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Abstract: Buildings along riverbanks are likely to be affected by rising water levels, therefore
the acquisition of accurate building information has great importance not only for riverbank
environmental protection but also for dealing with emergency cases like flooding. UAV-based
photographs are flexible and cloud-free compared to satellite images and can provide very
high-resolution images up to centimeter level, while there exist great challenges in quickly and
accurately detecting and extracting building from UAV images because there are usually too many
details and distortions on UAV images. In this paper, a deep learning (DL)-based approach is
proposed for more accurately extracting building information, in which the network architecture,
SegNet, is used in the semantic segmentation after the network training on a completely labeled UAV
image dataset covering multi-dimension urban settlement appearances along a riverbank area in
Chongqing. The experiment results show that an excellent performance has been obtained in the
detection of buildings from untrained locations with an average overall accuracy more than 90%.
To verify the generality and advantage of the proposed method, the procedure is further evaluated
by training and testing with another two open standard datasets which have a variety of building
patterns and styles, and the final overall accuracies of building extraction are more than 93% and
95%, respectively.
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1. Introduction

Heavy rainfalls can lead to widespread flooding along riverbank areas, especially in China nearly
every summer, and Chongqing City suffers from flooding due to the Yangtze River that flows through
it. Unmanned Aerial Vehicle (UAV)-based photogrammetry has been proven a competitive way
to collect timely data in riverbank areas for its speed, convenience, and also its low cost in getting
high-resolution images, high-accuracy orthoimages, and for 3D mapping [1,2], so it is very suitable for
riverbank monitoring in Chongqing which is a mountainous city with a high population density and
where is also cloudy most of the year.
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However, for building detection and extraction from UAV images, building details will largely
affect the detection accuracy in the case of very high spatial resolution. While various simple and
complex building patterns could be easily interpreted by visual inspection, buildings in remotely
sensed imagery may have various patterns and styles, which will cause a big problem. Traditional
remote sensing image processing approaches, like classification methods (e.g., Maximum Likelihood
Classifier (MLC) and Support Vector Machine (SVM)) [3], do not perform well on UAV images,
because these methods require training samples to predict the synonymous features and they can
only achieve good classification performance when certain criteria are met, such as a Gaussian
distribution of data. The processing time is also a problem when the training samples are large.
These limitations can be solved by using an Artificial Neural Network (ANN) [4]. Modern forms
of ANN have been introduced, in particular Deep Learning (DL), which has already shown great
performance in remote sensing applications such as scene classification, object detection, and semantic
segmentation. In recent years, DL combined with UAV technology has been applied to many
applications such as car detection [5,6], real-time scene understanding [7], location identification
and core fire area segmentation [8], etc. DL can take advantage of spectral, textural, geometrical, and
contextual features in classifying UAV images with much higher accuracy compared to object-based
classification [9]. Zeggada et al. [10] proposed a Convolution Neural Network (CNN) model combined
with multilabeling layer (ML) consisting of a customized thresholding operation to classify a grid of
tiles based on multi-labelled UAV images. As to semantic segmentation, Kemker et al. [11] evaluated
simple classification algorithms (k-nearest neighbor (kNN), linear support vector machine (SVM),
multi-layer perceptron (MLP), spatial mean-pooling (ML)), spatial-spectral feature extraction methods
(MICA and SCAE), and two Fully Connected Network (FCN) models (SharpMask and RefineNet)
with multispectral UAV dataset (RIT-18), and their results showed that DL with RefineNet had the
best performance compared to other classification techniques. Liu et al. [9] compared the performance
of traditional object-based classifications (SVM and Random Forest (RF)) with Deep CNN (DCNN)
on ortho-images and multi-view UAV images, and the results showed that the DCNN provided
more classification accuracy than other traditional approaches, and the accuracy increased more
obviously when multi-view data was used. Furthermore, Nogueira et al. [12] evaluated some typical
DL semantic segmentation methods, including pixel-wise (standard ConvNet), fully convolutional
(Fully ConvNet), deconvolutional (SegNet), and the combination of these methods called ensemble of
ConvNets, and final conclusion was that ConvNets reached the highest overall accuracy of 96%. As
a robust and accurate technique, DL semantic segmentation shows great performance on extracting
objects from UAV images, and multi-view images can contribute significant improvement compared
to orthoimage only.

Moreover, various network architectures have been proposed in DL semantic segmentation to
improve building extraction accuracy, such as single patch-based CNN architecture [13,14], FCN [15],
encoder-decoder network architecture [16,17]. Xu et al. [18] improved building extraction accuracy
using a new model based on deep residual network (ResNet) which is defined as Res-U-Net and
object-oriented guided filter, and the reported accuracy is around 5% higher than other standard
models (SegNet, FCN). For better DL application in UAV image processing, Zhuo et al. [19] proposed
a DL semantic segmentation on oblique images from UAV to optimize building footprint extraction
from OpenStreetMap (OSM).

DL methods require huge training samples and the data complexity should be considered in the
supervised learning process. Buildings along the Yangtze riverside in Chongqing have a variety of
patterns and styles, while the buildings in the few public standard photogrammetry datasets currently
published online have different styles, because they are collected from different geographic locations,
so in our work, a set of building samples on the riverbank area is created and labeled for the supervised
learning process and then DL semantic segmentation using the standard network architecture SegNet
is evaluated. Moreover, the generality and advantage of proposed DL procedure are further verified
by the application to two other standard datasets.
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2. Materials and Methods

2.1. Study Area and Training UAV Datasets

The study area is located in the Fuling District of Chongqing City (China). Figure 1 shows
the UAV data collection area overlayed on a Google Street map. The UAV used in this paper is a
Quad-Rotor UAV (DJI Phantom 4 Pro, Shenzhen Dajiang Baiwang Technology Co., Ltd., Shenzhen,
China) equipped with onboard capabilities, a positioning system (GPS/GLONASS), and DJI camera.
The camera contains a CMOS sensor (13.2 mm × 8.8 mm) with 19.96 MP (megapixel) effective pixels:
and a lens with a FOV (Field of View): 84◦, focal length: 8.8 mm/24 mm (35 mm format equivalent),
aperture: f/2.8–f/11, and focus distance (auto focus): 1 m to ∞. Raw images are stored as RGB mode
(3:2 Aspect Ratio: 5472 × 3648 pixels) in JPEG format. All the UAV images used here were collected
from 18 flights covering both the urban and countryside area. Lighting conditions, capture view, and
flying parameters are not always the same for images not collected during the same flight, so these
images represent a fairly good generalization. The entire object area is divided into training areas
(red boxes), which cover different types of buildings, and testing areas (brown boxes) which are at
different sites from the training areas. The testing areas are further separated into two areas according
to different urban structures (Area_1 and Area_2).
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Figure 1. The study area; outer large red box in top left shows the entire study area; enlarged cyan
boxes refers to training set area and yellow boxes are two testing areas.

From Figure 1, we can see that there are various building patterns, architectures, scene
characteristics, illumination condition, and styles in the entire study area. Figure 2 shows the buildings
in object area are very complicated, and they may be grouped according to different perspectives,
such as building architectures: (a), high and medium size building rooftops (b), small size building
rooftops (c), small building rooftops (d), dense and tall buildings (e), different side of a building
(f), greening on building roofs (g), and playground on building roofs (h). These simple or complex
building patterns can be easily interpreted by visual inspection, while it is not easy for a machine
learning method. Although there are already some open standard datasets provided online, such
as AID, NWPU-RESISC45, PatternNet, RSI-CB256, RSSCN7, UCMerced_Landuse, WHU-RS19, Inria
Aerial Image Labeling, ISPRS semantic labeling datasets, etc. which could represent many building
types around the world, they are mostly captured from very high spatial resolution imagery on aerial or
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satellite platforms, and the training distribution of these open datasets is different from the distribution
of this object area. For these reasons, the training preparation of our own UAV dataset is the first step
and then the work of generalizing SegNet-based DL algorithm to the actual distribution of dataset in
riverside of Chongqing is followed.
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and tall buildings; (f) different sides of a building; (g) greening on building roofs; (h) playground on
building roofs.

As to the UAV dataset production, we first separated all images used for training into two
semantic classes and labeled them as building and non-building. The challenges in creating such
datasets lie in that there are so many building patterns, different flight altitudes, confusing details
caused by low attitude, and complex land cover types in the object area. The sample UAV dataset is
shown in Figure 3. There are 2220 images included in this dataset. Each image consists of an original
RGB image collected from UAV and labeled image with two semantic classes identified, and they are
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linked by the same ID. In our experiment, we divide these annotated datasets into three sets: 2000 sets
for training, 20% of randomly selected from the training set for validating, and 220 sets for testing. The
testing set is captured from different areas compared to the training sample set.
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2.2. SegNet-Based Semantic Segmentation

One of the first end-to-end DL semantic segmentation approaches is the FCN model, which is a
convolutional neural network and a reverse step with an encoder-decoder architecture. The encoder is
topologically identical to VGG-16 architecture in which convolutional and pooling layers are included.
On the other hand, decoder has upsampling and deconvolution layers that are key to the DL semantic
segmentation. The last decoder will produce the segmented output at the same resolution to the
input image. Later, Noh et al. [20] improved the architecture by containing stacked deconvolution and
unsampling layers, which outperforms FCNs but has a more complex training procedure. Furthermore,
Badrinarayanan et al. [21] proposed SegNet architecture which reduced the learning process by reusing
pooling indices in encoder layers to perform upsampling. The successful semantic segmentation using
Caffe was introduced on the website [22]. SegNet has showed superior performance compared to
other deep architectures such as DeepLab-LargeFOV, DeepLab-LargeFOV-denseCRF, FCN, FCN (learn
deconv), and DeconvNet by CamVid and SUNRGB-D dataset [21,23,24]. Moreover, the SegNet network
architecture has been used as the standard architecture for new architecture optimization [12,25–27].
Based on all these achievements, the SegNet network architecture was selected in this research.

The SegNet architecture is illustrated in Figure 4, which is comprised by the encoder network,
decoder network, and the final being pixel-based classification layer. The encoder network consists of 13
convolution layers and max-pooling layers which translate invariance over small spatial shifted images.
Each convolution will be convoluted with filters to produce feature maps and batch normalization,
then it will be applied to Rectified Linear Unit (ReLU) to activate the function for conducting the
non-linear transformation of the feature map to the system. While the decoder network consists of
13 convolution layers and upsampling layers, and the first layer is to decode sparse feature map by
max-pooling indices as called upsampling layer, then the output layer will be convoluted with decoder
filter bank to produce dense feature maps. The final decoder is fed to classification method. The
classifiers in DL can be divided into linear and nonlinear, and mainly linear classifiers such as Support
Vector Machine and SoftMax are used in DL [28]. In this research, the soft-max classifier is selected to
predict maximum probability at pixel level according to the number of classes.

The learning process is defined by the tuning weights in the convolutional layers using the
back-propagation algorithm. The numbers of layers and parameters in each layer are set to the same as
SegNet architecture in [21]. To prevent overfitting, this experiment requires a large amount of training
data and several function settings such as data augmentation (more tolerant to the position and
orientation), early stopping technique (to interrupt training and to evaluate the model on a validation
set at regular intervals i.e., every 50 steps). In the study, L2 regularized logistic regression which used
LIBLINEAR to cost function was added, and the dropout was set to 0.5 which was added to the end
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of deeper convolutional layer, together with batch normalization layers [29] being added to every
convolutional layer.
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Fine-tuning of the hyperparameters are necessary for the supervised learning process. The
implementation of training network is based on the standard architecture with stochastic gradient
descent (SGD) at a learning rate of 0.001 and reduced by a factor of 10 every 50 iterations. The total
number of iterations is 50,000. The remaining two hyper-parameters, momentum and weight decay are
set to 0.9 and 0.0005, respectively. The model training process is implemented on a standard desktop
with CPU Intel Core i7 (3.4GHz), RAM 48GB, GPU NVIDIA Quadro K620, and 2 GB memory. All
experiments are developed based on TensorFlow library with Python 2.7.

2.3. Methods

To examine the efficiency of above architecture when it was applied to a pure UAV dataset in
detecting and extracting buildings, two steps were followed in this paper: Step 1—examining the
building extraction accuracy from UAV images and Step 2—evaluating the performance of supervised
learning procedure on two open standard datasets having different building patterns and styles as
well as geographic locations. The main aim of designing Step 2 is to verify the validity and advantage
of the SegNet architecture used. Details are described in the following sections. In all experiments, the
training process is evaluated by building extraction accuracy assessment and the results are detailed in
the experimental results section.

2.3.1. Step 1: To Examine the Building Extraction Accuracy from UAV Images

In order to detect and extract buildings along the river bank area in Chongqing City, China,
the transferability of learned features was examined by training with image samples from 16 flights
covering the entire object area and was tested on another two flights of other locations (area_1 and
area_2), while area_1 represents the crowded area with high buildings and area_2 represents a fairly
sparse area along riverside with low buildings. The count of image patches corresponding to the UAV
dataset is provided in Table 1.
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Table 1. The number of samples for training, validating, and testing from our UAV datasets.

Dataset Training Validating
Testing

Area_1 Area_2

UAV
dataset 1600 400 120 100

The original size of the UAV images used in our work (5472 × 3648 pixels) cannot be input to the
network architecture due to the insufficient hardware memory (GPU). Therefore, a resizing operation
is necessary. The expected image size is 480 × 360 pixels. The reason for choosing this image size is
that the original SegNet architecture designed by Badrinarayanan et al. [21] uses an image with a size
of 480 × 360 pixels as the input. To evaluate the feasibility of this network architecture on UAV dataset,
it is better to keep the same image size to avoid any systematic bias.

2.3.2. Step 2: To Evaluate Supervised Learning Procedure on Two Open Standard Datasets

To justify the feasibility of proposed DL semantic segmentation procedure on building extraction
from high-resolution images, similar experiments were performed on another two standard datasets:
Inria Aerial Image Labelling dataset (Inria aerial dataset) [30] and ISPRS Potsdam semantic labeling
dataset (ISPRS Potsdam dataset) [31]. The Inria aerial dataset is the open benchmark dataset released
by USGS through the National Map Service (nationalmap.gov), which was collected over the United
States (US) and Austria. It covers a variety of urban landscapes from Austin (TX), Chicago (IL), Kitsap
County (WA)), Tyrol and Vienna as shown in Figure 5a. This open access dataset is available online [32].
ISPRS Potsdam dataset is very high-resolution aerial photograph provided by commission III of ISPRS,
and images in this dataset were captured over the city of Potsdam in Germany, where there are very
dense settlement structures as shown in Figure 5b. This dataset is also available online [33].

The Inria aerial dataset has 24 densely annotated image tiles with a high spatial resolution of
10–30 cm and an image size of 6000 × 6000 pixels, while in our experiment 20 tiles were used for
training and the other four tiles are for testing. As to ISPRS Potsdam dataset, it has 36 image tiles with
a spatial resolution of 5 cm and an image size of 1500 × 1500 pixels and 30 image tiles were adopted to
form the training set, and the remaining six tiles were used for testing. Validation sets were randomly
selected from training sets with a ratio of 20%. The annotated image consists of two classes: building
and non-building. These image tiles are clipped and split to 480 × 360 pixels. The numbers of image
patches corresponding to each dataset are provided in Table 2.
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semantic labeling dataset.

Table 2. The number of samples for training, validating, and testing from the two standard datasets.

Dataset Training Validating Testing

Inria Aerial Image Labeling Dataset 23,100 3850 770
ISPRS Potsdam semantic labeling dataset 320 80 80

2.4. Accuracy Assessment

Indexes are used to evaluate the performance of DL semantic segmentation. The first is Overall
Accuracy which is achieved by calculating the summary of correctly classified pixels, the second is
Mean Intersection over Union (mIoU) which computes the average of IoU. The IoU is computed from
a ratio between the union and intersection of ground truth and predicted segmentation. The ratio is
calculated from intersection value (the number of true positives) divided by union value (the sum of
true of false positives, false negatives, and true positives).

3. Experiment Results

3.1. Experiment 1: Building Extraction Based on Trained UAV Dataset

This experiment is to evaluate the performance of supervised learning model for detecting and
extracting buildings based on the UAV datasets. During the training process, the last validation step is
set to 50,000 iterations. The accuracy results of the proposed SegNet architecture is summarized in
Table 3. It is seen that a very good performance is achieved with an overall accuracy of 92.47% and
mIoU of 84.39%, respectively. The numerical evaluations of this model are done based on two testing
sets: area_1 and area_2. Apparently, SegNet also achieves a very good performance with the overall
accuracy in area_1 (92.59%) and area_2 (89.50%). The distribution accuracy of mIoU in both object
areas is much closer (0.3% difference). It is meaning that the performance of extracted building and
non-building overlapped with the reference building is fair. However, if we compare the classification
accuracy in each class, it is shown that the building class in area_2 has building class accuracy 90.59%
which is higher accuracy than area_1 by 6.47%, while for non-building class, the accuracy of area_1 is
93.59% which is higher than area_2 around 5.24%.



Sensors 2018, 18, 3921 9 of 13

Table 3. Classification accuracy results of UAV dataset (%).

Dataset Building Non-Building mIoU Overall Acc.

Numerical evaluation on validating set
UAV dataset 92.01 94.67 84.39 92.47

Numerical evaluation on two testing sets
Area_1 84.12 93.59 81.27 92.59
Area_2 90.59 88.35 80.97 89.50

Visual comparisons (Figure 6) show that the segmentation results of SegNet architecture are more
accurate and coherent. For example, in Figure 6a,b, the buildings in the urban area (area_1) which
have complex building shapes and patterns are detected correctly, even though there are gaps between
buildings that are mislabeled, but because roof lawns and cement roofs are similar to garden and
cement road, and the shape and size are not detected with the very high accuracy. In Figure 6a, it is
seen that the SegNet architecture can segment the building gaps, but it cannot detect a good building
shape even though it shows clear building features. In contrast, the representation of area_2 (suburban)
in Figure 6c,d shows that the small buildings are completely detected.
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(c,d) are from testing area (area_2).

3.2. Experiment 2: Building Extraction from Two Standard Datasets

Another experiment is also made by applying the proposed SegNet-based DL procedure on
two open standard high-resolution images to extract buildings. The experiment results are shown in
Table 4. The Inria aerial dataset achieves an overall accuracy of 93.42% and an 85.32% mIoU, while
ISPRS Potsdam dataset achieves an overall accuracy of 95.79% and mIoU at 87.80%. In the building
class, two standard datasets have high classification accuracy up to 91.40% of Inria dataset and 92.12%
of ISPRS dataset. The visual building extraction results from both datasets are shown in Figure 7. The
building extraction accuracies are 91.40% for Inria aerial image labeling dataset and 92.12% for ISPRS
Potsdam dataset.
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Table 4. Classification accuracy results of two standard datasets (%).

Dataset Building Non-Building mIoU Overall Acc.

Inria aerial image labeling dataset 91.40 94.84 85.32 93.42
ISPRS Potsdam dataset 92.12 96.65 87.80 95.79
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4. Discussion

The results mentioned in Section 3 show that SegNet-based deep learning approach works well on
the UAV dataset in extracting buildings along the riverbank with fairly good accuracy. The buildings
in UAV images are detected accurately, even though there exist complex features, multiple building
patterns, and various styles. In two testing areas, both high and small buildings are detected correctly,
and the average overall accuracy of both test areas (area_1 and area_2) for building extraction is nearly
90%. The area_2 has better performance than area_1, and that is because buildings in this area are
mainly small building with a simple structure and few styles. Another reason is that there are larger
percentages of bare land and vegetation in area_2, which have different features and patterns from
buildings. However, there still has some error in classifying buildings and the ground due to the
smooth features of these objects and less difference in the height dimension. As to area_1, there are
much richer features inside, which is almost filled with the built-up area, and the medium and high
buildings in area_1 have more structural complexities which will cause more classification errors.
However, when we compare the building classification accuracy, it shows that the supervised training
can classify high and medium building more accurately, while the classification accuracy drops when
it is used to classify small building in area_2. This is because that there are a variety of high building
features and a huge of data sample in the city, on the other hands, there is a smaller number of small
building data sample included in our UAV dataset. Enlarging training samples may be helpful to
improve segmentation result. Though experiments showed that deep learning in our work can detect
all building visually, it is not always correct in extracting building shapes, and building shade or
ground are easily mislabeled as buildings. Furthermore, modern architectures, roof lawns, cement
roofs, and also shadows are difficult to correctly classify from the two-dimensional images. Adding
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some other features like three-dimensional features may work better [34]. We will continue our study
in this field.

The classification accuracy of Inria aerial dataset is almost the same as reported in [30]. The
experiment results on the ISPRS dataset also show the performance as good as claimed in [16,25],
and a better overall accuracy and building classification than the results described in [18]. All these
experiments confirm that SegNet-based DL semantic segmentation can be used as a baseline for
building extraction from high-resolution remote sensing images.

5. Conclusions

This paper evaluated the performance of SegNet-based deep learning on detecting and extracting
buildings from UAV images, and its feasibility and advantage have been confirmed. The supervised
training model based on SegNet architectures shows very good performance with an average overall
accuracy of nearly 90% in extracting buildings from the testing datasets which are collected from other
locations than the training location. The experimental results on two standard datasets (ISPRS and
Inria aerial datasets) also confirm that the proposed DL procedure is suitable for building extraction
from very high-resolution images. Further research will be conducted on improving the network
architecture to get better results.
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