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Abstract: Cleaning robot has the highest penetration rate among the service robots. This paper proposes
a high-efficiency mechanism for an intelligent cleaning robot automatically returns to charging in a short
time when the power is insufficient. The proposed mechanism initially combines the robot’s own motor
encoder with neural network linear regression to calculate the moving distance and rotation angle
for the location estimation of the robot itself. At the same time, a self-rotating camera is applied to
scan the number of infrared spots on the docking station to find the location of the docking station so
that the cleaning robot returns to charging properly in two stages, existing infrared range and extended
infrared range. In addition, six-axis acceleration and ultrasound are both applied to deal with the angle
error that is caused by collision. Experimental results show that the proposed recharging mechanism
significantly improves the efficiency of recharging.

Keywords: cleaning robot; automatically returns to charging; infrared spots; six-axis acceleration;
ultrasound

1. Introduction

In recent years, mobile robots are being widely used in industrial automation, home automation,
hospitals, entertainment, space exploration, military, etc [1–13]. Due to the decreased size and the low
cost of mobile robots, more and more mobile robots are now working around us and they will help us
a lot in our daily lives, such as cooking, cleaning, house plant watering, pet feeding, and taking care of
children [1–5]. In order to complete these tasks continuously and efficiently, many auto-recharging
methods have been proposed.

Currently efficient auto-recharging methods can be generally classified into three types.
(1) In simultaneous localization and mapping (SLAM), the robot starts from an unknown environment
and acts in this environment, and continuously repeats the information of the environment to achieve
its own positioning and status. Then, build an environmental map one by one based on the surrounding
environment information constructed by its own location [14–19]. Lidar SLAM has high measurement
accuracy but is expensive. Camera SLAM is cheaper but the disadvantage is that if the image is large,
the calculation is complicated. (2) In wireless positioning and recharging, the strength of the received
wireless signal is used to estimate the position of the docking station by using wireless signals to sense
the position of the docking station, such as Bluetooth, WiFi or ZigBee wireless communication [20–23].
Depending on the wireless device, the requirements of the corresponding environment are different.
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Therefore, this method is susceptible to environmental factors. Especially in the same frequency
band in the same area, the signal strength will be seriously affected. (3) In combination with
various types of sensor for positioning and recharging, the recharging path is determined by sensing
the position/orientation of the cradle by sensors, such as ultrasound, camera, infrared, etc. [24–29].
The advantage of this method is that it can integrate the information collected by multiple sensors,
and the obtained positioning accuracy is more accurate than the information collected by a single
sensor. In addition, the cost of this method is much lower than using the laser radar SLAM.

Based on the review and discussion above, this paper uses multiple sensors to propose
a high-efficiency automatic recharging mechanism for cleaning robot. Cleaning robots are
the most widely used in family. For cleaning robots, there are general types and intelligent
ones. The general-type cleaning robot has basic functions, including cleaning and recharging
without positioning and path planning. Intelligent cleaning robots are equipped with sensors,
such as ultrasound, camera, infrared, etc. These sensors are applied to complete the robot’s positioning
and path planning. With various sensors, ultrasound, camera, infrared, six-axis acceleration, we design
a high-efficiency mechanism of positioning and path planning for an intelligent cleaning robot
automatically returns to charging in a short time when the power is insufficient. The proposed
mechanism initially combines robot’s own motor encoder with neural network linear regression to
calculate the moving distance and rotation angle for the location estimation of the robot itself. In order
to adjust the travel direction of the robot until it enters the exiting infrared signal range, a self-rotating
camera is applied to scan the number of infrared spots on the docking station so that the cleaning
robot moves toward the infrared spots until the infrared spot changes from one to two, indicating
that it enters the exiting infrared signal range (60 degree range) since there is only one infrared spot
captured in the extended infrared range of 90 degrees. According to the robot’s speed, both six-axis
acceleration and ultrasound are hierarchically applied to solve the problem that is caused by collision.
Six-axis sensor is enabled to compensate the angle error that is caused by collision when the travel
speed is slow while ultrasonic is enabled to avoid obstacles when the travel speed is fast.

The rest of this paper is organized as follows. Section 2 lists the specification of the test cleaning
robot and hardware setting. Section 3 presents the proposed recharging mechanism. Section 4 shows
experimental results. Section 5 concludes our work.

2. Introduction to the Testing Cleaning Robot and Hardware Setting

2.1. Introduction to the Testing Cleaning Robot

The testing robot in this paper is a teaching robot produced by American IRobot company,
as shown in Figure 1. User communicates with the robot through RS-232 communication interface.
Based on this robot, we combine Arduino platform, Raspberry Pi 3, cameras, and ultrasonic sensors to
design an automatic return charging mechanism. Figure 2 shows the overall structure of the robot.
The hardware setting and the proposed mechanism are introduced in the following subsections.

RS-232 is a serial-type data transmission. It is a bit-by-bit character transfer method. Most of
them use the RX and TX pins to communicate with each other. The robot uses the RX to receive
the instructions from the Arduino and the TX transfers the state of the robot to the Arduino. The robot
has three modes: (1) Passive mode, enable the robot, but cannot modify the parameters of the internal
sensor. (2) Safe mode, enable the robot, and modify the parameters of the internal sensor, but some
sensors will be restricted. (3) Full mode, has the second function above and no restrictions of
sensor modification.

This paper adopts mode (3). Based on the official specifications [5], its control instruction is
Opcode (Open Interface control instruction), including Start, Stop, Drive, Drive Direct, which represent
start, stop, forward/backward, and rotation, respectively. These commands are used to control robot.
We set the speed value of the wheel, so that the robot can travel at this speed and turn left/right.
For example, if the speed value is 50, then the robot advances at a speed of 50 mm/s.
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In the sweeping function, the clean robot has three functions: random-path cleaning,
spiral-path cleaning, and square-path cleaning. In the part that automatically returns to the charging,
the signal that is emitted by the infrared sensor of the docking station is used, and during the traveling,
the infrared signal is continuously scanned to guide the cleaning robot to return to the docking station
for charging.
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Figure 2. Cleaning robot hardware architecture.

2.2. Arduino for Calculating Travel Distance and Direction Angle

The general mechanism of the cleaning robot cannot know its position when performing work
tasks. When returning to the docking station for charging, it can only rely on the only infrared scanning
function, but even if the infrared scanning function is used, the cleaning robot is not in the docking
station. In the range of the infrared signal sent, it takes a long time to recharge. In order to solve this
problem, the embedded platform Arduino is used as the platform for robot control. Through this
platform, the travel distance and direction angle are calculated, as shown in Figure 3.
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2.3. Infrared LED and Camera

The automatic back to charging method of the clean robot is to continuously scan the infrared
sensor signal on the charging stand by using the infrared sensor on the clean robot. Figure 4 shows
the emission range of the infrared light. In this range, the clean robot can return to charging once it
detects the infrared signal. However, outside the range, the robot itself does not know that the docking
station is beside and thus walks randomly or even away from the docking station.
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In order to improve the above situation, we added three infrared LEDs to the docking station to
increase the exiting infrared signal range. Since the infrared sensor cannot detect the added infrared
LED, it is necessary to use the camera and process the image captured with the Raspberry Pi 3,
as shown in Figures 5 and 6.

In order to confirm the range of the camera after adding the camera, as shown in Figure 7, the black
dotted circle is the position where the cleaning robot is placed, and the upper figure is the angle
corresponding to the docking station. We first placed the robot from the middle of the 70-degree
position, and watched whether the camera had infrared light. After testing, it was found that the range
of shooting was up to 90 degrees.

If you want to increase the range to more than 100 degrees, then you need to add more LEDs,
but in fact the 90-degree range is enough for the robot to return to the docking station correctly,
as shown in Table 1.
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Table 1. Infrared signal range with and without adding three infrared LEDs.

Without Adding Three Infrared LEDs With Adding Three Infrared LEDs

Infrared signal range (degree) 60 60–90

2.4. Six-Axis Sensors

The MPU-6050 six-axis sensor, as shown in Figure 8, is composed of an accelerometer and a gyroscope
that calculate the current direction or angle of the robot. Specifications are shown in Table 2.
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Table 2. Specifications of MPU-6050 six-axis sensor.

Chip model MPU-6050
Power supply 3–5 V

Communication protocol I2C
Gyroscope range ±250, ±500,±1000,±2000◦/s

Accelerometer range ±2, ±4, ±8, ±16g
16-bit AD converter/16-bit data output

3. Proposed Mechanism

This section mainly combines neural network-linear regression with the proposed sensing
techniques, including self-rotating camera, six-axis sensors, and ultrasonic sensors to propose
a high-efficiency recharging mechanism.

3.1. Neural Network-Linear Regression

We review neural network in case of linear regression for later use before introducing the proposed
mechanism for a clean robot automatically returns to charging. A neuron with label yj receives an input
xi from predecessor neurons by a connection assigned a weight wji.

yj = ∑
i

wjixi = WT
j X (1)

where Wj =
[
· · · wji · · ·

]T
and X =

[
· · · xi · · ·

]T
. The error ej between real output dj

and yj is then rewritten as
ej = dj − yj = dj −WT

j X (2)

or equivalently
1
2

e2
j =

1
2
(dj −WT

j X)
2

(3)

The total error is
1
2

e2 =
1
2∑

j
e2

j =
1
2∑

j
(dj −WT

j X)
2

(4)

which implies
1
2

∂e2

∂Wj
= −∑

j

(
dj −WT

j X)X = −eX (5)

By introducing a parameter η called learning rate, the new weighting Wnew
j is obtained by

Wnew
j = Wj − (−η eX) = Wj + η eX (6)

As shown in Figure 9, this expression means that each input will correspond to a different weight,
and the output is multiplied by the weight to calculate the input of the next layer, and the weight is
continuously updated until convergence to obtain the continuous output finally.Sensors 2018, 18, x FOR PEER REVIEW  7 of 23 
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3.1.1. Travel Distance Estimation

The distance D traveled by the cleaning robot is generally defined by

D = v(dt/100) (7)

where v is the speed value of the wheel; dt is the duration of the walking (in milliseconds); and, dt/100
denotes time calculation unit of 100 milliseconds. Replacing dt/100 by t, equation (7) can be rewritten as

D(t) = vt (8)

In other words, 1 s is equal to 1000 ms/100 ms = 10 which means t = 10. If the travel time
is 2 s then D(2) = v(2× 10). In order to verify the efficiency of formula in (2), we perform a series
of experiments and the results are shown in Table 3. By the relation, distance error = actual travel
distance− estimated travel distance, these results indicate that the longer the time, the greater the error,
as shown in Figure 10.

Table 3. Travel Distance—General Estimation.

Travel Time (s) Estimated Travel Distance (cm) Actual Travel Distance (cm) Distance Error (cm)

10 5 6.45 1.45
20 10 12.8 2.8
30 15 18.2 3.2
40 20 24.1 4.1
50 25 30.2 5.2
60 30 36.2 6.2
70 35 42.1 7.1
80 40 47.8 7.8
90 45 53.7 8.7

100 50 59.4 9.4

In order to reduce the distance error in Table 1, we apply neural network-linear regression
in section A to find the curve ferror in Figure 6 sketched by the distance error by

ferror = ∑
i

wixi = WTX (9)

Wnew = W − (−η eX) = W + η eX (10)

where W =
[
· · · wi · · ·

]T
, X =

[
· · · xi · · ·

]T
, and η = 0.0001.
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When the number of iterations reaches 500 times, the error has become saturated.
Therefore, we train 500 times and compare the estimated travel distance with the actual travel
distance. The results are shown in Table 4. The estimated distance between the traveled distance
and the actual travel distance can be improved a lot. However, when the walking time reaches 30 to 40 s,
the actual travel distance is gradually smaller than the estimated travel distance, but, when considering
that the robot used in the home is not Continuous straight line travels for 30 s, and the method of
this method will recalculate the distance as long as the robot collides or detects obstacles, so the part
after 30 s is not considered.

Table 4. Comparison of travel distance after compensation.

Travel Time (s) Estimated Travel Distance (cm) Actual Travel Distance (cm) Distance Error (cm)

10 6 5.9 −0.1
20 12 11.8 −0.2
30 18 18.2 0.2
40 23.97 24.2 0.23
50 29.95 30.1 0.15
60 35.93 36.3 0.37
70 41.92 42.4 0.48
80 47.9 48.6 0.7
90 53.88 54.3 0.42

100 59.86 60.4 0.54
120 71.63 71.4 −0.23
140 83.57 83.5 −0.07
160 95.51 96.2 0.69
200 119.39 118.5 −0.89
250 149.23 146 −3.23
300 179.08 175.8 −3.28
400 238.77 231.7 −7.07

3.1.2. Rotation Angle Estimation

To get the location of the robot in addition to the estimated travel distance, we need to know
the rotation angle of robot’s body itself by the formula in Equation (11).

θ = (
delay
100

)(
|ER − EL|

L
) (11)

where θ is the rotation angle of the robot; ER is the speed value of the right wheel; EL is the speed
value of the left wheel; and, L is the distance between the left wheel and the right wheel. The time part
of formula (11) can also be replaced by t according to the method of the previous section, and can be
obtained formula (12).

θ(t) = (
|ER − EL|

L
) (12)

In order to verify the efficiency of the formula (12), we have a series of tests and the results are
shown in Table 5. From the results, the longer the duration of rotation, the angle error becomes ever
larger. According to the estimated rotation angle, the actual rotation angle is smaller than the estimated
rotation angle, so that we have the relation actual rotation angle = estimated rotation angle − angle error.
In order to reduce the angle error in Table 5, we apply neural network-linear regression in section A to
find the curve θerror in Figure 11 sketched by the angle error as the following two formulas.

θerror = ∑
i

wixi = WTX (13)

Wnew = W − (−η eX) = W + η eX (14)
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where W =
[
· · · wi · · ·

]T
, X =

[
· · · xi · · ·

]T
.

Table 5. Rotation angle calculation—general estimation method.

Rotation Time (s) Estimated Rotation Angle (◦) Actual Rotation Angle (◦) Angle Error (◦)

1 42 29.5 12.5
1.5 63.825 44 19.825
2 85.1 58 27.1

2.5 106.375 72 34.375
3 127.65 86.5 41.15
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When the number of trainings is 300 to 500 times, the resulting angular error is already close
to zero. Therefore, we train 300 times and compare the estimated rotation angle with the actual
rotation angle. The results are shown in Table 6. The estimated distance between the traveled distance
and the actual travel distance can be improved a lot.

Table 6. Comparison of rotation angle after compensation.

Rotation Time (s) Estimated Rotation Angle (◦) Actual Rotation Angle (◦) Angle Error (◦)

10 29.49 29 0.49
15 44.025 44 0.025
20 58.01 59 0.99
25 71.985 72 0.015
30 85.97 86.5 0.53
35 100.895 101.5 0.6
40 113.09 114 0.91
45 129.675 127.5 −2.175
50 144.07 142.3 −1.77
55 158.465 157.5 −0.965

3.2. Cleaning Robot Position Estimation

After we estimate the distance and rotation angle of the robot by compensation, we can estimate
the position of the robot. Based on the Cartesian coordinate system, the location of the docking station
is set to (0, 0) and then the position of the robot is calculated by the following formula.{

x = x + D cos(90− θ)

y = y + D sin (90− θ)
, (0 ≤ θ ≤ 2π) (15)



Sensors 2018, 18, 3911 10 of 22

where D corresponds to the travel distance and 90 − θ is the rotation angle between the robot
and the x-axis, as shown in Figure 12.
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The compensation of travel distance and rotation angle are calculated in Arduino to obtain robot’s
Cartesian coordinate. In addition, we use USB to connect Arduino and Rasberry pi, so that
we can observe robot’s Cartesian coordinate on end device by Rasberry pi, as shown in Figure 13.
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3.3. Self-Rotating Camera for Searching Docking Station

In order to adjust the robot until it enters the exiting infrared signal range, we propose a searching
method for the self-rotating camera combined with the angle and distance estimation proposed
in the previous section. This search method is described, as follows. When the infrared spot is captured
via the HoughCircles function [30], it is judged whether the docking station is currently on the left
or the right side of the robot according to the current estimated angle and distance, and proceeds
in the direction of the judgment. This method will be used repeatedly until the infrared spot changes
from one to two, indicating that it enters the infrared signal range (60◦ range), because in the 90◦ range,
only one infrared spot is captured. Moreover, we can compare the actual distance between the robot
and the docking station from Table 7, thereby eliminating the distance error.
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Table 7. Distance table.

Distance between Robot and Docking Station (cm) Radius (pixel)

10 25–33
20 25–27
30 25–27
40 19–23
50 18–20
60 18–20
70 17–19
80 15–18
90 14–17

100 12–15
110 9–12

3.4. Collision Angle Error Compensation by Six-Axis Sensors

During the execution of the mission, the clean robot may collide with obstacles. When it hits
an obstacle, the robot may have a collision displacement. This collision displacement will cause
the robot’s angle to change. In order to correct the collision offset, this paper uses six-axis sensors
(MPU-6050) to compensate for collision error angles. As shown in Table 8, there are about 10◦ of error
between estimated angle and actual angle due to the collision. In order to reduce the error, we adopt
six-axis sensor with two parts: accelerometer and Gyroscope. The values read by the accelerometer
and Gyroscope in the six-axis sensor are shown in Figure 14.

Table 8. Collision angle offset without adding six-axis sensor.

Collision Number Estimated Rotation Angle (◦) Actual Rotation Angle (◦) Angle Error (◦)

1 58.4 57 1.4
2 350 352 2
3 281 286 5
4 212.8 218 5.2
5 161.4 170 8.6
6 110 120 10
7 41.3 52 8.7
8 332.8 347 14.2
9 264 277 13

10 195 206 11
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3.4.1. The Part of the Accelerometer

Since the clean robot is traveling horizontally, we calculate the angle φacce between the Z-axis
and the X-axis of the accelerometer by using the values read by the accelerometer in the six-axis sensor,
az and ax, respectively.

φacce = tan −1(
acz
acx

)× 180
π

(16)

where acz = az/accesen, acx = ax/accesen, and accesen is the sensitivity of the accelerometer with unit LSB/g.

3.4.2. The Part of the Gyroscope

The gyroscope is mainly designed to measure the angular velocity, based on the theory of
conservation of angular momentum. The angular velocity of rotation shown in Figure 15 is usually
expressed in dps (◦/s). Since the robot is traveling in a horizontal state, we mainly do angular
offset compensation for the Z-axis. If only the Z-axis is rotated, then the X and Y axes output
is 0 and the Z-axis output is the angular velocity of rotation.Sensors 2018, 18, x FOR PEER REVIEW  13 of 23 
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We first calculate the angular velocity vz along Z-axis by

vz(t) = gz(t)/gyrosen (17)

where gz(t) is the raw value read by the gyroscope and gyrosen is the sensitivity of the gyroscope.
Then, the rotation angle φgyro along z-axis is calculated by

φgyro =
∫
t

vz(t)dt

There are advantages and disadvantages in both methods. Accelerometers are prone to error
interference during fast vibration (high frequency). The gyroscope is prone to drift problems
in an almost stationary (low frequency) state. In order to estimate collision offset, we introduce
a parameter α (0 < α < 1) in an equation defined by

φ = αφacce + (1− α)φgyro

Accordingly, the collision angle error compensation is completed. The detail of six-axis sensor
usage process is shown in Figure 16.
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3.5. Avoid Obstacles with Ultrasonic Sensors

When the speed of the clean robot is fast, the collision of the object will result in a large
angular offset due to the impact force and the six-axis sensor detection speed cannot keep up
with the compensation failure. To solve this problem, as shown in Figures 17 and 18, we use
the three ultrasonic sensors that are installed on the clean robot to immediately perform the direction
change action when the cleaning robot detects obstacles around it, so as to avoid collisions
with obstacles.
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3.6. The Proposed Machanism

This paper mainly enables the robot automatically recharging with high efficiency. Based on
subsections A-F, the entire automatic recharging mechanism is proposed, as shown in Figure 19,
which is presented, as follows:

Step 1. Enable clean robot and perform certain tasks.
Step 2. Enable recharge instruction. If clean robot receives the recharging instruction, we determine

the current position of clean robot and enable recharge function proposed in step 3 and step 4.
Otherwise go back to step 1.

Step 3. Setting a threshold to enable six-axis sensor or ultrasonic. Six-axis sensor is enabled to
compensate the angle error caused by collision when the travel speed is slow while ultrasonic
is enabled to avoid obstacles when the travel speed is fast.

Step 4. Calculate clean robot’s angle and capture infrared spot via the HoughCircles function to
judge whether the charging dock is currently on the left or the right side of the robot
according to the current estimated angle and distance, and proceeds in the direction
of the judgment. This action repeats until the infrared spot changes from one to two,
indicating that it enters the infrared signal range (60◦ range). Once the infrared spot changes
from one to two, go to step 5.

Step 5. Enable infrared scanning until the robot returns to charging correctly.
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4. Experimental Results

The experimental environment is 275 cm long and 254 cm wide with obstructions, as shown
in Figure 20. The black circle is the starting position of the clean robot, and the charging dock placed
behind the black circle.Sensors 2018, 18, x FOR PEER REVIEW  16 of 23 
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Figure 20. Experimental environment.

4.1. Collision Angle Compensation

In order to verify that the angle compensation of the six-axis accelerometer has not been added,
we compare the robot’s actual position and angle per minute. The experimental results are shown
in Table 9. It can be found that the actual position, angle, and estimated position and angle are greatly
different. In order to solve this problem, a six-axis accelerometer is added. The corrected results
are shown in Table 10. After the addition of the six-axis sensor, the collision angle compensation is
smaller than the original without added angle error, and the estimated position is within 50 cm from
the actual position.
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Although the accuracy of the traveling speed of 50 (mm/s) is improved after being compensated
by the six-axis sensor, in comparison with the traveling speed of 200 (mm/s), as shown in Table 11,
the error bias can be known. Big. The reason is that the faster the moving speed of the sweeping robot,
the more the impact force will cause the angular offset to be large and the detection speed of the six-axis
sensor cannot keep up, which will cause the compensation failure. To solve this problem, we use
the three ultrasonic sensors. When the clean robot detects obstacles around it, then it can immediately
perform the action of changing direction, avoiding collisions with obstacles, and avoiding angle errors
that are caused by collisions.

Table 12 shows the results of the experiment after adding the ultrasonic sensor. It can be found
that the problem of the angle caused by the collision after the addition of the ultrasonic sensor is
greatly improved, but the longer the walking time, the position of the estimation is gradually caused
by the problem of the error accumulation. There is a gap in the actual location.

Table 9. Comparison without Six-Axis Sensors.

Time (s) Estimated
Position

Actual
Location

Distance
Error (cm)

Estimated
Angle (◦)

Actual
Angle (◦) Angle Error (◦)

1 (−58.1, 157) (−56.8, 164.3) 7.4 102.4 103 0.6
2 (94.3, 182) (97.7, 208.2) 26.4 339.1 349 9.9
3 (55, 98.1) (83.5, 106.6) 29.7 276 286 10
4 (−9.7, 44.5) (17, 46) 26 118.6 134 15.4
5 (−23.1, 259.7) (−53.6, 247.5) 32.8 329.9 357 27.1
6 (115.5, 105.6) (131, 154.3) 51.1 241 276 34.3
7 (−101, 103.4) (33.5, 58.2) 141.4 110.1 137 26.9
8 (−3.1, 263.4) (−73.2, 236) 75.3 54.9 92 37.1
9 (−64.7, 196.9) (−66.7, 142.2) 54.7 225.8 268 42.2

10 (−11.3, 11.6) (95, 35.5) 108.7 351 33 −42
15 (−4.9, 50.2) (137.2, 8.6) 148.1 248.1 253 4.9
20 (−68.3, 61.7) (36.5, 53.4) 105.1 128.7 121 7.7
30 (−140.1, 14) (135.6, 1.2) 275.7 109 96 13
40 (−148.2, 161.7) (−83.2, 246.4) 106.8 19.6 8 11.6
50 (−137.4, 26.6) (92.1, 3.4) 230.7 171.6 170 1.6

Table 10. Comparison of adding six-axis sensors (speed 50 mm/s).

Time Estimated
Position

Actual
Location

Distance
Error

Estimated
Angle

Actual
Angle Angle Error

1 (−49, 146.1) (−36, 152) 14.3 123.6 125 1.4
2 (−15.5, 192.3) (−4.2, 194.4) 11.5 38.6 39 0.4
3 (111.8, 146.2) (122, 133.8) 16.1 222 223 1
4 (−87.5, 58.1) (−73.5, 56.6) 14.1 84.3 86 1.7
5 (−15.2, 252) (−14.8, 243.5) 8.5 307 305 2
6 (137.2, 214.7) (131.4, 200) 15.8 252.7 246 6.7
7 (22.5, 6.5) (10, 9.5) 12.9 160.9 156 4.9
8 (34.2, 140.8) (22.3, 139.8) 11.9 7.8 10 2.2
9 (77, 237.5) (77.3, 230) 7.5 166.1 160 6.1
10 (−84.2, 165.3) (−80.1, 170.2) 6.4 75 71 4
15 (125.4, 33.8) (138.2, 35.4) 12.9 48.3 45 3.3
20 (−45.9, 102.4) (−54.1, 98.6) 9 59.4 56 3.4
30 (154.6, 153.4) (133.7, 148.6) 21.4 350.3 347 3.3
40 (−66.8, 79.2) (−50.4, 95.3) 22.9 244.9 240 4.9
50 (118.8, 240.6) (145.2, 227.3) 29.5 147.1 141 6.1



Sensors 2018, 18, 3911 17 of 22

Table 11. Comparison of adding six-axis sensors (speed 200 mm/s).

Time Estimated
Position

Actual
Location

Distance
Error

Estimated
Angle

Actual
Angle Angle Error

1 (−62.4, 155.1) (−90.5, 223.7) 74.1 106.64 103 3.64
2 (32.3, 38) (65.1, 72.4) 47.5 216.9 210 6.9
3 (79.1, 24.9) (122.3, 78.3) 68.7 235.4 260 24.6
4 (−2.5, 204.2) (−70.5, 244.9) 79.2 331.9 350 18.1
5 (86.2, 89.3) (54.2, 85) 32.3 84.1 70 14.1
6 (11.7, 63.8) (37.5, 5.6) 63.7 171.4 161 10.4
7 (26.7, 140.5) (75.1, 168.6) 56 307.4 321 13.6
8 (−3.5, 236.5) (−76, 243.2) 72.8 343.6 358 14.4
9 (−13.3, 102.7) (−83.9, 31.1) 100.6 17 40 23
10 (124.3, 121.9) (46, 141.5) 80.7 228.9 230 1.1
15 (−53.4, 108.4) (−15.6, 133.2) 45.2 114.8 122 7.2
20 (33.9, 214.5) (59.1, 175.3) 46.6 106.8 108 1.2
30 (148.6, 77.2) (88.9, 114.9) 70.6 43.6 54 10.4
40 (−38.6, 87.5) (−86.3, 115.7) 55.4 215.3 227 11.7
50 (146.3, 158.9) (86.4, 133.8) 64.9 157.2 172 14.8

Table 12. Comparison of adding ultrasonic sensor (200 mm/s).

Time Estimated
Position

Actual
Location

Distance
Error

Estimated
Angle

Actual
Angle Angle Error

1 (−103.5, 214.2) (−101, 219) 5.4 193.3 192 1.3
2 (17.1, 236.7) (14.6, 241.6) 5.5 179.9 177 2.9
3 (91.8, 165.8) (95.8, 150.3) 16 112 111 1
4 (18.9, 155.3) (14.3, 129.1) 26.6 112 110 2
5 (129.6, 120.1) (123.5, 109) 12.7 96.3 96 0.3
6 (141.1, 128.7) (134.1, 116.2) 14.3 268.1 268 0.1
7 (123.9, 113.8) (110.3, 100.1) 19.3 114.3 114 0.3
8 (−87.6, 108.4) (−99, 96.9) 16.6 97.6 94 3.6
9 (−54.9, 240.1) (−64.3, 229) 14.5 354 351 3
10 (130.3, 97.9) (123, 88.2) 11.9 98 96 2
15 (−103.3, 208.2) (−80.5, 195.1) 26.3 282.2 277 5.2
20 (112.9, 125.3) (133.1, 124.3) 20.2 75.5 73 2.5
30 (84.5, 30.3) (53.7, 25.2) 31.2 347.9 341 6.9
40 (104.3, 107) (118.4, 98) 16.7 128.6 127 1.6
50 (99.2, 160) (120.6, 185.4) 33.2 91.8 90 1.8

4.2. Comparison between General-Type Auto-Recharging Mechanism and the Proposed
Auto-Recharging Mechanism

This section compares the general-type recharge mechanism with the mechanism proposed in this
paper. The general-type recharging mechanism has only the basic infrared detection recharging
function without additional sensors and method for calculating its position. The mechanism that is
proposed in this paper combines a variety of sensors to estimate the approximate position of
the robot and thus proposed a new mechanism of automatic recharging. The comparison between
the general-type recharging mechanism and the proposed mechanism is as follows.

The experiment is divided into two parts. In the first part, the cleaning robot is placed outside
the range of the infrared signal emitted by the infrared sensor of the docking station to back to charging.
That is, the cleaning robot is placed outside the range of the dotted fan in front of the docking station
in Figure 21 to back to charging. As shown in Figure 21a–d, in the general-type mechanism, the circle
with arrow inside is the beginning position of the cleaning robot, and the arrow is the direction
of the current orientation. When the recharge instruction is enabled, the cleaning robot travels
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in the direction of the arrow. When the robot walks to the infrared signal range without detecting
the infrared signal, it may bypasses until the infrared signal is detected.
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Figure 21. First part of experiment: the cleaning robot is placed outside the range of the infrared
signal emitted by the infrared sensor of the docking station to back to charging by general-type
and the proposed mechanisms. (a) Without detecting the infrared signal in the general-type mechanism,



Sensors 2018, 18, 3911 19 of 22

robot facing up bypasses until the infrared signal is detected. (b) Without detecting the infrared
signal in the general-type mechanism, robot facing the right did not bypasses until the infrared
signal is detected. (c) Without detecting the infrared signal in the general-type mechanism,
robot facing the left bypasses until the infrared signal is detected. (d) Without detecting the infrared
signal in the general-type mechanism, facing down bypasses until the infrared signal is detected.
(e) By the proposed mechanism, robot facing up determines which direction should be followed
and then finishes the recharge action. (f) By the proposed mechanism, robot facing the right determines
which direction should be followed and then finishes the recharge action. (g) By the proposed
mechanism, robot facing the left determines which direction should be followed and then finishes
the recharge action. (h) By the proposed mechanism, robot facing down determines which direction
should be followed and then finishes the recharge action.

Figure 21e–h shows the automatic recharge mechanism that is proposed in this paper. The robot
walks to the same position as the general-type mechanism, and then activates the recharging function.
According to our proposed mechanism, it determines which direction should be followed and then
finishes the recharge action. From these figures and Table 13, one can find that the efficiency of
recharging is greatly improved.

Table 13. Time spent in the first part of experiment.

General-Type Mechanism Recharging Time (s) The Proposed Mechanism Recharging Time (s)

(a) 76 (e) 36
(b) 20 (f) 26
(c) 35 (g) 33
(d) 112 (h) 29

The second part is the experiment performed inside the infrared signal range of the charging
dock. Similarly, we compare the recharging path and time in different directions for the general-type
mechanism and the proposed mechanism, as shown in Figure 22a–h and Table 14. It can be found
that the automatic recharge time of the proposed mechanism is still less than the recharge time of
the general mechanism.

Table 14. Time spent in the second part of experiment.

General-Type Mechanism Recharging Time (s) The Proposed Mechanism Recharging Time (s)

(a) 32 (e) 31
(b) 43 (f) 30
(c) 29 (g) 30
(d) 41 (h) 35
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Figure 22. Second part of experiment: the cleaning robot is placed inside the range of the infrared
signal emitted by the infrared sensor of the docking station to back to charging by general-type
and the proposed mechanisms. (a) In the general-type mechanism, robot facing up bypasses until
the infrared signal is detected. (b) In the general-type mechanism, robot facing the right bypasses until
the infrared signal is detected. (c) In the general-type mechanism, robot facing the left bypasses until
the infrared signal is detected. (d) In the general-type mechanism, robot facing down bypasses until
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the infrared signal is detected. (e) By the proposed mechanism, robot facing up determines which
direction should be followed and then finishes the recharge action. (f) By the proposed mechanism,
robot facing the right determines which direction should be followed and then finishes the recharge
action. (g) By the proposed mechanism, robot facing the left determines which direction should be
followed and then finishes the recharge action. (h) By the proposed mechanism, robot facing the right
determines which direction should be followed and then finishes the recharge action.

5. Conclusions

This paper designs a high-efficiency automatic recharge mechanism to plan the method of
automatic return charging through the travel distance, rotation angle, and so on. We made a variety
of attempts on the way to find out the appropriate solution for robot travel distance, rotation angle,
angle collision and other issues. Through the method that is proposed in this paper, the method
of automatically returning the charging of the sweeping robot is planned, which is obviously more
efficient than the method of returning charging to the general mechanism.

In future research, we will continue to improve the accumulated error when walking for a long
time even the machine learning method is used to compensate the error of the travel distance
and the rotation angle of the sweeping robot. In addition, we will also improve the accuracy of
image recognition.
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