflect an ability of an algorithm to find all entities.
On the other hand precision, describes several found entities were correctly classifier. Those measures
have to some extent opposite effect on each other. This means that raise of precision usually leads to a
drop of recall and vice-versa.

The Receiver Operating Characteristic (ROC) curve is a graph used to analyze the operation of
the binary classifiers as the one presented in this work. It shows the performance of the model taking
into account all classification thresholds. True Positive Rate (recall) is plotted as a function of False
Positive Rate (1− precision). When a classification threshold is lowered, the classifier tends to classify
more input data items as positive, which leads to an increase of both fp and tp.

To derive quantitative conclusions from ROC curve Area Under Curve (AUC) may be employed.
It measures the whole two-dimensional area under the ROC curve. It may be considered as an integral
operation performed from points (0,0) to (1,1) on a ROC graph. AUC values fall into a range between 0
and 1. A model whose predictions are 100% wrong has an AUC of 0.0, the one which works perfectly
hasAUC of 1.0.

3.3. History Length and Data Quantization

The initial experiments attempted to determine the impact of history length (look_back) and
quantization levels (in_grid) on RNN models performance. Models were trained on full dataset and
four channels for 7 epochs, with batch size equal to 16,384.

Use of dynamic range of the data representation is one of the most important indicators of
the quantization algorithm effectiveness since it affects the potential information loss due to the
lack of a proper representation capacity, i.e., ‘wasting’ resources on empty bins, while other bins
contain ‘too many’ of the values or the number of bins could be reduced altogether. Figure 11 shows
that recursive and cumulative adaptive approaches provide full grid use in contrast to adaptive
quantization method which exhibits significant grid underuse.

Experiments with different sizes of in_grid were conducted and it turned out that this parameter
has a very little impact on the performance of the model (see Figure 12). Aside from in_grid = 8,
which universally performs the worst regardless of the used algorithm, other values yield similar
results starting with look_back = 128. This allows reducing the size of the input (in_grid) to 32

Sensors 2018, 18, 3933 13 of 22

which can be encoded using 5 bits. The biggest impact on the performance has look_back which was
presented in Figures 13–15 and Table 1. The models with look_back of 512 reach AUC close to 0.98
and significantly outperform the models with look_back of 16. It also can be seen that in current
tests only setups with look_back = 256 and look_back = 512 were capable of reaching the recall = 1,
ensuring all anomalies were found, while retaining high precision. The avoidance of false negatives is
crucial in this use case, since quench after-effects, resulting in the equipment destruction, can be both
dangerous and extremely costly.

It is also worth to keep in mind that the developed model is supposed to work in highly
demanding environment where response latency is a critical factor which decides how much time other
sections of the global protection system have to execute their procedures. Thus the work needs to be
done towards reducing discrepancy in AUC value between setups of different look_back. For instance,
AUC for look_back = 64 is 0.87 and for look_back = 256 equals to 0.97 (see Figure 13).

Table 1. The parameters of NN built with GRU cells for three different algorithms (two layers, 64 and
32 cells + Dense, in_grid = 32).

In_Algorithm Look_Back Accuracy F1 Score F2 Score

adaptive

16 0.8462 0.6722 0.6167
32 0.8506 0.7031 0.6687
64 0.8611 0.7376 0.7124
128 0.8838 0.7973 0.7835
256 0.9162 0.8743 0.8796
512 0.9543 0.9474 0.9522

recursive_adaptive

16 0.8507 0.6920 0.6481
32 0.8543 0.7022 0.6561
64 0.8652 0.7350 0.6928
128 0.8868 0.8040 0.7939
256 0.9172 0.8746 0.8749
512 0.9571 0.9506 0.9560

cumulative_amplitude

16 0.8436 0.6609 0.5999
32 0.8473 0.6664 0.5968
64 0.8562 0.7115 0.6620
128 0.8853 0.7927 0.7622
256 0.9231 0.8830 0.8805
512 0.9669 0.9625 0.9779

ad/8

ad/16

ad/32

ad/64

ad/128

ra,ca/
8,16,32,64,128

0 20% 40% 60% 80% 100%

U_RES U_DIFF I_DCCT I_DIDT

Figure 11. Grid use for various in_grid values and in_algorithm. ad—adaptive, ra—recursive_adaptive,
ca—cumulative_amplitude.

Sensors 2018, 18, 3933 14 of 22

0.7

0.8

0.9

1.0

f1
sc
or
e

GRU, adaptive

in_grid= 8
in_grid= 16

in_grid= 32
in_grid= 64

in_grid= 128
random

0.7

0.8

0.9

1.0

f1
sc
or
e

GRU, recursive adaptive

0.7

0.8

0.9

1.0

f1
sc
or
e

GRU, cumulative amplitude

0 100 200 300 400 500
look_back

0.125

0.150

0.175

0.200

0.225

0.250

f1
sc
or
e

Random

Figure 12. F1 score as a function of look_back for several in_grid and in_algorithm values.
Dashed line shows Random baseline model performance for the same look_back.

The comparative tests were run using full training set (samples_percentage = 1). The goal was
to study the behavior of the RNN-based methods and other classic anomaly detection methods with
respect to the quantization algorithm. Most of the tests were run using single URES input channel
(Table 2), with additional experiments using four input channels run for RNN-based methods (Table 3).

As a baseline, the Random model was used. It generates predictions by respecting the training
set’s class distribution (“stratified” strategy). Since it ignores the input data entirely, its results do not
depend on the in_algorithm choice. This model performance turned out to be at the level of 0.6334.

For the other models’ tests, based on the previous experiments, the values of look_back = 256
and in_grid = 32 were selected as providing a good tradeoff between resources consumption
and the results quality. For the spatial methods, the history vector was flattened. The amount
of contamination (the proportion of outliers in the data set) was calculated based on the whole training
set and passed to the methods. For the Elliptic Envelope, all points were included in the support of
the raw Minimum Covariance Determinant (MCD) estimate. The OC-SVM was tested with both 332
Radial Basis Function (RBF) and linear kernel, with RBF kernel coefficient (γ) equal to 0.1 and an upper
bound on the fraction of training errors and a lower bound of the fraction of support vectors (ν) equal
to 0.95 ∗ contamination + 0.05. Each of the RNNs had the same testing architecture (two layers, with 64

Sensors 2018, 18, 3933 15 of 22

cells in the first one and 32 cells in second, followed by fully connected layer) and was trained for
seven epochs.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

look_back= 16; AUC= 0.8244
look_back= 32; AUC= 0.8421
look_back= 64; AUC= 0.8666
look_back= 128; AUC= 0.9019
look_back= 256; AUC= 0.9723
look_back= 512; AUC= 0.9895

1 - Precision

R
ec
al
l

Figure 13. The ROC curve for algorithm adaptive (in_algorithm = adaptive, in_grid = 32,
GRU (two layers, 64 and 32 cells) + Dense).

0.0 0.2 0.4 0.6 0.8 1.0
1 - Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

look_back= 16; AUC= 0.8354
look_back= 32; AUC= 0.8491
look_back= 64; AUC= 0.8646
look_back= 128; AUC= 0.9022
look_back= 256; AUC= 0.9778

Figure 14. The ROC curve for algorithm recursive_adaptive (in_algorithm = recursive_adaptive,
in_grid = 32, GRU (two layers, 64 and 32 cells) + Dense).

Sensors 2018, 18, 3933 16 of 22

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

look_back= 16; AUC= 0.8348
look_back= 32; AUC= 0.8435
look_back= 64; AUC= 0.8644
look_back= 128; AUC= 0.9045
look_back= 256; AUC= 0.9781

1 - Precision

R
ec
al
l

Figure 15. The ROC curve for algorithm cumulative_amplitude (in_algorithm = cumulative_amplitude,
in_grid = 32, GRU (two layers, 64 and 32 cells) + Dense).

Table 2. Testing accuracy (20% of dataset). All models were run with in_grid = 32 and look_back = 256,
using single input channel (URES), NNs were trained for 7 epochs. The best result is marked in bold.

Model
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

Random (stratified) 0.6334 0.6334 0.6334
Elliptic Envelope 0.6700 0.7775 0.6700
Isolation Forest 0.7947 0.7596 0.8094

OC-SVM (RBF kernel) 0.3300 0.8232 0.3300
OC-SVM (linear kernel) 0.2959 0.7881 0.2528

GRU (two layers, 64 and 32 cells) 0.8928 0.9005 0.8842
LSTM (two layers, 64 and 32 cells) 0.8271 0.8552 0.7402

Table 3. Testing accuracy (20% of dataset). Models were run with in_grid = 32 and look_back = 256,
using four input channels (URES, UDIFF, IDCCT, IDIDT), NNs were trained for 7 epochs. The best result
is marked in bold.

Model
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

GRU (two layers, 64 and 32 cells) 0.9235 0.9300 0.8842
LSTM (two layers, 64 and 32 cells) 0.9194 0.9092 0.9023

It is worth noting that the presented methods such as OC-SVM, Isolation Forest, or Elliptic
Envelope are more sensitive to the data distribution and perform well for specific kind of underlying
data (i.e., specific distribution or feature extraction which can bring the original data to this distribution
before the methods are applied). In the case of the presented CERN data, the distribution is not always
stable (varies across setups and magnets). It is also worth noting that the distribution as such does
not tell much about temporal aspects of the analyzed data. It may happen that the signals of the
same distribution have different temporal shape. This is even more pronounced for more temporarily
complex signals (see Figures 9 and 10).

Sensors 2018, 18, 3933 17 of 22

3.4. Coefficients Quantization

Table 4 shows results of coefficients quantization for the neural models from Tables 2 and 3 using
several different methods. For all methods, the quantization above the ten bits yields results nearly
identical to original. A significant drop in accuracy is observed below 8 bits of representation. It may
be noted (Table 3) that for lower number of bits the performance oscillates between ≈0.7 and ≈0.3
which means classifying all the features as one category.

Table 4. Coefficients Quantization Results for GRU (two layers, 64 and 32 cells) + Dense, trained on
four input channels. Accuracy as a function of bit-width.

Bits Method
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

Original Model 0.9235 0.9300 0.8842

10

linear 0.9236 0.9287 0.8841
minmax 0.9233 0.9300 0.8841
log_minmax 0.9235 0.9298 0.8842
tanh 0.9232 0.9283 0.9232

9

linear 0.9236 0.9279 0.8838
minmax 0.9237 0.9295 0.8842
log_minmax 0.9231 0.9293 0.8843
tanh 0.9219 0.9260 0.8842

8

linear 0.9206 0.9257 0.8830
minmax 0.9238 0.9311 0.8838
log_minmax 0.9207 0.9283 0.8844
tanh 0.9161 0.9143 0.8836

7

linear 0.9177 0.3989 0.8850
minmax 0.9194 0.9250 0.8841
log_minmax 0.9218 0.9236 0.8833
tanh 0.9131 0.9033 0.8851

6

linear 0.8952 0.9008 0.8871
minmax 0.9144 0.8839 0.8842
log_minmax 0.9111 0.9076 0.8844
tanh 0.8702 0.8782 0.8788

5

linear 0.3722 0.8442 0.8802
minmax 0.9031 0.9058 0.8810
log_minmax 0.3948 0.8878 0.8812
tanh 0.8247 0.3306 0.8670

4

linear 0.8500 0.2745 0.8587
minmax 0.8678 0.8702 0.8775
log_minmax 0.8649 0.3848 0.8734
tanh 0.7491 0.8464 0.3017

3

linear 0.7928 0.8135 0.8190
minmax 0.3391 0.7900 0.8530
log_minmax 0.7664 0.8023 0.8564
tanh 0.6922 0.2833 0.7985

2

linear 0.3006 0.6700 0.7065
minmax 0.7371 0.3391 0.3466
log_minmax 0.7908 0.7369 0.3110
tanh 0.7216 0.7549 0.2309

1

linear 0.6700 0.3300 0.3300
minmax 0.6706 0.7003 0.6717
log_minmax 0.7171 0.7459 0.2121
tanh 0.7171 0.7459 0.2121

Sensors 2018, 18, 3933 18 of 22

4. Discussion and Conclusions

The protection system for superconducting machinery existing at the LHC is a vast distributed
system installed around the whole circular tunnel. It consists of many individual units connected
with a dedicated network. The approach used to design protection units is hard to scale and requires
laborious manual adjustment of working parameters. The presented work explores the possibility
of using the RNN to build a protection device of a new generation. The idea is to perform on-line
analysis inside local protection unit using data acquired with a much higher sampling rate without
sending such a massive amount of data to the cloud.

One of the main advantages of the proposed methodology is the simplicity of the parameters
setting and adjustment through a complete workflow. Only the model architecture and data
quantization levels need to be selected, and even those can be automatically optimized. Additionally,
since the solution is based on NNs, it can be extended (scaled) to use more sensors (or data streams)
or even incorporate text tags (present in many cases in historical CERN superconducting magnets
data), while keeping the overall architectural design the same, even for various types of magnets. It is
also possible to fine-tune or retrain RNN-based modules when data has changed (e.g., underlying
architecture was modified or aged) when in the traditional approach it would require reconsideration
and restructuring of the existing solution. This architectural uniformity makes it a good candidate
for implementation in a distributed edge-computing cluster of sensors, trained in an end-to-end
fashion. Such a holistic approach can significantly reduce overall resources consumption, latency,
and throughput.

The conducted experiments showed that using large look_back significantly boost the
performance of the model, while the number of quantization levels (in_grid) as low as 32 is sufficient
for the task. The framework demonstrated to be capable of achieving 93% of testing accuracy for
GRU (two layers, 64 and 32 cells). The accuracy results are affected by the weak labeling of the data,
e.g., sometimes the system labels as anomalous samples occurring for a bit before QUENCHTIME
marker. Such results lower the accuracy, while in fact being the desired outcome. The proposed system
also often creates a ‘gap’ in the anomaly, at which point the system shutdown signal would already be
sent (such example can be seen in Figure 9). Considering that, the availability of the data manually
labeled by experts could improve the system performance.

The coefficients quantization level should also be considered a meta-parameter of the model
optimization. Experiments showed that the selection of any value equal to or above 8 bits does not lead to
noticeable performance degradation. Careful choice of the quantization level may allow reducing memory
footprint even more; however, it must be noted that below 8 bits the accuracy of the model oscillates.

Overall, due to the relatively small size of the neural models and the possibility of significantly
reducing their memory footprint (4×) with a minimal performance loss, the presented model is a good
candidate for hardware implementation in FPGA or ASIC.

Supplementary Materials: The software of presented anomaly detection system is available online at https:
//bitbucket.org/maciekwielgosz/anomaly_detection.

Author Contributions: Conceptualization, M.W., A.S. and E.D.M.; methodology, M.W.; software, M.W.;
writing—original draft preparation, M.W. and A.S.; writing—review and editing, M.W. and A.S.; resources,
M.W.; visualization, M.W., data curation, A.S. and E.D.M.; supervision, M.W.; funding acquisition, E.D.M.

Funding: This work was partially financed (supported) by the statutory tasks of Faculty of Physics & Applied
Computer Science and Faculty of Computer Science, Electronics & Telecommunications of AGH University
of Science and Technology in Cracow (Poland), within the subsidy of Polish Ministry of Science and Higher
Education. The publication fee was funding by CERN.

Acknowledgments: We give special thanks to Andrzej Siemko the Group Leader of Machine Protection and 398
Electrical Integrity Group (MPE) at Technology Department (TE) at CERN and Reiner Denz the Section Leader
399 of Electronics for Protection Section (EP) at MPE-TE at CERN. They spend their time on long discussions and
400 revealed a great interest in our investigations.

Conflicts of Interest: The authors declare no conflict of interest.

https://bitbucket.org/maciekwielgosz/anomaly_detection
https://bitbucket.org/maciekwielgosz/anomaly_detection

Sensors 2018, 18, 3933 19 of 22

Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
AUC Area Under Curve
CALS CERN Accelerator Logging Service
CERN European Organization for Nuclear Research
EP Electronics for Protection Section
FPGA Field-Programmable Gate Array
GRU Gated Recurrent Unit
IF Isolation Forest
LHC Large Hadron Collider
LSTM Long Short-Term Memory
MCD Minimum Covariance Determinant
MPE Machine Protection and Electrical Integrity Group
NN Neural Network
OC-SVM One-Class Support Vector Machine
PM Post Mortem
QPS Quench Protection System
RBF Radial Basis Function
RMSE Root-Mean-Square Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
TE Technology Department

Appendix A. Data Quantization

This section presents the equations that can help to better understand the data quantization
performed during experiments.

Appendix A.1. Adaptive Data Quantization

Adaptive data quantization principle of operation is mapping the input space to a fixed number
of categories (bins) in such a way, that all categories have (ideally) the same samples cardinality as
described by Equations (A1) and (A3) (see Table A1 for notation).

Snorm
Πqa(m)
===⇒ Sqa : {0 . . . m− 1}1×n , (A1)

Πqa(m) :
∧

x∈Snorm

∨
y∈Sqa

y =

edgesy 6 x ·m < edgesy+1

if x < 1

y = m− 1 if x = 1,

(A2)

edges :
∧

06y6m
edgesy =

0 if y = 0
srt_samplesy·d n

m e
if 0 < y < m

1 if y = m.

(A3)

Appendix A.2. Cumulative Amplitude Data Quantization

Cumulative_amplitude method is based on the idea of equalizing the sum of the samples amplitudes
in each bin. As in adaptive algorithm, before edges selection, the samples are normalized and sorted.
Then, the threshold value Θm is computed as a sum of amplitudes of samples left in the dataset divided
by the required edges number (A4).

Sensors 2018, 18, 3933 20 of 22

Θm =
∑ srt_samples

m
, (A4)

edges :
∧

06y6m
edgesy =

0 if y = 0
srt_samplesidx(y)

if 0 < y < m
1 if y = m,

(A5)

idx(y) =

−1 if y = 0

min(k) :

 k

∑
i=idx(y−1)+1

|srt_samplesi|

 > Θm

if 0 < y < m.

(A6)

Contrary to the adaptive approach of determining the edges based on the samples count,
in cumulative_amplitude the edge value is chosen when the sum of samples’ amplitudes crosses this
threshold (A5)–(A6).

Table A1. Notation used in quantizaton Equations (A1)–(A6).

Symbol Meaning

n number of samples
m number of classes (categories, bins); m ∈ N>0

Snorm normalized input space
Sqa signal space after adaptive quantization

edgesi i-th quantization edge, see (A3)

srt_samplesi
i-th sample in the ascending sorted array of all
available signal samples

References

1. Wielgosz, M.; Skoczeń, A.; Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the LHC
Machine Protection System. In Proceedings of the 2018 International Conference on Signals and Electronic
Systems (ICSES), Kraków, Poland, 10–12 September 2018; pp. 257–262.

2. Evans, L.; Bryant, P. LHC Machine. J. Instrum. 2008, 3, S08001. [CrossRef]
3. Denz, R. Electronic Systems for the Protection of Superconducting Elements in the LHC. IEEE Trans.

Appl. Supercond. 2006, 16, 1725–1728. [CrossRef]
4. Steckert, J.; Skoczen, A. Design of FPGA-based Radiation Tolerant Quench Detectors for LHC. J. Instrum.

2017, 12, T04005. [CrossRef]
5. Chandola, V.; Mithal, V.; Kumar, V. Comparative Evaluation of Anomaly Detection Techniques for Sequence

Data. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy,
15–19 December 2008; pp. 743–748.

6. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15.
[CrossRef]

7. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A Review of Novelty Detection. Signal Process. 2014,
99, 215–249. [CrossRef]

8. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg,
Germany, 2012.

9. Morton, J.; Wheeler, T.A.; Kochenderfer, M.J. Analysis of Recurrent Neural Networks for Probabilistic Modelling
of Driver Behaviour. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1289–1298. [CrossRef]

10. Pouladi, F.; Salehinejad, H.; Gilani, A.M. Recurrent Neural Networks for Sequential Phenotype Prediction in
Genomics. In Proceedings of the 2015 International Conference on Developments of E-Systems Engineering
(DeSE), Duai, UAE, 13–14 December 2015; pp. 225–230.

http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1109/TASC.2005.864258
http://dx.doi.org/10.1088/1748-0221/12/04/T04005
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1109/TITS.2016.2603007

Sensors 2018, 18, 3933 21 of 22

11. Chen, X.; Liu, X.; Wang, Y.; Gales, M.J.F.; Woodland, P.C. Efficient Training and Evaluation of Recurrent
Neural Network Language Models for Automatic Speech Recognition. IEEE Trans. Audio Speech Lang. Process.
2016, 24, 2146–2157. [CrossRef]

12. Ma, J.; Perkins, S. Time-series Novelty Detection Using One-Class Support Vector Machines. In Proceedings
of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3,
pp. 1741–1745.

13. Zhang, R.; Zhang, S.; Muthuraman, S.; Jiang, J. One Class Support Vector Machine for Anomaly Detection
in the Communication Network Performance Data. In Proceedings of the 5th Conference on Applied
Electromagnetics, Wireless and Optical Communications; World Scientific and Engineering Academy and
Society (WSEAS) ELECTROSCIENCE’07, Stevens Point, WI, USA, 14–16 December 2007; pp. 31–37.

14. Su, J.; Long, Y.; Qiu, X.; Li, S.; Liu, D. Anomaly Detection of Single Sensors Using OCSVM_KNN.
In Proceedings of the Big Data Computing and Communications: First International Conference, BigCom
2015, Taiyuan, China, 1–3 August 2015; Springer International Publishing: Cham, Switzerland, 2015;
pp. 217–230.

15. Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.J.; Martínez-Martínez, V. An SVM-Based Classifier for
Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal
Acquired from a Single Point on the Machine Chassis. Sensors 2014, 14, 20713–20735. [CrossRef] [PubMed]

16. Hornero, R.; Escudero, J.; Fernández, A.; Poza, J.; Gómez, C. Spectral and Nonlinear Analyses of MEG
Background Activity in Patients With Alzheimer’s Disease. IEEE Trans. Biomed. Eng. 2008, 55, 1658–1665.
[CrossRef] [PubMed]

17. Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support Vector Method for Novelty
Detection. In Proceedings of the 12th International Conference on Neural Information Processing Systems,
Denver, CO, USA, 29 November–4 December 2000; pp. 582–588.

18. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.C.; Smola, A.J.; Williamson, R.C. Estimating the Support of a
High-Dimensional Distribution. Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]

19. Masnan, M.J.; Mahat, N.I.; Shakaff, A.Y.M.; Abdullah, A.H.; Zakaria, N.Z.I.; Yusuf, N.; Subari, N.; Zakaria, A.;
Aziz, A.H.A. Understanding Mahalanobis distance criterion for feature selection. AIP Conf. Proc. 2015,
1660, 050075. [CrossRef]

20. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

21. Wang, C.; Viswanathan, K.; Choudur, L.; Talwar, V.; Satterfield, W.; Schwan, K. Statistical Techniques
for Online Anomaly Detection in Data Centers. In Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops, Dublin, Ireland, 23–27 May 2011;
pp. 385–392.

22. Ekberg, J.; Ylinen, J.; Loula, P. Network behaviour anomaly detection using Holt-Winters algorithm.
In Proceedings of the 2011 International Conference for Internet Technology and Secured Transactions,
Abu Dhabi, UAE, 11–14 December 2011; pp. 627–631.

23. Wielgosz, M.; Skoczeń, A. Recurrent Neural Networks with Grid Data Quantization for Modeling LHC
Superconducting Magnets Behaviour. In Contemporary Computational Science; Kulczycki, P., Kowalski, P.A.,
Łukasik, S., Eds.; AGH University of Science and Technology: Kraków, Poland, 2018.

24. Wielgosz, M.; Skoczeń, A.; Mertik, M. Using LSTM recurrent neural networks for detecting anomalous
behavior of LHC superconducting magnets. Nuclear Inst. Methods Phys. Res. A 2017, 867, 40–50. [CrossRef]

25. Wielgosz, M.; Mertik, M.; Skoczeń, A.; Matteis, E.D. The model of an anomaly detector for HiLumi LHC
magnets based on Recurrent Neural Networks and adaptive quantization. Eng. Appl. Artif. Intell. 2018,
74, 166–185. [CrossRef]

26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

27. He, Q.; Wen, H.; Zhou, S.; Wu, Y.; Yao, C.; Zhou, X.; Zou, Y. Effective Quantization Methods for Recurrent
Neural Networks. arXiv 2016, arXiv:1611.10176.

28. Shin, S.; Hwang, K.; Sung, W. Fixed-Point Performance Analysis of Recurrent Neural Networks.
In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016; pp. 976–980.

29. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 10 November 2018).

http://dx.doi.org/10.1109/TASLP.2016.2598304
http://dx.doi.org/10.3390/s141120713
http://www.ncbi.nlm.nih.gov/pubmed/25372618
http://dx.doi.org/10.1109/TBME.2008.919872
http://www.ncbi.nlm.nih.gov/pubmed/18714829
http://dx.doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://dx.doi.org/10.1063/1.4915708
http://dx.doi.org/10.1016/j.nima.2017.06.020
http://dx.doi.org/10.1016/j.engappai.2018.06.012
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://keras.io

Sensors 2018, 18, 3933 22 of 22

30. Theano Development Team. Theano: A Python Framework for Fast Computation of Mathematical Expressions.
2016. Available online: http://deeplearning.net/software/theano/ (accessed on 10 November 2018).

31. Abadi, M. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online:
https://tensorflow.org (accessed on 10 November 2018).

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

33. Sze, V.; Chen, Y.H.; Emer, J.; Suleiman, A.; Zhang, Z. Hardware for Machine Learning: Challenges and
Opportunities. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX,
USA, 30 April–3 May 2017.

34. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 4820–4828.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://deeplearning.net/software/theano/
https://tensorflow.org
https://tensorflow.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Protection System for Superconducting Machinery
	State of the Art

	Materials and Methods
	Quantization Algorithm
	Previous Work
	Other Quantization Approaches

	Implementation Overview
	Model Complexity Reduction
	Linear Quantization
	MinMax Quantization
	Hyperbolic Tangent Quantization

	Results
	Dataset
	Quality Measures
	History Length and Data Quantization
	Coefficients Quantization

	Discussion and Conclusions
	Data Quantization
	Adaptive Data Quantization
	Cumulative Amplitude Data Quantization

	References

