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Abstract: In this article, we first investigate secure communications for a two-hop interference channel
relay system with imperfect channel estimation in the wireless Internet of Things (IoT), where K
source-destination pairs communicate simultaneously when an eavesdropper exists. We jointly
conceive source, relay and destination matrices upon minimizing total mean-squared error (MSE)
of all legitimate destinations while keeping the MSE at eavesdropper above a given threshold.
We illuminate that the design of the source, relay and destination matrices is subject to both
transmit power constraints and secrecy requirements. More specifically, we propose an efficient
robust iterative distributed algorithm to simplify the process of the joint design for optimal source,
relay and destination matrices. Furthermore, the convergence of the iterative distributed algorithm
is described. Additionally, the performances of our proposed algorithm, such as its secrecy rate
and MSE, are characterized in the form of simulation results. The simulation results reveal that the
proposed algorithm is superior to the traditional approach. As a benefit, secure communications
can be ensured by using the proposed algorithm for the multiple input multiple output (MIMO)
interference relay IoT network in the presence of an eavesdropper.

Keywords: physical layer security; MIMO interference channel; relay; total MSE; IoT; imperfect
channel estimation

1. Introduction

Future Internet of Things networks integrate the existing and evolving network with
developments in communication and sensing fields, such as multi-hop, self-configuration and enhance
the security of the communications with proper management to create an intelligent network that
can be sensed [1–6]. Recently, with the rapid technological advancements of relay networks, wireless
multi-hop relay networks (such as wireless sensor network) have become a popular technology
for the future IoT networks [7–11]. Along with the enormous development in the field of wireless
communication and hardware technology, wireless multi-hop relay networks are considered as major
applications in IoT [12].

As the application scenarios in wireless IoT, the multi-hop relay networks consist of spatially
distributed sensors or nodes, which enable IoT devices to collect and exchange data in relay manner.
Since the broadcasting nature of wireless communications, this wireless IoT is more prone to
eavesdropping [13]. Therefore, security is required, which can be accomplished by security approaches.
Most of the security approaches for the wireless multi-hop IoT are deployed in the upper layers of

Sensors 2018, 18, 3914; doi:10.3390/s18113914 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9257-181X
https://orcid.org/0000-0003-3655-2416
http://dx.doi.org/10.3390/s18113914
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3914?type=check_update&version=2


Sensors 2018, 18, 3914 2 of 15

the networks. However, nearly all upper-layer security approaches for IoT believe that the opponent
or eavesdropper can obtain entirely control over a sensor or node by way of decoding cryptographic
scheme [14]. Physical layer security technology, which comes from information theory to achieve
perfect security [15–17], is found to be more robust than upper-layer security approaches for the IoT
with multi-hop relay connectivity [13].

The physical layer security of the traditional close-range wireless systems mainly considers
that the eavesdropper wiretaps the messages between sources and legitimate destinations. However,
the security of long-range relays system considers that the eavesdropper wiretaps not only the messages
between sources and relays but also the messages between relays and legitimate destinations. Therefore,
the security of long-range relays system become more complexity than that of traditional wireless
systems for close-range communication [18,19].

Physical layer security has been focused for multi-hop relay networks to combat eavesdropping for
IoT [20–25]. In Reference [13], both channel aware encryption and precoding strategies are discussed in
multi-hop IoT to achieve secrecy communication subject to resource constraints. In References [20,21],
the authors select the optimal relay to improve security by joint relay and jammer selection algorithm,
which may not fully take advantage of all relay nodes. In Reference [22], the problem of secure
resource allocation for a two-way single relay wireless network is investigated, which is designed
under schemes of applying and not applying cooperative jamming in the case of an eavesdropper.
Security enhancement algorithm for IoT communication exposed to eavesdroppers has been forced on
transmission design [23]. The authors in Reference [24] study the problem of improving security for the
important data collection in IoT, where eavesdroppers can decode the signal extremely by combining
their observations. The precoding matrices are optimized to satisfy that the MSEs at legitimate receivers
are small and the MSE at eavesdropper is large in a relay aided cellular interference IoT system [25].
There are also some other schemes of achieving security, which are worth investigating. For instance,
artificial noise has played an important role in enhancing the wireless communication physical layer
secrecy in a two-hop relay network [26]. Furthermore, transmit beamforming is employed in an
Amplify-and-Forward MIMO relay system, in order to obtain the maximum secrecy rate [27].

Although physical layer security for multi-hop relay IoT networks has been studied well,
the resultant problem for secure communications still remains a significant challenge when the
relay networks are faced with interferences and imperfect channel estimation. Some literature
considers physical layer security problem just in interference channels. In Reference [28], a joint
power control and beamforming algorithm is proposed for minimizing the total transmitted power,
while keeping the signal-to-interference-plus-noise ratio (SINR) at each receiver over an expected
threshold. An iterative distributed algorithm is used to design transmit precoding matrices and
receive filter matrices for secure communications over the MIMO interference channels with an
eavesdropper [29]. Other literatures just consider imperfect channel estimation. In Reference [30],
an efficient beamforming approach has been proposed to combat eavesdropper with imperfect
channel estimation. Secrecy outage analysis over a multiplicative composite channel model has
been investigated with imperfect channel estimation [31].

To the best of our knowledge, the works on interference relay networks analysis and design for
physical layer security in IoT system under imperfect channel estimation are still absent. Motivated
by this challenge, we aim to provide secure communications for a two-hop relay system in future
IoT with power supply strategy in this paper, where multiple source-destination pairs communicate
simultaneously over the relay-interference channel in the presence of an active eavesdropper. In our
article, we use MSE as the main performance metric. The system-wide minimum MSE (MMSE) has
been considered in many works. In Reference [32], MMSE performance metric has been considered
in a multiuser MIMO system where a distributed iterative algorithm and interference alignment are
presented. In Reference [33], a weighted-MMSE method is proposed to apply in the optimization
problems of sum-rate maximization, sum-MSE minimization and sum SINR maximization, respectively.
However, the security problem of relays system is not considered in References [32,33].
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To guarantee security in the relays system for IoT, we design an optimization scheme in order to
minimize the total MSE estimated at legitimate destinations and keep the MSE at eavesdropper above
an expected threshold, which is subject to the transmission power constrains at relay nodes and source
nodes. To implement this optimization scheme, the source, relay and destination matrices must be
jointly designed. Nevertheless, there exists a huge problem to design these matrices mentioned above,
because the optimization scheme is too complicated to achieve the closed form solution or numerical
solution of these matrices.

To conquer the above problem, we proposed an iterative distributed algorithm to simplify the
optimization scheme. Specifically, for the sake of achieving the source, relay and destination matrices,
we circularly calculate one of them by using the other two matrix variables obtained from previous
iterations. Furthermore, Kronecker product is employed to facilitate the process of solving these matrix
variables. Consequently, the acquisition of the numerical solution of the source, relay and destination
matrices are much easier. Additionally, our simulation results demonstrate that the proposed iterative
distributed algorithm will converge to a constant after several iterations. We also reveal that our
proposed algorithm is superior to the traditional approach.

The remainder of the article is organized as follows. In Section 2, we describe the system
model and propose the optimization problem. In Section 3, we propose an iterative distributed
algorithm for dividing the non-convex optimization problem into three sub-problems. In Section 4,
we demonstrate the convergence of the proposed algorithm. In Section 5, the simulation results are
presented. In Section 6, the conclusions are summarized.

Notation: In this article, we use (.)H to represent Hermitian transpose, Tr(.) to represent the
trace of a matrix, E{.} to represent the expectation, I to represent the identity matrix, 0 to represent a
matrix or vector whose all element are zeros, Y ∼ CN

(
µ, σ2) to represent Y following the complex

normal distribution with mean µ and variance σ2. bd(.) to represent a block-diagonal matrix, vec(.) to
represent stack columns of a matrix on top of each other into a single vector, ‖.‖ to represent 2-norm of
a vector,

⊗
to represent Kronecker product and C to represent the complex field.

2. System Model and Methods

In this article, we investigate secrecy communication over the MIMO interference channels in
two-hop relay system for the wireless IoT [34,35]. As shown in Figure 1, K source nodes transmit data
to corresponding destination nodes by employing M IoT relay nodes. Meanwhile, an eavesdropper
tries to wiretap the data from source. Assuming that the sophisticated eavesdropper can calculate
its optimal receive matrix relying on minimizing its own total MSE [36]. Considering the path loss
and transmission power constrains, the direct links between sources and destinations are negligible.
According to previous related study [18,19], we assume that the eavesdropper is near by the relay
and far away from the source. Therefore, the eavesdropper wiretapping the messages from both the
sources and the relays simultaneously is difficult. Hence, we only consider the links from relay to
eavesdropper and ignore the links from source to eavesdropper. The interference channels exist in the
system when one of the source nodes transmits signal to corresponding destination while the others
source nodes transmit signals synchronously.
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wireless Internet of Things (IoT). 

Figure 1. Two-hop multiple input multiple output (MIMO) interference relay system model in the
wireless Internet of Things (IoT).

In the system model, the sets of source nodes, relay nodes, corresponding destination
nodes and the source-destination pairs are denoted as {Sk}, {Rm}, {Dk} and {(Sk, Dk)},
where k = 1, . . . , K, m = 1, . . . , M. More generally, the eavesdropper is denoted as E. Furthermore,
Sk, Rm, Dk and eavesdropper are equipped with Tk, Qm, Nk and Ne antennas. We consider that the
channels undergo slow varying flat Rayleigh fading. We also assume that the noise at all receiving
nodes is additive white Gaussian noise (AWGN) with zero mean and variance σ2 [37]. We denote Hkm,
Gmk and Gme as the actual channel matrices of Sk − Rm, Rm − Dk and Rm − E links.

The relays work in half-duplex model with amplify and forward (AF) strategy. So there needs
two time slots to complete the data exchange between source and destination. In the first time slot,
Sk transmits data sk to Rm, then the Rm receives the incoming signal with its receiving antennas and
transmits yrm to Dk and eavesdropper in the second time slot. The received signals at Rm, Dk and
eavesdropper can be denoted as follows

yrm = ∑K
k=1 Hkmsk + nrm , m = 1, . . . , M, (1)

ydk
= ∑M

m=1 Gmkyrm + ndk
, k = 1, . . . , K, (2)

ye = ∑M
m=1 Gmeyrm + ne, (3)

where yrm ∈ CQm×1 is the received signal vector at relay Rm; ydk
∈ CNk×1 is the received signal vector

at destination Dk; ye ∈ CNe×1 is the received signal vector at the eavesdropper E; Hkm ∈ CQm×Tk is
denoted as channel gain between source Sk and relay Rm; Gmk ∈ CNk×Qm is denoted as channel gain
between relay Rm and destination Dk; Gme ∈ CNe×Qm is denoted as channel gain between relay Rm

and eavesdropper E; sk ∈ CTk×1 is the transmitted data vector at source Sk; nrm ∈ CQm×1, ndk
∈ CNk×1

and ne ∈ CNe×1 are AWGN vectors at Rm, Dk and eavesdropper with zero mean and covariance matrix
σ2

rm IQm , σ2
dk

INk and σ2
e INe .

To minimize total MSE at destinations and achieve secure communication, we jointly design
transmit precoding matrices at source and relay and linear receive matrices at destinations and
eavesdropper, which are subject to transmission power constrains at source and relay. For the sake of
seeking optimum solution about above matrices, we scheme an iterative distributed algorithm.

Before transmitting the data sk, we utilize transmit precoding matrix Uk to encode the data sk
at source Sk. Similarly, we utilize transmit precoding matrix Vm to encode the data yrm at relay Rm.
The received signals at Rm, Dk and eavesdropper are as follows

yrm = ∑K
k=1 HkmUksk + nrm , m = 1, . . . , M, (4)

ydk
= ∑M

m=1 GmkVmyrm + ndk
, k = 1, . . . , K, (5)
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ye = ∑M
m=1 GmeVmyrm + ne, (6)

In most scenarios, perfect channel estimation is considered. However, channel estimation is far
from being perfect in realistic practical system. Hence, we assume imperfect channel estimation in
our article. Here, Psk and Prm denote the maximum transmission power at Sk and Rm. Np denotes
the number of channel estimation pilot symbols. Considering Ĥkm, Ĝmk and Ĝme as the estimated
channel matrices and Eh,km, Er,mk, and Ee,me as the MMSE estimation error matrices, respectively,
we obtain the relationship of the estimated and actual channel matrices as Hkm = Ĥkm + Eh,km,

Gmk = Ĝmk + Er,mk, Gme = Ĝme + Ee,me, where Eh,km ∈ CQm×Tk ∼ CN
(

0, (1 + ρhSNRh)
−1
)

with

ρh = Np/Tk and SNRh = Psk/σ2
rm , Er,mk ∈ CNk×Qm ∼ CN

(
0, (1 + ρrSNRr)

−1
)

with ρr = Np/Qm

and SNRr = Prm/σ2
dk

, and Ee,me ∈ CNe×Qm ∼ CN
(

0, (1 + ρeSNRe)
−1
)

with ρe = Np/Qm

and SNRe = Prm/σ2
e .

Finally, both destination Dk and the eavesdropper employ linear receive matrix Wk and We,k
respectively to receive the transmitted signals. Assuming imperfect channel estimation above mention,
the estimate of the data sk at Dk and the eavesdropper can be denoted as follows

^
sk = WH

k ydk
= WH

k

(
∑M

m=1 ∑K
l=1(Gmk − Er,mk)Vm(Hlm − Eh,lm)Ulsl + ∑M

m=1(Gmk − Er,mk)Vmnrm + ndk

)
, (7)

^
sek = WH

e,kye = WH
e,k

(
∑M

m=1 ∑K
l=1(Gme − Ee,me)Vm(Hlm − Eh,lm)Ulsl + ∑M

m=1(Gme − Ee,me)Vmnrm + ne

)
, (8)

where Wk and We,k are the Tk ×Nk and Tk ×Ne,k receive weight matrices. We assume that E
{

sksH
k
}
=

ITk is the covariance matrix of the data sk at Sk. From Equation (7), the MSE of estimating sk at Dk can
be calculated as

MSEk = tr(E
{
(

^
sk − sk)(

^
sk − sk)

H}
) = tr((∑M

m=1 WH
k (Gmk − Er,mk)Vm(Hkm − Eh,km)Uk − ITk )

(∑M
m=1 WH

k (Gmk − Er,mk)Vm(Hkm − Eh,km)Uk − ITk )
H + ∑M

m=1 σ2
rm WH

k (Gmk − Er,mk)

VmVH
m(Gmk − Er,mk)

HWk+∑M
m=1 ∑K

l=1,l 6=k WH
k (Gmk − Er,mk)Vm(Hlm − Eh,lm)

UlUH
l (Hlm − Eh,lm)

HVH
m(Gmk − Er,mk)

HWk + σ2
dk

WH
k Wk).

(9)

Similarly, we can get the MSE of estimating sk at eavesdropper as follows

MSEe,k = tr(E
{
(ŝek − sk)(ŝek − sk)

H
}
) = tr ((∑M

m=1 WH
e,k(Gme − Ee,me)Vm(Hkm − Eh,km)Uk − ITk )

(∑M
m=1 WH

e,k(Gme − Ee,me)Vm(Hkm − Eh,km)Uk − ITk )
H
+ ∑M

m=1 σ2
rm WH

e,k(Gme − Ee,me)VmVH
m

(Gme − Ee,me)
HWe,k+∑M

m=1 ∑K
l=1,l 6=k WH

e,k(Gme − Ee,me)Vm(Hlm − Eh,lm)UlUH
l (Hlm − Eh,lm)

HVH
m

(Gme − Ee,me)
HWe,k + σ2

e WH
e,kWe,k).

(10)

The transmission power constraints at source Sk and relay Rm are as follows

tr
(

UkE
{

sksH
k

}
UH

k

)
≤ Psk, k = 1, . . . , K, (11)

tr
(

VmE
{

yrm yH
rm

}
VH

m

)
≤ Prm, m = 1, . . . , M, (12)

where Psk and Prm denote the maximum transmission power at Sk and Rm.
Without eavesdropper, the K legitimate communication pairs can achieve their maximum

communication rates and the transmission is secure and reliable. However, when there exists an
eavesdropper, the signals from source may be leaked out to the eavesdropper.

In order to elaborate more specifically and clearly, we assume a worst-case situation, namely in
the presence of a sophisticated eavesdropper which can obtain the channel state information and our
proposed algorithm, the eavesdropper calculates its linear receive matrix We,k to minimize its own
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MSEe,k. To prevent this, we exploit the assumption to conceive the precoding/receive matrices for
legitimate system at source or relay.

The solution of the source matrices {Uk}, relay matrices {Vm} and destination matrices {Wk} is
vital. The solution of the problem is to utilize the source, relay and destination matrices to minimize
the total MSE of all legitimate destination nodes and keep the MSEe,k above an expected threshold
εk (k = 1, . . . , K), while subjecting to the transmission power constrains at source and relay. The
solution is denoted as follows

min
{Uk}, {Vm}, {Wk}

: ∑K
k=1 MSEk

s.t. : MSEe,k ≥ εk,
tr
(
UkE

{
sksH

k
}

UH
k
)
≤ Psk,

tr
(
VmE

{
yrm yH

rm

}
VH

m
)
≤ Prm,

(13)

where {Uk}, {Vm} and {Wk} are the solution obtained.

3. The Iterative Distributed Algorithm of Solving Source, Relay, Destination and
Eavesdropper Matrices

Due to the non-convex problem (13) with matrix variables, so we are facing an uphill battle to
obtain the optimum solution of the joint design matrices. To deal with the solution, we design an
iterative distributed algorithm to jointly design the optimal solution of the source matrices {Uk},
relay matrices {Vm} and destination matrices {Wk}. The whole solving process of the three matrix
variables is divided into three steps. We circularly calculate one of them by using the other two matrix
variables obtained from previous iterations, the non-convex problem (13) is transformed into three
sub-problems in each step.

The objective function of (13) can be denoted by total MSE (TMSE) as follows

TMSE = ∑K
k=1 MSEk. (14)

3.1. Solution of Destination Matrices {Wk}

In the first iteration of our proposed algorithm, we set the initial value of {Uk} and {Vm},
then calculate the optimal solution of {Wk}. Thus, at the following iteration of the algorithm, we
calculate the optimal {Wk} by utilizing previously obtained {Uk} and {Vm}.

It is obvious from (13) that {Wk} are independent with transmission power constrains of source
and relay. Therefore, we can obtain the optimal linear receive matrices {Wk} to minimize the total
MSE at destination by the well-known linear MMSE receiver [38], which can be formulated as

Wk = (∑M
m=1 ∑K

l=1 (Gmk − Er,mk)Vm(Hlm − Eh,lm)UlUH
l (Hlm − Eh,lm)

HVH
m(Gmk − Er,mk)

H

+∑M
m=1 σ2

rm(Gmk − Er,mk)VmVH
m(Gmk − Er,mk)

H + σ2
dk

INk )
−1

(∑M
m=1 (Gmk − Er,mk)Vm(Hkm − Eh,km)Uk).

(15)

Assuming that the eavesdropper employs the above well-known linear MMSE method to calculate
its linear receive matrix We,k., which can be formulated as

We,k = (∑M
m=1 ∑K

l=1 (Gme − Ee,me)Vm(Hlm − Eh,lm)UlUH
l (Hlm − Eh,lm)

HVH
m(Gme − Ee,me)

H

+∑M
m=1 σ2

rm(Gme − Ee,me)VmVH
m(Gme − Ee,me)

H + σ2
e INe)

−1
(∑M

m=1 (Gme − Ee,me)Vm(Hkm − Eh,km)Uk).
(16)

3.2. Solution of Source Matrices {Uk}

After obtaining the optimal matrices {Wk}, we can calculate the transmit precoding matrices
{Uk} with {Wk} obtained from current iteration and {Vm} obtained from the previous iteration.
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For further analysis, the TMSE of (14) can be specifically written as

TMSE = ∑K
k=1 tr(∑M

m=1 ∑K
l=1 WH

k (Gmk − Er,mk)Vm(Hlm − Eh,lm)UlUH
l (Hlm − Eh,lm)

H

VH
m(Gmk − Er,mk)

HWk)−∑K
k=1 tr(∑M

m=1 WH
k (Gmk − Er,mk)Vm(Hkm − Eh,km)Uk)

+∑K
k=1 tr(∑M

m=1 UH
k (Hlm − Eh,lm)

HVH
m(Gmk − Er,mk)

HWk)+

∑K
k=1 tr(∑M

m=1 σ2
rm WH

k (Gmk − Er,mk)VmVH
m(Gmk − Er,mk)

HWk + σ2
dk

WH
k Wk + ITk )

(17)

Define Pk,m,l = WH
k (Gmk − Er,mk)Vm(Hlm − Eh,lm), so (17) can be written as

TMSE = ∑K
k=1 tr(∑M

m=1 ∑K
l=1 Pk,m,lUlUH

l PH
k,m,l)−∑K

k=1 tr(∑M
m=1 Pk,m,kUk)−∑K

k=1 tr(∑M
m=1 UH

k PH
k,m,k)

+∑K
k=1 tr(∑M

m=1 σ2
rm WH

k (Gmk − Er,mk)VmVH
m(Gmk − Er,mk)

HWk + σ2
dk

WH
k Wk + ITk )

(18)

Define Pk,m = [Pk,m,1, Pk,m,2, . . . , Pk,m,K], P̂k,k = ∑M
m=1 Pk,m,k, U = bd(U1, U2, . . . , UK).

TMSE = ∑K
k=1 tr

(
∑M

m=1 Pk,mUUHPH
k,m

)
−∑K

k=1 tr
(
P̂k,kUk

)
−∑K

k=1 tr
(

UH
k P̂H

k,k

)
+ γ, (19)

where γ = ∑K
k=1 tr

(
∑M

m=1 σ2
rm WH

k (Gmk − Er,mk)VmVH
m(Gmk − Er,mk)

HWk + σ2
dk

WH
k Wk + ITk

)
. γ is

independent with {Uk}, so it can be ignored in the solving process. Let P̂ = bd
[
P̂1,1, P̂2,2, . . . , P̂K,K

]
,

from (19) we can get

TMSE = ∑K
k=1 tr

(
∑M

m=1 Pk,mUUHPH
k,m

)
− tr

(
P̂U
)
− tr

(
UHP̂H

)
+ γ. (20)

To solve the above problems simplistically, we introduce some important formulas of
Reference [39]

tr
(
AHB

)
= (vec(A))Hvec(B), tr

(
AHBAC

)
= (vec(A))H(CH ⊗B

)
vec(A),vec(ABC) =

(
CH ⊗A

)
vec(B).

And define u , vec(U) and Uk = tkUtH
k , where tk =

[
0Tk×∑k−1

l=1 Tl
ITk×Tk 0Tk×∑K

l=k+1 Tl

]
. We can

further simplify Formula (20) as follows

TMSE = uHωu−ψu− uHψH + γ, (21)

where τ = bd
(
IT1 , IT2 , . . . , ITK

)
,ω = ∑K

k=1 ∑M
m=1 τ

⊗
PH

k,mPk,m, ψ =
(
vec
(
P̂H))H .

In the same way, we can obtain the simplified formula of MSEe,k as follows

MSEe,k = uHωe,ku−ψe,ku− uHψH
e,k + γe, (22)

where Pe,k,m,l = WH
e,k(Gme − Ee,me)Vm(Hlm − Eh,lm), Pe,k,m =

[Pe,k,m,1, Pe,k,m,2, . . . , Pe,k,m,K], P̂e,k,k = ∑M
m=1 Pe,k,m,k, ωe,k = ∑M

m=1 τ
⊗

PH
e,k,mPe,k,m,

γe = tr
(

∑M
m=1 σ2

rm WH
e,k(Gme − Ee,me)VmVH

m(Gme − Ee,me)
HWe,k + σ2

e,kWH
e,kWe,k + ITk

)
and

ψe,k =
(

vec
(

P̂H
e,k,k

))H
(tk ⊗ tk).

Because of E
{

sksH
k
}
= ITk , the transmission power constrains (11) can be rewritten as

tr
(

tkUtH
k

(
tkUtH

k

)H
)
≤ Psk, k = 1, . . . , K, (23)

Then we obtain (24)
uHρu ≤ Psk, k = 1, . . . , K, (24)

where ρ =
(
tH
k tk
)
⊗
(
tH
k tk
)
.
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From (21), (22) and (24), the source matrices optimization problem is denoted as

min
{Uk}

: TMSE

s.t. : MSEe,k ≥ εk
uHρu ≤ Psk

(25)

The source matrices optimization problem (25) is a quadratic constrained quadratic programming
(QCQP) problem [40]. Compared with the non-convex problem (13), the (25) will be solved by the
CVX of MATLAB toolbox [41].

3.3. Solution of Relay Matrices {Vm}

Since {Wk},
{

We,k
}

and {Uk} are already obtained, the TMSE can be rewritten as

TMSE = ∑K
k=1 tr(∑M

m=1 ∑K
l=1 GmkVmHlmHH

lmVH
mGH

mk)−∑K
k=1 tr(∑M

m=1 GmkVmHkm)−

∑K
k=1 tr(∑M

m=1

¯
H

H

kmVH
m

¯
G

H

mk) + ∑K
k=1 tr(∑M

m=1 σ2
rm

¯
GmkVmVH

m
¯

G
H

mk + σ2
dk

WH
k Wk + ITk )

(26)

where Gmk = WH
k (Gmk − Er,mk), Hkm = (Hkm − Eh,km)Uk. Define V = bd(V1, V2, . . . , VM),Gk =

bd
[
G1k, G2k, . . . , GMk

]
, η = bd

[
σ2

r1
IQ1 , σ2

r2
IQ2 , . . . , σ2

rM
IQM

]
, Hk = bd

[
Hk1, Hk2, . . . , HkM

]
,

β = ∑K
k=1

(
σ2

dk
WH

k Wk + ITk

)
. Then the TMSE can be simplified as

TMSE = ∑K
k=1 tr(GkV(∑K

l=1 HlH
H
l )VHGH

k )−∑K
k=1 tr(GkVHk)−∑K

k=1 tr(HH
k VHGH

k )+

∑K
k=1 tr(GkVηVHGH

k ) +β.
(27)

Let us introduce v = vec(V), then we obtain the TMSE as

TMSE = vHΩv−Ov− vHOH + vHµv +β, (28)

where Ω = ∑K
k=1

((
∑K

l=1 HlH
H
l

)⊗(
GH

k Gk

))
, O = ∑K

k=1

(
vec
(

GH
k HH

k

))H
, µ = ∑K

k=1

(
η
⊗(

GH
k Gk

))
.

In the same way, we can obtain the simplified formula of MSEe,k as follows

MSEe,k = vHΩe,kv−Oe,kv− vHOH
e,k + vHµe,kv +βe,k, (29)

where Ge,k,m = WH
e,k(Gme − Ee,me), Ωe,k =

(
∑K

l=1 HlH
H
l

)⊗(
GH

e,kGe,k

)
, Oe,k =

(
vec
(

GH
e,kHH

k

))H
,

µe,k = η
⊗(

GH
e,kGe,k

)
, βe,k = σ2

e WH
e,kWe,k + ITk , Ge,k = bd

[
Ge,k,1, Ge,k,2, . . . , Ge,k,M

]
.

Because of E
{

yrm yH
rm

}
= ∑K

k=1(Hkm − Eh,km)UkUH
km(Hkm − Eh,km)

H + σ2
rm IQm and Vm = dmVdH

m ,

dm =
[
0Qm×∑m−1

l=1 Ql
IQm×Qm 0Qm×∑M

l=m+1 Ql

]
. The transmission power constrains at relay can be

denoted as
vHλv ≤ Prm, m = 1, . . . , M, (30)

where λ =
(

dH
m

(
∑K

k=1(Hkm − Eh,km)UkUH
km(Hkm − Eh,km)

H + σ2
rm IQm

)
dm

)H
⊗
(
dH

mdm
)
.

From (28), (29) and (30), the relay matrices optimization problem is denoted as

min
{Vm}

: TMSE s.t. : MSEe,k ≥ εk vHλv ≤ Prm, m = 1, . . . , M, (31)

The relay matrices optimization problem (31) is a QCQP problem [40]. Compared with the
non-convex problem (13), the (31) will be solved by utilizing the CVX of MATLAB toolbox [41].
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The solving process of optimization matrices {Wk}, {Uk} and {Vm} by employing iterative
distributed algorithm is summarized in Table 1 and variable n denotes the nth iteration.

Table 1. The proposed iterative distributed algorithm for problem (13).

Steps Specific Progress

Step 1 Set n = 0, TMSE(n) = 0 and initialize the
{

U(0)
k

}
and

{
V(0)

k

}
satisfying power

constrains (11) and (12).

Step 2 Calculate
{

W(n+1)
k

}
and

{
W(n+1)

e,k

}
with

{
U(n)

k

}
and

{
V(n)

m

}
obtained from previous

iteration.

Step 3 Update
{

U(n+1)
k

}
by solving the problem (25) with

{
W(n+1)

k

}
,
{

W(n+1)
e,k

}
and

{
V(n)

m

}
.

Step 4
Update

{
V(n+1)

m

}
by solving the problem (31) with

{
W(n+1)

k

}
,
{

W(n+1)
e,k

}
and{

U(n+1)
k

}
, then calculate TMSE(n+1).

Step 5 If TMSE(n+1) − TMSE(n) ≤ ξ, then end; otherwise set n = n + 1, then go to step 2.

At last, we introduce the communication rate and secrecy rate in this system model.
The communication rate at destinations and eavesdropper are as follows [42],

comDk = log2

(
1 + ∑M

m=1

‖WH
k GmkVm‖2

‖WH
k Wk‖

)
, k = 1, . . . , K, (32)

comE = log2

(
1 + ∑M

m=1

‖WH
e,mGmeVm‖2

‖WH
e,mWe,m‖

)
, (33)

The secrecy rate at each destination can be obtained [43].

RateDk = max(0, comDk)−max(0, comE), k = 1, . . . , K. (34)

4. The Convergence of the Proposed Algorithm

In this part, the convergence of our proposed algorithm is proved [44]. Since the {Uk} and {Vm}
are updated at each iteration by minimizing the TMSE, the TMSE is reduced gradually after each
iteration. Furthermore, it is obvious that the TMSE has a lower limit which is at least greater than 0.
This implies that the proposed algorithm is convergence. The convergence of the proposed algorithm
can be proved exactly as follows. According to Section 3, we can obtain the objective function is

min
{Uk}, {Vm}, {Wk}

: ∑K
k=1 MSEk (35)

The solution of {Wk} can be ignored in the proof of convergence, because it is calculated by
obtained {Uk} and {Vm} rather than utilize optimal scheme. For the obtained {Vm}, the optimal
solution can be denoted as follows.

min
{Uk}

: ∑K
k=1 MSEk (36)

Therefore, we can get ∑K
k=1 MSEk(Uk(n + 1), Vm(n)) ≤ ∑K

k=1 MSEk(Uk(n), Vm(n)).
Similarly, for the obtained {Uk}, the optimal solution can be denoted as follows.

min
{Vm}

: ∑K
k=1 MSEk (37)
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Hence, we can deduce ∑K
k=1 MSEk(Uk(n + 1), Vm(n + 1)) ≤ ∑K

k=1 MSEk(Uk(n + 1), Vm(n)).
Furthermore, we get ∑K

k=1 MSEk(Uk(n + 1), Vm(n + 1)) ≤ ∑K
k=1 MSEk(Uk(n), Vm(n)).

According to the mentioned above, we conclude that the TMSE is decreasing gradually with the
updated {Uk} and {Vm} after each iteration. The TMSE converges to a constant after several iterations,
which is also demonstrated by the Figure 2 of the Numerical Results part.

5. Numerical Results

In this part, we provide numerical results to examine the effectiveness of the optimization
iterative distributed algorithm for secure transmission in interference channels MIMO relay system
with eavesdropping. Assuming that all nodes have the same antennas, Tk = Qm = Nk = Ne = 3 and
all channel matrices are independently distributed Gaussian channel matrices with zero mean and
unit variance. The noises at all receiving nodes are assumed as AWGN with σ2

dk
= σ2

rm = σ2
e = 1.

The transmission power constrains at sources and relays are assumed as Psk = Prm = 20 dB. Assuming
that the eavesdropper knows the channel state information of the links between relay and itself.
In addition, the threshold of eavesdropper’s MSE are εk = 2.2, k = 1, . . . , K. All figures are averaged
over 1000 independent test.

Figure 2 depicts the convergence of proposed iterative distributed algorithm, where we have
K = 2 or 6, M = 3, Np = 100, as well as Psk = Prm = 20 dB. As can be seen in Figure 2, TMSE decreases
gradually until convergence when the number of iterations increases. It can be observed in both
Figure 2a,b, as the system scale increases (i.e., increasing K), the convergence speed decreases and
TMSE increases. This is because more legitimate source-destination pairs increase both the system
complexity and the interferences between each legitimate source-destination pair and they lead to
more iterations to approximate convergence and the increasement of TMSE.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Figure 2. Total mean square error (TMSE) versus the number of iterations.

Figure 3 shows the changes of TMSE and MSEs at different destinations versus signal to noise
ratio (SNR) with different Np, where we have K = 3, M = 3, TMSE-e denotes the ∑K

k=1 MSEe,k.
As shown in Figure 3a, both TMSE of all destinations and MSE at different destinations decrease
gradually as the SNR increases. It can also be observed in Figure 3a that MSEs at different destinations
are very similar, statistically there is the nearly the same of the three legitimate links. Obviously,
the TMSE of all legitimate destinations is much lower than the TMSE-e. It means that the system can
be achieved a better transmission performance by employing our proposed algorithm against the
eavesdropper. Additionally, Figure 3b shows that the TMSE of all destinations decreases when Np

increases. The reason is that the reduction of Np causes the increasement of channel estimation errors,
which in turn leads to the increasement of the TMSE.
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Figure 3. The TMSE and MSE versus signal to noise ratio (SNR).

Figure 4 depicts the values of secrecy rate and communication rate versus transmission power
constrains with different Np, when K = 3, M = 3, which is in the same background with Figure 3.
As shown in Figure 4a, compared to the traditional approach, the proposed algorithm can support
a positive secrecy rate and secrecy rate gradually improves with the SNR increasing. In other
word, our proposed algorithm guarantees secure communications for the system. According to
Reference [45], when the communication rate of legitimate transmitter-receiver link is lower than that
of the transmitter-eavesdropper link, we define the secrecy rate as “0”; when the communication rate of
legitimate transmitter-receiver link is larger than that of the transmitter-eavesdropper link, we define
secrecy rate as the difference between the communication rate of legitimate transmitter-receiver link
and that of the transmitter-eavesdropper link (as shown in (32)). The traditional approach does
not consider the eavesdropper and the eavesdropper is so “sophisticated” (it knows our security
algorithm) that the communication rate of legitimate transmitter-receiver link is lower than that of the
transmitter-eavesdropper link. Consequently, no matter how large the SNR is, the secrecy rate is always
zero. That communication rates of three links are similar, the situation of the secrecy rates is the same.
Moreover, the achievable secrecy rates are lower than communication rates, because the proposed
algorithm sacrifices a part of communication rate to realize a positive secrecy rate. Additionally, it can
be observed in Figure 4b that the secrecy rate improves with the increasing of Np. This is because
the increasement of Np causes the reduction of channel estimation errors, which in turn leads to the
increasement of secrecy rates.
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Furthermore, in Figure 5 we depict the variation of the TMSE as a function of the number of
iterations and the transmission power constrains, where we have K = 3, M = 3 and Np = 100 As
shown in Figure 5, the TMSE of all destinations decreases when the SNR or the number of iterations
increases. In addition, it also be depicted in Figure 5 that the TMSE decreases quickly at the beginning
of the iteration process. And that means the proposed algorithm converges quickly.
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6. Conclusions

In this article, we first investigate secure communication in MIMO interference relay IoT network
in the presence of an active eavesdropper. A robust iterative distributed algorithm which jointly
optimizes the source, relay and destination matrices has been proposed under the imperfect channel
estimation. It aims to minimize the TMSE of all legitimate destinations subject to transmission power
constrains while keeping MSE at eavesdropper above a certain threshold. The convergence of the
proposed algorithm has also been proved. In addition, the performances of our proposed algorithm,
such as its secrecy rate and MSE, are characterized in the form of simulation results. The simulation
results reveal that our proposed algorithm is superior to the traditional approach. In other word,
security can be ensured by using the proposed algorithm in the interference channel MIMO relay IoT
network when there exists an eavesdropper.
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