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Abstract: Unmanned aerial vehicles (UAVs) require data-link system to link ground data terminals 

to the real-time controls of each UAV. Consequently, the ability to predict the health status of a UAV 

data-link system is vital for safe and efficient operations. The performance of a UAV data-link 

system is affected by the health status of both the hardware and UAV data-links. This paper 

proposes a method for predicting the health state of a UAV data-link system based on a Bayesian 

network fusion of information about potential hardware device failures and link failures. Our model 

employs the Bayesian network to describe the information and uncertainty associated with a 

complex multi-level system. To predict the health status of the UAV data-link, we use the health 

status information about the root node equipment with various life characteristics along with the 

health status of the links as affected by the bit error rate. In order to test the validity of the model, 

we tested its prediction of the health of a multi-level solar-powered unmanned aerial vehicle data-

link system and the result shows that the method can quantitatively predict the health status of the 

solar-powered UAV data-link system. The results can provide guidance for improving the reliability 

of UAV data-link system and lay a foundation for predicting the health status of a UAV data-link 

system accurately. 

Keywords: UAV data-link system; Bayesian networks; health status prediction; networking mode; 

bit error rate 

 

1. Introduction 

Unmanned aerial vehicles (UAVs) are used widely in military and civilian applications because of 

their low initial cost, high cost-effectiveness over time and ability to operate without casualties [1]. 

UAVs serve in diverse areas such as exploration, investigation, weather forecasting, pipe network 

inspection, aerial photography and express delivery services. However, unlike manned aircraft, 

UAVs require data-link system to link ground terminals to the real-time control of each vehicle. The 

condition of a UAV data-link system determines whether the UAV can perform its tasks successfully. 

Therefore, it is particularly important to develop a model for predicting the health status of UAV 

data-link system. 

Because of the complexity and diversity of the tasks carried out by UAVs and the harsh 

environments in which they may operate, the networking modes of UAV data-links are complex and 

diverse in order to provide effective control. The failure of a UAV data-link that results in the 
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degradation or failure of performance may also involve accidental failure of hardware and even 

failure of the link itself. Complex and volatile environments often have an impact on the health of 

UAV data-link systems. For example, an increase in the bit error rate will reduce the quality of 

information transmission and affect the health of a UAV data-link. So, we have not found any 

research on the health status prediction of the UAV data-link system. 

Many scholars [2–7] have conducted extensive research on health status prediction. For example, 

Nguyen et al. studied the selection of different degradation models using a large number of health 

monitoring data [8]. Most of the systems for health status prediction have been modeled based on 

one of several approaches: the gamma process [9–11], Wiener process [12,13], Markov process [14], 

general generation function [15], Monte Carlo Simulation [16–18]. However, these methods can only 

describe the physical health status caused by performance degradation or accidental failure but the 

health status of the data-link system is affected by the health status of the hardware, as well as the 

link health status. 

Schumann et al. designed a real-time, on-board system health management (SHM) to the health 

status of UAV and adopted Bayesian network methods for fault diagnosis [19]. Chonlagarn et al. 

developed a method to predict the online health status of the UAV system based on hybrid dynamic 

Bayesian network [20]. Khan et al. proposed a method for predicting the state of health of systems 

based on artificial intelligence [21] but there is not enough data to build the model. Bayesian networks 

(BN) as proposed by Pearl [22] provide a reasoning model based on Bayesian theory and graph 

theory. Graph theory is used to describe a complex system clearly and qualitatively and the 

probabilistic method is used for quantitative analysis. BNs have obvious advantages for modeling 

complex systems in areas such as financial risk analysis, wireless sensor networks, system reliability 

analysis [23] and system health management [24]. Through the use of qualitative network topologies 

and quantitative conditional probability descriptions, Bayesian networks can clearly represent the 

inter-component correlation and can integrate information from different sources, including 

experimental data, historical data and expert experience. In addition, BNs have obvious advantages 

for describing the multi-level systems [25] used widely in communication quality prediction [26] and 

the systems involving information interaction [27–29]. Many scholars have adopted the Bayesian 

network to do a lot of research on the system health management of UAV systems. Therefore, we 

adopted a BN in this research to evaluate and predict the health status of the UAV data-link system. 

This paper proposes a UAV data-link health status prediction method based on a BN. This 

approach combines information about the health status of hardware devices that have different 

lifetime characteristics with data about links health status as affected by the environment. The 

degraded health status of the UAV data-link system due to hardware device performance 

degradation and link failure can be described by this model and provides a unified framework for 

the health status prediction of the UAV data-link system. 

The remainder of this paper is organized as follows: Section 2 provides an overview of BNs, 

including a summary of the concept, construction and inference algorithms used in Bayesian network 

models. Section 3 proposes a Bayesian network modeling method for UAV data-links that considers 

the networking mode and the bit error rate. In Section 4, we present a case study in which we apply 

our research to a type of solar-powered UAV. Finally, Section 5 provides our conclusions and future 

work. 

2. Overview of Bayesian Networks 

Bayesian Network is a graphical network model of probabilistic reasoning based on Bayesian 

theory. It consists of a directed acyclic graph (DAG) and a conditional probability table (CPT). The 

former determines the qualitative network structure between variables and the latter determines the 

quantitative relationship between variables. 

Figure 1a is a 5-node DAG. The attributes of the node variables are arbitrary and can be an 

abstraction of any problem. The directed edges between nodes represent the interdependencies 

between nodes and the directed edges are always directed by the parent node to the child nodes. 

While the variable with no parent node is the root node and the variable with no child node is the 
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leaf node and the rest are the intermediate nodes. The CPT for constructing node C according to the 

logical relationship is as shown in Figure 1b. As shown in Equation (1), BN probabilistic reasoning is 

based on the conditional independence assumption that the probability of a child node depends only 

on the probability of the parent node and is independent of other nodes. 

( / , ) ( / ),i ai ii p p i pp X X X p X X  (1) 

where piX  is the parent node of iX  and paiX  is parent node piX  other children node except iX . 

Applying conditional independence to chain rules enables computation of the joint probability, as follows: 

1 2

1

( , , ) ( / ).i

n

n i pp X X X p X X  (2) 

Building a BN requires the following steps: 

1. Define node variables; 

2. Connect the node variables through the directed edges; 

3. Establish a CPT for the non-root node. 

  
(a) (b) 

Figure 1. 5-node directed acyclic graph and conditional probability table. (a) 5-node directed acyclic 

graph; (b) Conditional probability table. 

After the BN model is constructed, the appropriate inference algorithm is selected for 

probabilistic reasoning. The Junction Tree (JT) [30] algorithm has been widely used in precision 

inference algorithms because of its high search efficiency and simple application. The procedure of 

solution is shown in Figure 2. The first step is to construct the moral map corresponding to the 

Bayesian network structure, the second step is to triangulate the moral map to obtain the triangulated 

graph, the third step is to construct the junction tree and the fourth step is to assign parameters to the 

clusters in the junction tree. The final step is the belief update, which updates the belief in the junction 

tree using the message propagation algorithm after the evidence added [Error! Reference source not 

found.]. 

 

Figure 2. The procedure of Junction Tree (JT) algorithm and build thought of JT. DAG: directed acyclic 

graph. 
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3. Model for Predicting the Health of an Unmanned Aerial Vehicle Data-Link System 

In this section, we present our model for predicting the health of a UAV data-link system based 

on a Bayesian network. The data-link system for a UAV consists of a part that is airborne and a part 

that is on the ground. The airborne portion includes the airborne data terminal and antenna. The on-

ground portion comprises the ground data terminal and antenna. Both the airborne data terminal 

and the ground data terminal include a radio frequency receiver, radio frequency transmitter and 

modem. When the distance between them is relatively close, the UAV and the ground data terminal 

establish line-of-sight (LOS) wireless communication via the airborne and ground communication 

units. When the wireless communication line-of-sight link cannot be established because the signal 

is weakened by long distances or ground obstructions such as buildings, repeater satellites are 

utilized to establish non-line-of-sight (NLOS) wireless communication. The UAV data-link 

communication mode is shown in Figure 3. 

 

Figure 3. Schematic diagram of unmanned aerial vehicle (UAV) data-link communication mode. 

The link is divided into an uplink and a downlink according to the transmission direction of the 

information in the link. The ground data terminal transmits a telecontrol command to the UAV 

through the uplink; the UAV transmits telemetry data, such as the position and attitude of the UAV 

and other data such as pictures, to the ground data terminal. Both the telecontrol link and the 

telemetry link must work properly to ensure the UAV data-link system works properly. Therefore, 

to predict the health status of the UAV data-link system, it is necessary to consider the health status 

of the telecontrol link and the telemetry link comprehensively. To improve the reliability of UAV 

data-links, the networking modes of the data-links often adopt a redundant design. UAV data-link 

networking modes may vary and the information transmission paths may also be different. Because 

it is often the case that UAVs are used to perform repetitive or dangerous tasks, degradation of the 

hardware will affect the health status and performance of the UAV data-link. The complex external 

environment can have a severe impact as well. 

3.1. Constructing a Bayesian Network Root Node Prediction Model 

By analyzing the path of information transmission in the UAV data-link system and the 

connection relationship between devices, we can use the radio frequency receiver, radio frequency 

transmitter and modem as the root nodes of the Bayesian network. For ground data terminals and 

for the UAV and repeater satellites, the radio frequency receiver, radio frequency transmitter and 

modem can be described with tandem logic as terminals that perform communication functions. 

Considering that the radio frequency receiver, radio frequency transmitter and modem have no 

influence on the quality of information transmission, this paper combines these three nodes into 

communication terminal module nodes for modeling. Under this approach, the sensors are set in 

each communication terminal module to collect corresponding data and a prediction model of the 

BN root node is established. Considering that the most important characteristic of the link terminal 

equipment is the transmission power, the radio frequency device is the key component after the 

failure mode and mechanism analysis. The power-MOSFET has been adopted for all the airborne 
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terminal equipment in this paper [31]. To establish a predictive model, we combined the degradation 

model for power-law [32] (considering time), Arrhenius model [33] (considering temperature) and 

Eyring model [34] (considering electrical stress) with Wiener’s stochastic degradation process [35]. 

Taking the equipment whose performance degrades from the Wiener process as an example, we 

introduce the prediction model. Assuming the performance parameter P is a key indicator of product 

health status and is sensitive to stress S , the parameter then follows the Wiener degradation process 

as follows [36]: 

     0,( ) ( ) ( )P t d s t B t P  (3) 

where ( )tP  is the product performance at time t  and （）d s  is the drifting reflecting the 

performance degradation rate, which is a function of stress and time. In an accelerated model 

     0( ) expd s s , where ( )s  is a function of stress S ; Constant   is the diffusion 

coefficient that is irrelevant with respect to environment and time, ( ) ~ (0, )B t N t  is the standard 

Brownian motion and 0P  is the initial value of the parameter. 

The degradation amount within the time t  from the properties of the Wiener process is

  2~ ( ( ) , )p N d s t t . L  is defined as the failure threshold of performance p  and then the time t  

that performance parameter value first passed through L  satisfies the inverse Gaussian distribution. 

The distribution function is the unhealth state function of the product and the corresponding 

probability density function is given by: 

 


      
 
 

2

00

0 22 3

- - ( )-
( ; , ) exp - .

22

L P d s tL P
f t P L

tt
 (4) 

The corresponding health state function is the prediction model of equipment, as follows: 

 

     
    

 

0 0

2

( ) ( ) 2 ( ) ( ) ( )
( ) exp ,

2

L P d s t d s L L P d s t
R t

t t
 (5) 

where ( )   is the cumulative distribution function of the standard normal distribution. 

3.2. A Bayesian Network Model of an Unmanned Aerial Vehicle Data-Link System Considering the 

Networking Mode 

After constructing the BN root node prediction model, we can create the UAV repeater satellite 

communication (UAV-RS communication) and the ground data terminal repeater satellite 

communication (G-RS communication) according to the information transfer path and the logical link 

relationship between the components. Next, we provide a line-of-sight wireless communication link 

and a non-line-of-sight communication link for the UAV data-link. Both the line-of-sight 

communication and the non-line-of-sight communication have an impact on the telemetry link and the 

telecontrol link. Therefore, now we can construct the telecontrol link node and the telemetry link node 

with the parent node as the line-of-sight communication and the non-line-of-sight communication links. 

Finally, the leaf node is constructed. The DAG for the UAV data-link system is shown in Figure 4. 

In the BN probability prediction model of the UAV-data-link system, （）xiR t  Mj(t)R  and ( )LR t  

are used to represent the health state of root node   ( 1,2 )iX i p , the intermediate node 

 ( 1,2 )jM j q  and the leaf node L  at time t  respectively. 

For the p  root nodes, the probability of health status is solved by the prediction model of each 

corresponding device and discretized according to the unsupervised equal-width interval method 

with a time sequence to achieve the state prediction in the future T  time; that is, the 
p n

 order 

health state probability prediction matrix [36]: 
 
 
    
 
 


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
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.
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n
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p p n

H H
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 (6) 
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Figure 4. Directed acyclic graph of UAV data-link. LOS: line-of-sight; NLOS: non-line-of-sight; UAV-

RS: UAV repeater satellite; G-RS: ground data terminal repeater satellite. 

With a certain time sequence      ( , 2 )T t t t n . The elements 

   , ( 1,2, , 1,2 )iH i p n  represent root node iX  to be in the heath state at the τth predicted 

point. Assigning the prior probability of the root node according to the probability prediction matrix. 

The probability of the root node iX  at time t  is     ( ) ( ( )), 1,2, ,iX iP R t H R t i p . For the solution 

of the state probability of intermediate nodes, it is assumed that the parent-node set   1 2, , iF R R R  

exists for the node jM , According to the assumption of independent conditions, the probability 

prediction of the intermediate nodes at time t  can be solved based on: 

   ( ) ( ), ( ) .jj M

F

P M t P R t Rx t  (7) 

Based on the probability of the root node and intermediate node, the predicted probability of 

the leaf node in health state can be further solved according to: 

where, ( )Pa  is the parent node of the node “ ( ) ”. 

According to the above formula, the JT estimation algorithm traverses the DAG and the state of 

the system node L  can be predicted. By the probability prediction matrix 

        ( ), ( ), ( 2 ) ( )p nR R t R t R t R t n  of the root node, the corresponding prediction sequence 

of probability at system level will be obtained to achieve continuous prediction of health state. 

3.3. A Bayesian Network Model of an Unmanned Aerial Vehicle Data-Link System Considering the Bit  

Error Rate 

In addition to the possible degradation of hardware equipment performance and accidental 

failure, the health status of the UAV data-link system can be affected by the health status of UAV 

data-links. Such as the bit error rate (BER), packet loss rate, path loss, UAV speed and weather and 

channel capacity will affect the health status of UAV data-links. It can be expressed as follows: 

 1 2 3( , , ),nh f x x x x  (8) 

where h  indicates the health status of UAV data-links, ix  is a factor that affects the health status 

of UAV data-links, such as 1x  is UAV speed, 2x  is the weather 3x  is bit error rate (BER) and so 

forth. We introduce the bit error rate as a factor affecting the health status of the UAV data-inks in 

the following paper. In communications, the bit error rate is an important indicator that measures the 

accuracy of data transmission within a specified time. Often, bit errors are caused by a combination of 

factors, such as the decay of the signal transmission or pulse interference caused by noise, alternating 
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current, lightning and equipment failure. Since the bit error rate is the number of bit errors divided by 

the total number of transferred bits during a studied time interval, a probability value can reflect the 

error (i.e., unhealthy state) of information transmission and therefore it can be used in a BN prediction 

model as a representation between the nodes that are associated with each of the error transmissions. 

In this way, we can modify the BN model to predict the UAV data-link health state not only 

considering the networking mode and we can add the bit error rate node to represent the data-link 

affected by the external environment. The BER value of the newly added root node can be simulated 

and generated. Each link generates a random bit stream for information transmission by means of 

the BPSK spread spectrum. The signal is processed by the method of generating the sixteenth order 

Walsh code and the simulation can be performed. As shown in Figure 5, interfering with the 

modulated bit stream generates random errors and statistics on the bit error rate, generating a bit 

error rate value BERn for each link, thereby obtaining a probability that the link information 

transmission is normal: _  = 1 -  Error n nP BER . 

 

Figure 5. Simulation of bit error rate under different bit stream rates, transmission symbols and signal 

to noise ratio. 

The method for predicting the health status of the UAV data-link system proposed in this paper 

can be summarized as follows: 

1. Determining nodes of the UAV data-link system; 

2. Construct a DAG of the UAV data-link system and establish the CPT of the non-root nodes; 

3. Consider the impact of bit error rate, add the bit error rate nodes and establish the CPT; 

4. The JT estimation algorithm is used to solve the joint probability of relevant nodes, to update 

the conditional probability values of each node and to achieve the deduction of state probability 

of UAV data-link system nodes. 

4. Case Study 

To test and verify our model, we applied our model to a type of solar-powered UAV data-link 

system. The solar-powered UAV data-link system consists of two non-line-of-sight links and three 

line-of-sight links. The B-line-of-sight link (HF band) cannot transmit the task load information of 

large data such as pictures and images due to the bandwidth and cannot transmit the telemetry 

information. Therefore, only the telecontrol information can be uploaded in the simplex mode. A-

Line-of-sight link (UHF band) and C-line-of-sight link (UHF band) are mutually redundant and the 

bandwidth of A-line-of-sight link (UHF band) and C-line-of-sight link (UHF band) is sufficient for 

simultaneous telecontrol and telemetry. Outside the line-of-sight range, the control command is 

received by the non-line-of-sight links and the long-distance data back-transmission is completed. α-
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non-line-of-sight link (Ku band) and β-non-line-of-sight link (Ka band) form redundancy. The non-

line-of-sight links are relayed by two satellites respectively but the airborne communication terminal 

can only point to one of them at a certain time and the two non-line-of-sight links share the airborne 

communication terminal. The normal operation of the UAV is inseparable from the real-time control 

of the data-link system. The data-link, a subsystem of the unmanned aircraft system that provides for 

information transmission, has high sensitivity. The airborne communication terminal, repeater 

satellite’s communication terminal and ground data communication terminal of the unmanned 

aircraft system are in motion relative to each other at all times. The radio frequency transmitter, radio 

frequency output power, external interference and the type and gain of the transmitting/receiving 

antenna determine the maximum acceptable distance for the UAV data-link to establish wireless 

communication. Data transmission through the UAV data-link will experience channel fading as a 

result of an increase in the communication distance that goes beyond the range limit, which will have 

a negative impact on the continuity and stability of signal transmission. This unreliable condition is 

reflected in the communication quality as the error rate. Based on these considerations, we took the 

bit error rate and communication distance together as parameters affecting the quality of information 

transmission to establish the health state prediction model of the UAV data-link system. The factors 

influencing the quality of each channel of the link were composed of two parts: channel fading caused 

by increases in the communication distance and the bit error rate caused by random fluctuations. 

In our model, the communication interruption rate affected by the communication distance can 

be described by the Barnett-Vignant formula: 

         30 lg 10 lg 6 10 lg 1 70.FM d A B f P  (9) 

The probability that the information will not be interrupted is: 

    
 

3lg lg 6 7- /10
1 10 ,

d A B f FM
P  (10) 

where FM  is the fading margin (dB); d  is transmission distance (�); A  is a factor of roughness; 

B  is a factor of climate and environment; and f  is the carrier frequency of the channel (GHz). 

Figure 6 shows the mode of the solar-powered UAV data -link system with three line-of-sight 

links and two non-line-of-sight links. The root node prediction model is shown in Table 1. 

Table 1. Root node of solar-powered UAV data-link prediction model. 

Node 
Description of the 

Prediction Model 
Prediction Model and Parameter 

α-chain 

airborne data 

terminal 

degradation model for 

power MOSFET 

  
      

  
 

     
 

1 2 3 4

1 1

298 298 1
T

T
a a a a

Y e t Yo  

     

       

5
0

1 2 3 4

0.616, 7.79 10 , 5, 8, 0.08

( 8.0363, 5529.6, 0.019, 0.8395)

Ea A Y L

a a a a
 

α-chain 

repeater 

satellite 

Wiener process, Arrhenius 

model 
     ， 5

00.616 7.79 10 , 5, 8, 0.08Ea A Y L  

α-chain 

ground data 

terminal 

exponential distribution   
  

3( ) exp -
2600

tR t  

A-chain 

airborne data 

terminal 

degradation model for 

power MOSFET model 
      1 2 3 47.1342, 5391.4, 0.022, 0.8411a a a a  

A-chain 

ground data 

terminal 

exponential distribution   
  

5( ) exp -
3500

tR t  

B-chain 

airborne data 

terminal 

Combined acceleration 

model 
      1 2 3 47.8220, 5419.2, 0.023, 0.8317a a a a  
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B-chain ground 

data terminal 
exponential distribution   

  
7( ) exp -

4500
tR t  

β-chain 

repeater 

satellite 

Wiener process，

Arrhenius model 
     ， 6

00.64 2.115 10 , 33, 36.5, 0.178Ea A Y L  

β-chain ground 

data terminal 
exponential distribution   

  
( ) exp -

4500
tRs t  

C-chain 

airborne data 

terminal 

degradation model for 

power MOSFET 
      1 2 3 48.2334, 5219.5, 0.014, 0.7991a a a a  

C-chain 

ground data 

terminal 

exponential distribution   
  

9 exp -
4000

tR  

We built a BN according to the networking mode of the solar-powered UAV data-link system 

and then we modified the BN by considering the impact of the communication interruption rate and 

bit error rate. We added 13 root nodes to indicate the factors affecting the health of each channel 

because of the communication distance and bit error rate. _ 1 _ 13~Error ErrorP P  are the BERs of the α-

chain non-line-of-sight uplink, α-chain non-line-of-sight downlink, A-chain of the line-of-sight 

uplink, A-chain of the line-of-sight downlink, C-chain of the line-of-sight uplink, C-chain of the line-

of-sight downlink and B-chain of the line-of-sight uplink, respectively. Accordingly, we constructed the 

BN as show in Figure 7, the leaf node 50X  respect the health state of solar-powered UAV data-link. 

 

Figure 6. The mode of solar-powered UAV data-link.  

Considering the change of communication distance (The solar-powered UAV climbed to an 

altitude of 8500 m at sunrise and descended to an altitude of 1200 m at night.). Given this diurnal 

variation of the flying altitudes of the UAV, the communication distances of the line-of-sight chains 

A, B, C and the non-line-of-sight chain α and β UAV-repeater satellite links are affected by the vertical 

height and the horizontal distance. The simulation of the communication distance is shown in Figure 8. 

According to the communication distance and fading margin (6~10 dB) requirements of each 

channel, we combined the communication interruption rate simulation curves using the Barnett-

Vignant formula and bit error rate to get the health status of each channel. Figure 9 shows the curve 

_Error nP  (except _ 1ErrorP , _ 2ErrorP , _ 7ErrorP , _ 8ErrorP ) as a function of time. 
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Figure 7. Directed acrylic graph of a solar-powered UAV data-link system. 

 
(a) 

 
(b) 

Figure 8. Communication distance distribution curve of each link of solar-powered UAV data-link 

system. (a) Communication distance of UAV-Satellite links; (b) Communication distance of ground-

satellite links. 
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Figure 9. The health status probability of channel with changing communication distance. 

For _ 1ErrorP  (α-chain ground-satellite uplink), _ 2ErrorP  (α-chain ground-satellite downlink) and 

_ 7ErrorP  (β-chain ground-satellite uplink), _ 8ErrorP  (β-chain ground-satellite downlink), the distance 

from the repeater satellite to the ground data terminal can be considered a fixed value because the 

distance between the repeater satellite and the ground data terminal was much larger than the relative 

motion distance between the repeater satellite and the ground data terminal. Therefore, the information 

interruption rate affected by the communication distance was considered a fixed value. We combined 

the information interruption rate and bit error rate to obtain the curve of _ 1ErrorP , _ 2ErrorP  and 

_ 7ErrorP  and _ 8ErrorP  as shown in Figure 10. The communication distance of the channel is considered 

to be a fixed value but the health of the channel still produces random fluctuations over time. The health 

status of the uplink is slightly better than the health status of the downlink. 

 

Figure 10. The health status probability of channel with constant communication distance. 
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Figure 11 shows that in the UAV line-of-sight communication link, the health status of the child 

nodes are worse than that of the parent nodes. The health status of the uplink and downlink is 

basically the same. α-chain G-RS uplink and downlink medium life are approximately 450 h. α-chain 

UAV-RS uplink and downlink medium life are approximately 550 h. α-NLOS uplink and downlink 

medium life are 350 h. Figure 12 shows that the health of the line-of-sight links are better than the 

health of non-line-of-sight links. Because of the redundancy of links, the telemetry link and 

telecontrol link did not reach the median life at 860 h. The telemetry link is redundant by 3 links and 

the telecontrol link is redundant by 2 links, so the health status of the telemetry link is slightly better 

than the health status of the remote link. Figure 13 shows that the health status of the UAV data-link 

system is worse than the health status of the telemetry link and the remote link. After 250 h, there is a 

significant difference. The UAV data-link system reaches the median life about 840 h. 

 

Figure 11. Health state probability prediction curve of Solar-powered UAV data-link intermediate 

node future 840 h. 

 

Figure 12. Health state probability prediction curve of Solar-powered UAV data-link intermediate 

node future 840 h (Continued). 
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Figure 13. Health state probability prediction curve of Solar-powered UAV data-link leaf node future 

840 h. 

Figure 13 shows that although changes in the position of the solar-powered UAV during the 

mission changed the communication distance of each channel periodically, the health status of the 

entire solar-powered UAV data-link system tended to be stable. It can be seen from the data-link 

system health state prediction curve that both node 46 (telemetry link) and node 49 (telecontrol link) 

have an impact on the health status of the data-link system node 50 in the next 840 h but the latter is 

the main reason for the decline of system health status. The weak link is analyzed layer by layer using 

the prediction curve of the intermediate node: telecontrol → non-line-of-sight link → β-chain non-

line-of-sight link → UAV-RS uplink → repeater satellite �. At the same time, it can be seen from the 

DAG diagram of the solar-powered UAV data-link system that the repeater satellite b node in the β 

non-line-of-sight link is the parent node of the total of four nodes β-chain non-line-of-sight uplinks 

and downlinks. So, the repeater satellite � health status has a critical and direct impact on the health 

of the solar-powered UAV data-link. 

5. Conclusions and Future Work 

In this paper, we proposed a method for predicting the health status of UAV data-link system 

based on a Bayesian network. This model employs the Bayesian network to describe the information 

and uncertainty associated with a complex multi-level system. In addition, we proposed an approach 

considers both hardware equipment degradation and the health status of UAV data-links. This 

method combines the health status of hardware with different life characteristics and health status of 

UAV data-links affected by the external environment to predict the health status of the UAV data-

link system. We provide a framework to predict the health status of the UAV data-link system, other 

factors that affect the health status of the UAV data-link system can also be incorporated into this 

method. In this paper, we describe the hardware health status of different life/performance 

characteristics and link’s BER value to predict the health status of UAV data-link system with a 

unified state probability index. Through this approach, we can describe the health status of a UAV 

data-link system quantitatively and comprehensively. 

The case study of a multi-level solar-powered UAV data-link system shows that the model can 

quantitatively describe the health status of a solar-powered UAV data-link system with hardware 

degradation failure and link failure affected by communication distance and BER value. 

Based on the predicted results, we can understand the health status of the UAV data-link in real 

time. Based on the predicted results, we can improve the networking mode of the UAV data-link system 

and provide guidance for the maintenance decision of the UAV data-link system. At the same time, the 

study laid the foundation for accurately predicting the health of the UAV data-link system. 

However, factors such as weather (rain, cloudy), UAV speed, electromagnetic interference and 

so forth. that have an important impact on the communication quality of the UAV data-link system 

are not quantified in this paper. In our future work, we will do experiments to get data to verify the 
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indicators of these influencing factors, then more factors can be incorporated into this model, we can 

accurately predict the health status of the UAV data-link system. At the same time, this method has 

a high dependence on the prediction model, the more accurate lifetime prediction for UAV data-link 

system is based on accurate device-level prediction information which imposes higher requirements 

on information acquisition, processing and analysis from multiple sensors. 
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