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Abstract: Evaluation of impact damage to mango (Mangifera indica Linn) as a result of dropping
from three different heights, namely, 0.5, 1.0 and 1.5 m, was conducted by hyperspectral imaging
(HSI). Reflectance spectra in the 900–1700 nm region were used to develop prediction models for
pulp firmness (PF), total soluble solids (TSS), titratable acidity (TA) and chroma (∆b*) by a partial
least squares (PLS) regression algorithm. The results showed that the changes in the mangoes’ quality
attributes, which were also reflected in the spectra, had a strong relationship with dropping height.
The best predictive performance measured by coefficient of determination (R2) and root mean square
errors of prediction (RMSEP) values were: 0.84 and 31.6 g for PF, 0.9 and 0.49 oBrix for TSS, 0.65 and
0.1% for TA, 0.94 and 0.96 for chroma, respectively. Classification of the degree of impact damage
to mango achieved an accuracy of more than 77.8% according to ripening index (RPI). The results
show the potential of HSI to evaluate impact damage to mango by combining with changes in
quality attributes.

Keywords: impact damage; hyperspectral imaging; partial least squares regression; quality attributes;
mango

1. Introduction

As one of the most important fruits, mango production occupies a leading position in tropical
and subtropical regions in the world [1]. However, problems influencing mango quality have limited
the consumption of this fruit, among which mechanical damage is a key factor that cannot be
underestimated [2]. Due to the susceptibility to mechanical damage during harvesting, packaging and
transport, a certain degree of decline in mango quality will occur. Therefore, it is crucial to develop
rapid, non-destructive and reliable methods to evaluate mechanical damage to mango.

With regard to different kinds of mechanical damages, impact damage is the most severe and
most likely type to occur. Once damaged, fruits will react with significant physiological responses
in terms of ethylene production, respiration and transpiration [3,4], which may accelerate ripening
of fruits during storage [5]. Numerous studies have attempted to assessed the degree of damage by
detecting surface damage or by means of mechanical parameters, for example, impact energy, absorbed
energy and peak force, etc. [6–10]. In addition, some studies have assessed the maturity according to
impact responses together with statistical analysis characterized by fruits’ firmness, moisture content
and so forth [11–13]. However, the accuracy and robustness of the models used in these studies need
to be improved.
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HSI technology has been widely applied to food science, in areas such as the analysis of green
coffee beans [14], food grains [15] as well as quality evaluation of agro-food products [16,17], which is
largely based on its distinct advantages of being a nondestructive, rapid and accurate analysis
method. Moreover, HSI has been used to assess the mechanical damage of fruits [18–20]. However,
these studies mainly focused on differentiating between damaged and undamaged fruits based on
various imaging processing means and quantification of damage is far from being achieved [5,21–23].
Furthermore, previous research has demonstrated the potential of near infrared (NIR) spectroscopy to
nondestructively determine quality attributes in mango [24–28] but rarely by means of HSI. Though it
is possible to detect mango damages by using visible cameras or other visible technologies, what they
focused on is predicting of mangoes’ quality parameters rather than attempting to connect these
with the degree of damage to fruits. Thus, based on existing studies on mango damage by other
various approaches or visible technologies, evaluating the degree of impact damage by NIR-HSI
and correlating it with changes in quality attributes of mango can be considered as a promising
research direction.

In this paper, evaluation of impact damage to mango caused by dropping the fruits from three
different heights was conducted by HSI. In the damaged area of the mango sample (the region of
interest), the changes in spectra of damaged mango vary and are positively correlated with the degree
of impact damage. Thus, it is reasonable to characterize the degree of the impact damage by changes
in the quality attributes of mango. The aim is to explore the feasibility of assessing the effect of impact
damage on quality attributes of mango by HSI, and in turn, to evaluate the degree of impact damage
according to changes in quality attributes.

2. Materials and Methods

2.1. Experimental Procedure

The entire experimental procedure is sketched in Figure 1. The specific steps to evaluate
mechanical damage to mango by HSI are as follows:

(1) Obtain hyperspectral data and quality attributes of damaged and undamaged mangoes.
(2) Develop prediction models for the correlations between spectral data and quality parameters of

tested mango samples for non-destructive quality prediction of individual mango.
(3) Develop a classification model between spectral data and RPI values derived from quality

parameters for the prediction of degree of impact damage to mango.

2.2. Preparation of Mango Samples

Unripe mangoes (240) were selected from the same batch, purchased from a local market in
Tianjin. Before experiments, the mangoes’ surfaces were cleaned and numbered. Impact damage was
induced in the equatorial zone of fruits using a drop test machine (PD-315A, Suzhou New District
Dongling Vibration Testing Instrument Co., Ltd., Suzhou, China). The maximum load of the machine
is 100 kg and drop height is 0.3–1.5 m. Each bruised area was marked so as to be able to identify
the damaged area. All mango samples were grouped into three groups for three days’ experiments
and each group was grouped into two subgroups. One subgroup with 20 mangoes were free from
damage. Another subgroup with 60 mangoes were dropped onto a steel plate from three different
heights (0.5, 1.0 and 1.5 m, respectively). In the dropping experiments, 20 mangoes were dropped from
the same dropping height. Immediately after the mangoes were dropped, the samples were stored
under conditions of darkness at a room temperature about 20 ◦C and relative humidity of 42% for
further data acquisition.
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Figure 1. Flow chart of the process of evaluating mechanical damage to mango by HSI. 

2.3. Hyperspectral Image Acquisition 

Hyperspectral images of the mangoes were acquired 24 h after the damage was caused and then 
another two times every other day (i.e., day1, day3 and day5) using a hyperspectral imaging 
acquisition system (Imspector N17, Spectral Imaging Ltd., Oulu, Finland). A line-scanning CCD 
hyperspectral camera, a translation stage and illumination units (four halogen lamps, 35 W) are 
included in HSI system. The drive software is SpecView. The reflectance mode (log 1/R) was used to 
carry out spectral acquisition within the spectral range 900–1700 nm. A total of 256 spectral bands 
were recorded by the system. Thus, the spectral resolution was approximately 3 nm. Specific 
parameters were set as follows: exposure time was 20 ms, the speed of translation stage was 14 mm/s, 
the distance between the lens and samples was 420 mm. 

Before collecting hyperspectral images of samples, black and white calibration was performed 
under the same test condition as samples’ hyperspectral image acquisition in order to reduce the 
effect of dark current of camera and changes of light intensity on the image signal. 

First the white calibration image (W) was obtained by scanning the polytetrafluoroethylene 
(PTFE) standard calibration whiteboard. Then the black calibration image (B) was got by covering 
the lens cap. Finally, the calibrated image (I) was calculated by the original hyperspectral image (I0) 
following Equation (1): 
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Figure 1. Flow chart of the process of evaluating mechanical damage to mango by HSI.

2.3. Hyperspectral Image Acquisition

Hyperspectral images of the mangoes were acquired 24 h after the damage was caused and then
another two times every other day (i.e., day1, day3 and day5) using a hyperspectral imaging acquisition
system (Imspector N17, Spectral Imaging Ltd., Oulu, Finland). A line-scanning CCD hyperspectral
camera, a translation stage and illumination units (four halogen lamps, 35 W) are included in HSI
system. The drive software is SpecView. The reflectance mode (log 1/R) was used to carry out spectral
acquisition within the spectral range 900–1700 nm. A total of 256 spectral bands were recorded by the
system. Thus, the spectral resolution was approximately 3 nm. Specific parameters were set as follows:
exposure time was 20 ms, the speed of translation stage was 14 mm/s, the distance between the lens
and samples was 420 mm.

Before collecting hyperspectral images of samples, black and white calibration was performed
under the same test condition as samples’ hyperspectral image acquisition in order to reduce the effect
of dark current of camera and changes of light intensity on the image signal.

First the white calibration image (W) was obtained by scanning the polytetrafluoroethylene (PTFE)
standard calibration whiteboard. Then the black calibration image (B) was got by covering the lens
cap. Finally, the calibrated image (I) was calculated by the original hyperspectral image (I0) following
Equation (1):

I =
I0 − B
W − B

× 100 (1)

After collecting the hyperspectral images of the mango samples, the damaged areas of samples
in the test group and any area of samples in the control group were selected as the region of interest
(ROI) to extract the average spectra. The original spectra were the set of the average spectra extracted
from all samples.
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2.4. Determination of Quality Attributes

2.4.1. Pulp Firmness

A texture analyzer (TA.XT plus, Stable Micro Systems Ltd., Godalming, UK) was used to
perform puncture tests using a Φ = 2 mm diameter stainless needle probe at a speed of 0.5 mm/s.
The compression depth was set as 10 mm. The average force (g) from 2 to 3 s during the penetration
process was calculated as PF (g). Before tests, the peel of the mango sample was removed and puncture
tests were conducted in the damaged area.

2.4.2. Total Soluble Solids

A portable refractometer (PAL-1, Atago, Tokyo, Japan) within range from 0 to 32 oBrix was used
to measure TSS of 1 mL mango juice and the results were expressed as oBrix. It should be noted that
the mango juice was extracted from the mango’s damaged areas.

2.4.3. Titratable Acidity

A traditional titration method was used to measure TA in mango samples. Phenolphthalein was
used as the titration indicator and NaOH solution was the titrant. Mango juice (10 g) was extracted
from each mango sample and diluted with distilled water (100 mL). The diluted sample was subjected
to water bath heating for 30 min at a temperature of 80 ◦C. After cooling, the volume was adjusted to
250 mL by adding distilled water again in order to conduct filtering step. Then a portion of the filtrate
no filtration step mentioned so where does this come from? (50 mL) was obtained and 1–2 drops
of phenolphthalein were added. Finally, the NaOH solution was slowly added until neutralization
occurred. The volume of consumed NaOH solution was recorded as V (mL). The results were expressed
as mass percentage of citric acid (%) calculated as:

TA(%) =
C × V × K

M × V1
V0

× 100 (2)

where C stands for the concentration of NaOH solution, i.e., 0.1 mol/L. V stands for the volume of
NaOH solution consumed during the titration. M stands for the quantity of mango juice. V1 stands
for the volume of the filtrate and V0 stands for the total volume of the diluted solution. K stands for
coefficient converted to the main acid, that is, grams of the main acid that are equivalent to 1 millimole
of NaOH. Since the acids in mango are dominated by citric acid, the K value is 0.064.

2.4.4. Flesh Color

Flesh color was determined on each mango piece cut from a damaged area (test group) or an
undamaged area (control group) of individual mangoes with a colorimeter (Ultrascan Pro, Hunter
Associates Laboratory, Inc., Reston, VA, USA). The color value is represented by chroma (∆b*) of the
Commission Internationale de L’Eclairage (CIE) color space. Positive values of ∆b* indicate that the
color of the sample is more yellowish than the standard color, and greenish otherwise.

2.4.5. Ripening Index

In all of the above measurements, the selected measurement area should be as consistent as
possible with ROI selected during the process of extracting the mean spectra. Subsequently, to describe
the ripeness of mango samples comprehensively and to classify the degree of damage, a ripening index
(RPI) was calculated according to [29]:

RPI = ln
100 × Firmness × TA

TSS
(3)
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It is worth noticing that such characterization of impact damage by means of RPI is an indirect
way, which is also our original intention for introducing the ripening index. Thus, the determination
of mango ripeness is only one step of this process and not our final goal.

3. Spectral Analysis

3.1. Spectral Preprocessing Methods

Spectral preprocessing is necessary to improve the accuracy of prediction model. Savitzky-Golay
smoothing (S-G), standard normal variate (SNV) transformation and multiplicative scatter correction
(MSC) were evaluated in this study. S-G smoothing method uses the least squares fitting coefficient to
establish the filtering function, which performs polynomial least squares fitting on the spectral data
in the moving window instead of simple average. MSC aims to obtain a more “ideal” spectrum by
correcting the scattering of each spectrum. This algorithm assumes that each spectrum should be
linearly related to the “ideal” spectrum. Like MSC, SNV can also be used to correct the spectral errors
caused by scattering between samples, which carries on the standard normalization to each original
spectral data and avoids the need to obtain the “ideal” spectrum.

3.2. Modeling Procedure

In order to improve the efficiency of prediction models, competitive adaptive reweighted sampling
(CARS) was used for selecting important wavelengths. Prediction models were developed using
partial least squares (PLS) regression based on both full spectral range (900–1700 nm) and selected
key wavelengths variables. The principles and procedures of corresponding algorithms are described
as follows.

4. CARS

This algorithm combined with the PLS algorithm aims to eliminate variables with smaller absolute
weight of regression coefficients in PLS regression model and to give priority to variables with larger
absolute weight of regression coefficients. According to the cross validation, the subset of variables
with the least error of the root mean square (RMSECV) are chosen and the variables contained in this
subset are the combination of the optimal characteristic wavelength variables. The main steps in CARS
for key wavelengths selection have been described in detail in [30].

4.1. PLS Modeling

The PLS algorithm combines factor analysis and regression analysis. The main procedures are
described as follows:

First, we decompose the spectral matrix X and quality attributes matrix Y:

X = TP + E (4)

Y = UQ + F (5)

where T and P are the scoring matrix and the load matrix of X, respectively; U and Q are the score
matrix and the load matrix of Y, respectively; E and F are the error matrices introduced when the
model is fitted with X and Y.

Then, to establish a linear regression relationship according T and U:

U = TB (6)

where B is the regression coefficient matrix. Finally, we predict the parameters of unknown samples to
be measured:

Yun = TunBQ + F (7)
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That is to say, the score matrix Tun of the unknown sample Xun is obtained from the P matrix,
and then Yun is calculated from the formula.

During the analysis process, three-fifths of the samples were grouped into modeling sets
(calibration sets) and the remaining samples were included in prediction sets (validation sets). That is,
for each group, there were 12 samples in the calibration sets and eight samples in the validation
sets. The predictive performance of the developed models was characterized by the coefficient
of determination of prediction (RP

2) and root mean square error of the predicted values (RMSEP).
High RP

2 combined with low RMSEP indicates satisfactory predictive performance. Specifically,
the leave-one-out method was used in the cross-validation process during PLS modeling.

4.2. Classification of Damage Degree

RPI, where lower values mean increased ripening, was used to define fruit ripeness as described
previously [29,31,32]. The investigation results indicate that the RPI values of damaged mangos
are significantly different from these of undamaged mangoes under the same conditions, such as
the dropping height, temperature used for storage and so on. Thus, RPI values could be used
to characterize the degree of impact damage. Mango samples were classified into three groups
according RPI values. Mangoes which had an absolute RPI value of greater than 7.0 were considered
slightly damaged, whereas mangoes having RPI of less than 5.0 were classified as seriously damaged.
Mangoes with RPI of 5.0–7.0 were defined as moderately damaged. Discriminant analysis (DA)
was applied to spectral variables selected by CARS to classify mangoes according to RPI. ‘Fisher’s’
and ‘Unstandardized’ methods were selected to give the coefficients of the discriminant function.
Three fourths of the samples were defined as calibration sets (training sets) for development for the
classification model and the remaining samples were considered as validation sets (testing sets) to test
the efficiency of classification.

5. Results and Discussion

5.1. Quality Characteristics after Damage

The trend of quality attributes of the tested mangoes with changes of dropping height and test
dates, is shown in Figure 2.
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Figure 2. Changes in quality attributes of mango samples both in normal and damaged stages (a) pulp
firmness, (b) total soluble solids (TSS), (c) titratable acidity (TA) and (d) chroma (∆b*).

From Figure 2, the following conclusions may be reached: (1) For the same dropping height,
values of PF and TA tended to decrease, whereas TSS and chroma increased over time throughout
the observation process, which is consistent with typical ripening characteristics. More importantly,
samples that are subjected to impact damage have a more pronounced performance as discussed
above; (2) For different dropping heights, during observation in the same day, the higher dropping
height is, the more pronounced performance will be. Additionally, the samples used in this study
showed variability for the quality parameters due to the diversity of physiological development of the
fruits themselves.

The related statistical parameters of the samples’ quality attributes are listed in Table 1. It can
be found from Table 1 that the differences are statistically significant. In particular, it is important to
note that the lower dropping height is, the larger the RPI values will be in the same day. Furthermore,
the RPI values tended to decrease for the same dropping height over time. The above results indicate
that it is reasonable to classify the degree of impact damage according RPI values.

Table 1. The statistical parameters of measured quality attribute data of all mango samples.

Parameter
Drop Height Day1 Day3 Day5

(m) Mean SD Mean SD Mean SD

0.5 48.79 7.09 40.85 6.42 35.31 5.94
Firmness

(N) 1.0 44.16 7.11 37.4 7.31 30.32 5.28

1.5 40.51 6.19 35.66 6.24 27.72 4.08

0.5 10.05 1.01 11.27 1.16 11.31 1.33
TSS (oBrix) 1.0 10.54 0.51 11.76 1.12 12.46 0.85

1.5 11.19 0.6 11.87 0.91 13.2 2.11

0.5 1.99 0.16 1.59 0.42 1.26 0.15
TA (%) 1.0 1.89 0.17 1.40 0.11 0.94 0.19

1.5 1.71 0.14 1.12 0.18 0.35 0.13

0.5 38.03 9.86 47.66 5.86 51.71 4.0
Chroma(b*) 1.0 46.25 8.38 49.22 4.95 54.52 5.01

1.5 50.92 5.83 52.24 4.45 56.51 2.79

0.5 6.88 0.24 6.4 0.38 6.13 0.17
RPI 1.0 6.76 0.23 6.08 0.2 5.3 0.58

1.5 6.29 0.02 5.73 0.55 3.78 0.69
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5.2. Spectral Analysis

Generally, absorption peaks appear in the spectra of fruits because of the presence of certain
particular chemical bonds [33], involving O–H, C–H and N–H bonds existing in fruit constituents
such as water, carbohydrates and organic acids [34–36]. In general, the water absorption bands,
which dominate the NIR spectra of fruits and vegetables, are normally wide and centered at
approximately 970, 1450, 1950 and 2250 nm [37,38]. The absorption bands of starch and sugars
are normally found at 1190 nm [39], where most of them are overlapping with the broad water bands
around the of 970 and 1450 nm region [2]. Monomeric organic acids normally show bands related to the
O–H group from the first, second and third overtone at about 1445, 1000 and 800 nm, respectively [40].

Before further analysis, all the raw absorbance spectra (after reflectance correction) of the
240 mango samples were subjected to preprocessing. Raw spectra and corrected spectra by different
preprocessing methods are shown in Figure 3, where it can be seen that the performance of S-G is the
worst compared to the other two methods.
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Figure 3. Spectra of all mango samples in full spectral range. (a) Raw spectra (b) Spectra preprocessed 
by SNV (c) Spectra preprocessed by S-G (d) Spectra preprocessed by MSC. 
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although the distance from the characteristic peak is somewhat far. Mean spectra obtained from 
different dropping heights for three days are illustrated in Figure 4. The legend “DmHn” means 
mango samples dropped from height n with hyperspectral images collected on day m. For example, 
D1H0.5 means the mango samples that dropped from the height of 0.5 m and hyperspectral images 
collected on the first day. It can be seen that the IR absorptions of damaged mangoes’ spectra are 
lower than that of undamaged mangoes. The higher the dropping height is, the lower the IR 
absorption will be. Certainly, the deviation of spectral bands may exist within certain spectral range, 
which may be ascribed to the changes of optical properties influenced by the alteration of 
physicochemical properties [32,41]. 

Figure 3. Spectra of all mango samples in full spectral range. (a) Raw spectra; (b) Spectra preprocessed
by SNV; (c) Spectra preprocessed by S-G; (d) Spectra preprocessed by MSC.

The two characteristic water absorption bands at 970 and 1450 nm are still obviously observed,
although the distance from the characteristic peak is somewhat far. Mean spectra obtained from
different dropping heights for three days are illustrated in Figure 4. The legend “DmHn” means mango
samples dropped from height n with hyperspectral images collected on day m. For example, D1H0.5
means the mango samples that dropped from the height of 0.5 m and hyperspectral images collected on
the first day. It can be seen that the IR absorptions of damaged mangoes’ spectra are lower than that of
undamaged mangoes. The higher the dropping height is, the lower the IR absorption will be. Certainly,
the deviation of spectral bands may exist within certain spectral range, which may be ascribed to the
changes of optical properties influenced by the alteration of physicochemical properties [32,41].
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Figure 4. Mean spectra of mango samples (damaged and undamaged) for three days at three
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(c) enlarged picture near the wavelength 1500 nm.

5.3. Modeling Results

After modeling by spectral data preprocessed by SNV and MSC respectively, it is seen that
SNV can improve the prediction accuracy of the model in a certain extent. Thus, SNV is the best
preprocessing method among these three approaches. Therefore, the following prediction models for
all quality parameters were built using spectra corrected by SNV.

After spectra preprocessing, competitive adaptive reweighted sampling (CARS) was used for
selecting important wavelengths. After 50 times of sampling through competitive adaptive reweighting
algorithm, 50 subsets of variables are obtained. It can be seen from Figure 5 that when the number of
sampling is up to 29, the cross-validation root mean square error of the variable subset is the smallest.
Corresponding optimal characteristic wavelengths were obtained, namely 1047, 1070, 1090, 1110,
1296, 1373, 1380, 1383, 1386, 1393, 1396, 1416, 1463, 1470, 1476, 1520, 1540, 1583, 1586, 1636, 1689 and
1696 nm, etc.

The prediction models were built using two different strategies: (1) using all variables on the
spectral range of 900–1700 nm in order to make preliminary observation of the relationship between
wavelengths and quality attributes and (2) using only the variables selected by CARS. The modeling
results show that there is strong relationship between wavelengths and changes in quality attributes
and the latter method is better than the former one both in efficiency and accuracy to some degree.
The following analysis are based on predictions obtained by the latter method.
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The scatter plots of modeling results for mangoes’ quality attributes by PLS are shown in
Figure 6. It is worth noticing that Figure 6 gives the modeling results in case of calibration sets
and cross-validation sets, taking all groups into account. In case of prediction sets for each group,
Table 2 shows the regression statistics of PLS to predict PF, TSS, TA and flesh color from impact tests.

Table 2. Modeling results by PLS regression to predict PF, TSS, TA and flesh color from impact tests.

Parameter
Drop Height Day1 Day3 Day5

(m) RP
2 RMSEP RP

2 RMSEP RP
2 RMSEP

0.5 0.45 4.29 0.79 3.57 0.84 3.16
Firmness (N) 1 0.79 1.86 0.67 3.52 0.74 2.17

1.5 0.8 2.46 0.57 3.53 0.43 4.57

0.5 0.71 0.45 0.72 0.54 0.73 0.77
TSS (oBrix) 1 0.66 0.21 0.89 0.36 0.9 0.49

1.5 0.88 0.16 0.87 0.38 0.64 1.28

0.5 -0.07 0.13 0.65 0.1 -6.92 0.28
TA (%) 1 0.58 0.06 0.22 0.16 0.46 0.11

1.5 0.48 0.12 0.58 0.14 0.62 0.07

0.5 0.57 3.63 0.76 1.69 0.88 1.6
Chroma (∆b*) 1 0.63 4.46 0.91 1.89 0.94 0.96

1.5 0.88 1.72 0.8 2.91 0.82 1.15

On the whole, the modeling results achieved by PLS to predict mangoes’ quality attributes are
satisfactory. The best results of RP

2 and RMSEP values were: 0.84 and 31.6 g for PF, 0.9 and 0.49 oBrix
for TSS, 0.65 and 0.1% for TA, 0.94 and 0.96 for chroma, respectively. Nonetheless, taking all groups
into account, prediction of TSS and PF achieved better and more robust results.

Predicted versus reference plots for predicting PF are shown in Figure 6a, among which the
highest RP

2 is 0.84 and with the RMSEP of 31.6 g. The results were slightly satisfactory and may be
a result of the lower number of samples used for developing models. The performance of model
could also be improved by attempting to change methods of selecting characteristic wavelengths in
future work.

For TSS, the predicted versus reference plots are shown in Figure 6b. The highest R2 was up to
0.9 with RMSEP of 0.49 oBrix as shown in Table 2. Related studies have also obtained high accuracy
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for soluble solids (SS) determination in mango and the highest RP
2 was up to 0.93 with RMSEP of

1.223 oBrix by near-infrared spectrometry [42]. Thus, HSI for TSS prediction in this study achieved
good results both in accuracy and robustness compared with previous reports.

Previous studies have demonstrated that the prediction of acidity-related parameters of fruits
is challenging, especially when the TA value of mango fruit is less than 0.2%. Although the best
prediction performance were obtained with RP

2 of 0.5 and RMSEP of 0.17% [2], the robustness of
calibration model needs to be further improved. As observed in Figure 6c in current study, the highest
RP

2 was up to 0.65 combined with RMSEP of 0.1%, which achieved satisfactory results.
With respect to color parameter, the application of it to assess the maturity of fruit is relatively

less, especially in terms of mechanical damage. Take chroma (∆b*) as an example, where the larger
values are, the higher ripeness will be. The potential of PLS model to predict chroma is promising
according to Figure 6d and the data listed in Table 2.
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Figure 6. Scatter plots of predicted and reference quality attributes from both modeling sets and
prediction sets for (a) pulp firmness (PF); (b) total soluble solids (TSS); (c) titratable acidity (TA) and
(d) chroma (∆b*).

Likewise, the prediction process was conducted by calculated RPI values, whereas modeling
performance turned out not as we expected and negative values of R2 appeared. On the one hand,
RPI itself is an indirect parameter and cannot be better associated with spectra data. On the other
hand, the physiological changes of damaged mangoes are too complex to characterize well the damage
mechanism simply by RPI. Nonetheless, from the statistical data listed in Table 1, it is obvious that
the trend of RPI values is positively correlated with the degree of dropping height. That is to say,
the higher dropping height is, the higher ability to accelerate the maturity of mango, which means that
the more serious damage to mango will be. In other words, it is reasonable to evaluate the degree of
impact damage according to RPI values.
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5.4. Classification

The capability of hyperspectral spectra to categorize the degree of impact damage to mango was
evaluated using discriminant analysis (DA). The classification results showed that 83.3% of fruits in the
training set were properly categorized into the slight damaged group, and 100% of fruits in the test set
were correctly classified. As shown in Table 3, 65.3% of the fruits are classified into moderate degree of
impact damage while a more accurate result of 77.8% was achieved in the test sets. It is also worth
mentioning is that the serious degree of impact damage classification results both in the training set and
test set an accuracy of 100% was obtained. The slight and moderate damage groups were completely
distinguished from the serious damage group, whereas misclassification was observed between the
slight and moderate groups, which most likely due to the similarities in their spectra. With these
classification performances, models showed a high potential for classifying mangos according to RPI.

Table 3. Classification results for damage degree of mango performing discriminate analysis (DA) on
spectral data according to RPI.

Actual Group (%)
Classified Group (%)

Total (%)
Slight Moderate Serious

Training set
Slight 83.3 16.7 0 100

Moderate 27.6 65.3 7.1 100
Serious 0 0 100 100

Testing set
Slight 100 0 0 100

Moderate 20.7 77.8 1.5 100
Serious 0 0 100 100

6. Conclusions

Impact damage to mango was evaluated by HSI according to changes in quality attributes.
Prediction models by PLS within the spectral region of 900–1700 nm were developed for quality
attributes. The predictive performance measured by coefficient of determination (R2) and root mean
square errors of prediction (RMSEP) values was satisfactory. In addition, classification of degree of
impact damage to mango was successfully conducted by DA with an accuracy of more than 77.8%
according to RPI values, which also shows the capability of HSI to categorize the degree of impact
damage to mango.

The present studies indicate that HSI could be used as a rapid, nondestructive and reliable tool
for quality control of postharvest products, which is expected to help develop industrialized automatic
inspection and grading of products. Despite this, the evaluation of damage by HSI is still in the aspect
of qualitative detection. Thus, our future work aims to improve the accuracy and robustness of models
as well as quantify the mechanical damage to fruits by HSI.
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