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Abstract: RGB-D cameras offer both color and depth images of the surrounding environment, making
them an attractive option for robotic and vision applications. This work introduces the BRISK_D
algorithm, which efficiently combines Features from Accelerated Segment Test (FAST) and Binary
Robust Invariant Scalable Keypoints (BRISK) methods. In the BRISK_D algorithm, the keypoints are
detected by the FAST algorithm and the location of the keypoint is refined in the scale and the space.
The scale factor of the keypoint is directly computed with the depth information of the image. In
the experiment, we have made a detailed comparative analysis of the three algorithms SURF, BRISK
and BRISK_D from the aspects of scaling, rotation, perspective and blur. The BRISK_D algorithm
combines depth information and has good algorithm performance.

Keywords: BRISK (Binary Robust Invariant Scalable Keypoints); depth information; scale factor;
scale invariance; rotation invariance

1. Introduction

In the field of machine vision and robotics research, the feature detection has attracted the attention
of scholars at home and abroad. This research focuses on the robustness and the invariance to image
noise, scale, translation and rotation transformations. Many feature detector methods are available
in many fields [1–4], such as robot navigation, pattern recognition, image and video detection, target
tracking, scene classification, texture recognition.

In recent years, many new feature description algorithms have been proposed under the premise
of satisfying the invariance of rotation, scale transformation and noise, such as Scale-invariant
Feature Transform (SIFT) [5,6], Speeded Up Robust Feature (SURF) [7,8], Binary Robust Independent
Elementary Features (BRIEF) [9,10], and Binary Robust Invariant Scalable Keypoints (BRISK) [11,12].
The BRISK algorithm is a feature point detection and description algorithm with scale invariance
and rotation invariance. It constructs the feature descriptor of the local image through the gray scale
relationship of random point pairs in the neighborhood of the local image, and obtains the binary
feature descriptor. Compared with the traditional algorithm, the matching speed of BRISK is faster
and the storage memory is lower, but the robustness of BRISK is reduced.

In recent years, the RGB-D sensors represented by Kinect of Microsoft are spreading quickly as
the RGB-D sensor can obtain the RGB image and depth image simultaneously. Compared to stereo
cameras and Time-Of-Flight cameras, it has many advantages such as low price, information integrity
and complex environmental adaptation. So, the RGB-D SLAM based on RGB-D images has quickly
become a research focus. But algorithms only based on texture information of 2D image are widely
used, such as the SURF algorithm, SIFT algorithm, BRIEF algorithm and BRISK algorithm. These don’t
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take the depth information of the RGB-D image into account. In this paper, the BRISK algorithm will
be improved using the depth information of the RGB-D image and intensity centroid.

In this paper, the keypoints firstly are detected by the Features from Accelerated Segment Test
(FAST) algorithm. Then, the location of the keypoint is refined in the scale and the space. Next,
the scale factor of the keypoint is directly computed with the depth information of the image. And next,
the intensity centroid of the circle centered on the keypoint is calculated, and the orientation of
keypoint is computed by the offset from its intensity centroid. Finally, the experimental results show
that, compared with the original BRISK algorithm, the improved BRISK algorithm’s robustness of
rotation and scale invariance are stronger.

This paper is organized as follows. In Section 2 a brief survey of related work is presented.
Then the BRISK algorithm principle is described in Section 3. In Section 4, improvement of the BRISK
algorithm (BRISK_D algorithm) is introduced. Some experimental results are presented in Section 5
and, finally, we provide some conclusions and future work.

2. Related Work

Attneave et al. [13] explains some of the problems of visual perception. From the perspective
of visual behavior, people introduce information theory to quantify the data received by the visual
system. From an information point of view, most of the visual information received by the human
visual system is redundant, because the information received by the intricate neurons is interrelated.
People can extract the main signal content by extracting information from a limited number of neurons.
According to the experimental research, it is proposed to express the main visual information by
pixels with large degree of variation in the uneven region of the image. However, this theory is only
experimentally described, and has not been quantified.

The history of image local feature research first originates from Moravec’s point of interest [14].
It detects interest points based on the similarity of neighborhood pixel autocorrelation functions. It is a
relatively original corner detection method, which is particularly sensitive to the pixel gray noise and
does not have the feature of the rotation invariance.

The Hessian detector proposed by Beaudet [15] opens the precedent of feature point detection
algorithm based on image local gradient information. The Hessian matrix is very suitable for measuring
the local gradient features of images. Many well-known feature point detection algorithms based on
image gradient information use Hessian matrix to calculate their corresponding feature point response
functions, such as LoG [16], SURF [7], KAZE [17], AKAZE [18],and so on.

The first corner detection algorithm is the Harris corner detection method [19]. It uses a differential
operator to construct a 2× 2 gradient matrix containing structural features and uses the distribution of
gradient matrix eigenvalues to determine whether the local structure of the image is a corner, edge or
flat region. The Shi-Tomas [20] corner defines the corner point from the discriminability of the feature
point tracking. It is essentially the same as the Harris corner, and is a development of the Harris corner.
The above corner points do not have scale invariance, nor rotation invariance.

Lindeberg [21,22] introduces multiscale analysis in image processing, and points out that the
Gauss kernel filter is the optimal scale filter. Mikolajczyk combines the multi-scale analysis and affine
transformation of Lindeberg with the Harris feature points based on the gradient feature to develop
the invariant features of Harris-Laplace and Harris-Affine [23]. But the computational complexity is
too large and the application is limited.

In addition to gradient-based feature points, the local invariant features appeared in 1999~2006
are more based on the patch feature. Most of the patch characteristics can provide better location, scale
and direction information. Among them, the most famous feature is the SIFT feature proposed by
D.G. Lowe [5]. Although SIFT is a popular feature detection and descriptor, it has a large amount of
computation and storage. SURF [7] is another plaque-based invariant feature. In the integral operation
of SURF, Bay draws on Viola’s integral graph technique in face detection [24]. The computing speed is
several times faster than that of SIFT, but its matching accuracy is somewhat lower than that of SIFT.
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Bay et al. propose the Fast-Hessian feature detector based on the Hessian matrix in the SURF
(Speeded Up Robust Features) [25] algorithm and use the integral image to calculate its corresponding
descriptor. Compared with the SIFT algorithm, the computational efficiency can be greatly improved.
Similarly, Alcantarilla et al. also uses the Hessian matrix for feature point detection, combined with
the corresponding descriptors to form KAZE [17] and AKAZE [18] feature detection algorithms.

Since 2006, local invariant feature detectors and descriptors based on binarization features have
become the new mainstream in the field of invariant features. The originator of the detector is
FAST [26,27], which belongs to the SUSAN [28] operator. The SUSAN operator originates in the
literature [29]. Although the FAST operator is computationally efficient, it depends on the scene, and
has no direction and scale information. It does not have scale invariance and rotation invariance.
In order to overcome the dependence of FAST detector on scene, a new scene independent detector
is proposed, which is the Adaptive and Generic Accelerated Segment Test (AGAST) [30] detector.
An improvement on FAST is Oriented-FAST, which is a feature detection sub module in the ORB [31]
feature generation method. The feature detection part of the BRISK [11] method is based on AGAST,
which combines the advantages of SIFT on scale space search and obtains a binary invariant feature
detector with scale invariance.

For the binarized feature descriptor, the most famous one is the BRIEF [9,32]. The binarized
description feature consists of bit strings, each bit representing a gray-scale contrast between a set of
pairs of points distributed at a particular position in the local neighborhood image of the feature point,
all of which are used for comparison. It constitutes the constellation of the descriptor. Different feature
descriptors use different constellation structures, and the pairs of points selected in the constellation
for grayscale contrast to generate binarized features are also different. Since the feature is composed
of two points of gray scale comparison, the feature description speed is faster, and the Euclidean
distance or the Mahalanobis distance is not used in the feature matching process, and the Hamming
Distance is adopted. Hamming distance can be calculated using efficient XOR operation instructions,
which greatly improves the speed of feature matching. Therefore, the description and matching based
on the binarized feature has higher computational efficiency than the traditional multidimensional
real number feature. The improved Steered BRIEF [9] method based on the BRIEF provides a feature
orientation that is not available in the BRIEF, making the Steered BRIEF a rotation-invariant feature.

Because in the design of BRIEF, the point-to-point distribution selected in the constellation for
comparison does not have a rigorous and scientific design, the binarization features have greater
correlation. rBRIEF overcomes this weakness by focusing on selecting the less-relevant binary features
to construct the constellation structure of the descriptor. ORB [31] is a feature method that combines
Oriented-FAST and rBRIEF. In order to avoid the strict alignment phenomenon required by the similar
features and to suppress the influence of gray noise on the feature description, like DAISY [33], BRISK
also adds a gray-scale smoothing step before the point-to-scale is compared on the constellation.

The above feature description methods are divided into two categories according to the
computational complexity and the storage space size: the first type is a type with large computational
complexity and large storage consumption, such as SIFT, SURF, DAISY, and so on, wherein DAISY is
suitable for dense matching. Due to the high-dimensional real number vector for feature description,
such features are complicated to calculate and difficult to save with large amount of computation.

The second type is a binarization feature with better comprehensive performance, which has
less computational complexity and requires less storage space, such as BRIEF, BRISK, ORB, and so on.
They both use a binarized string feature to describe the local texture and then use the Hamming
distance to describe the difference between the features. They have matching performance comparable
to the first type of features, and the computational speed is significantly better than the first type
of features, where BRIEF is the prototype of the second type. It has some defects, such as the need
for precise alignment, and so on. ORB does not have the scale feature, but the BRISK has better
comprehensive performance and has faster calculation speed than the SIFT and SURF.
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3. BRISK Algorithm Principle

The BRISK algorithm includes three main modules: keypoint detection, keypoint description
and descriptor matching. First, the scale space pyramid is constructed, and the stable extreme points
of sub-pixel precision in continuous scale space are extracted by AGAST [30] (the Adaptive corner
detection operator). Then, the binary feature descriptor of the local image is established by using the
gray scale relationship of the random sample point pairs in the local image neighborhood. Finally,
the Hamming distance is used for the feature matching.

3.1. Scale-Space KeyPoint Detection

The keypoint detection methodology of BRISK is inspired by AGAST (Adaptive and Generic
Accelerated Segment Test) [30]. The FAST (Features from Accelerated Segment Test) [27] is extended
to the image plane and the scale-space. In the BRISK algorithm framework, the scale Pyramid space
is composed of n octaves ci and n intra-octaves di, where i = {0, 1, · · · , n− 1} and typically n = 4.
The octaves are formed by progressively half-sampling the original image (corresponding to C0). Each
intra-octave di is located between layers ci and ci+1(as illustrated in Figure 1). The first intra-octave d0

is obtained by down-sampling the original image C0 by a factor of 1.5, while the rest of the intra-octave
layers are derived by successive half sampling. Therefore, if t denotes scale the t(ci) = 2i and
t(di) = 1.5(2i).
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non-maxima suppression in scale-space. Keypoints must satisfy the following two conditions: (1) the 
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Figure 1. Scale-space interest point detection.

The keypoint detection algorithm consists of the following two steps. First, the FAST 9-16
detector is applied on each octave and intra-octave separately using the same threshold T to identify
potential regions of interest. Next, the points belonging to these regions are subjected to a non-maxima
suppression in scale-space. Keypoints must satisfy the following two conditions: (1) the FAST score sc
of a point to be detected located in the same layer must be greater than the other eight points adjacent
to it; and (2) the scores in the layer above and below will need to be lower the FAST score s of this
point. The detection of maxima across the scale axis at octave c0 is a special case. In order to obtain the
FAST scores for a virtual intra-octave d−1 below c0, we apply the FAST 5–8 [34] mask on c0. However,
the scores in patch of d−1 are in this case not required to be lower than the score of the examined point
in octave c0.
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Considering image saliency as a continuous quantity not only across the image but also along the
scale dimension, we perform a sub-pixel and continuous scale refinement for each detected maximum.
In order to limit complexity of the refinement process, we first fit a 2D quadratic function in the
least-squares sense to each of the three scores-patches (as obtained in the layer of the keypoint, the one
above, and the one below) resulting in three sub-pixel maximal value. In order to avoid resampling,
we consider a 3 by 3 score patch on each layer. Next, these refined scores are used to fit a 1D parabola
along the scale axis yielding the final score estimate and scale estimate at its maximum. On the final
step, we re-interpolate the image coordinates between the patches in the layers.

3.2. Keypoint Description

The description of the keypoint has a significant impact on subsequent efficiency of descriptor
matching, also influencing the whole performance of the algorithm. Each keypoint of SIFT has a
128-vector descriptor, each keypoint of SURF has a 64-vector descriptor. In the descriptor matching
stage, SIFT and SURF can only be matched using Euclidean distance, what is inefficient. Different from
SIFT and SURF, BRISK descriptor is descripted by the binary bitstring [30], which is put forward by
Michael Calondor and matched by Hamming Distance. In other words, Hamming Distance can be
computed very efficiently with a bitwise XOR operation.

Different from other binary feature description algorithm (such as BRIEF) using a randomly
selected point pair, the BRISK descriptor adopts fixed neighborhood sampling pattern to describe
feature points. Four concentric circles are built within the block whose size is 40× 40 pixels centered
on the interest point, and N(N = 60) points with uniform distribution and the same spacing are
respectively obtained on the four concentric circles. As shown in Figure 2, the small blue circles denote
the sampling locations. In order to avoid aliasing effects when sampling the image intensity of a point
pi in the pattern, Gaussian smoothing with standard deviation σi proportional to the distance between
the points on the respective circle is applied.
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Define point pair set formed by all pairs of sample points as A:

A =
{
(pi, pj) ∈ R2 × R2

∣∣∣ i < N ∧ j < i ∧ i, j ∈ N
}

(1)

(pi, pj) is point pair of set A.
The gray values smoothed by pixels pi and pj are respectively denoted as I(pi, σi) and I(pj, σj).

The local gradient between the two pixel points is as follows.

g(pi, pj) = (pi − pj)•
I(pj, σj)− I(pi, σi)

‖ pj − pi ‖
(2)
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where 1 ≤ i ≤ N, 1 ≤ j ≤ N.
According to the distance between pixel pairs, the set of short distance sampling points is defined

as S, and the set of long-distance sampling points is defined as L.

S =
{
(Pi, Pj) ∈ A

∣∣‖ Pi − Pj ‖< σmax
}
⊆ A (3)

L =
{
(Pi, Pj) ∈ A

∣∣‖ Pi − Pj ‖> σmin
}
⊆ A (4)

where σmax is long distances threshold, typically σmax is 9.75t, σmin is shot distances threshold, typically
σmin is 13.67t, t is the spatial scale of feature points.

In the BRISK algorithm, local gradient is assumed be annihilated each other and the local gradient
does not need to be considered in the calculation of the overall gradient mode. Therefore, the overall
mode direction of the feature points can be estimated by the set L:

g =

[
gx

gy

]
=

1
l
• ∑
(pi ,pj)∈L

g(pi, pj) (5)

where l is the length of subset of long-distance pairings L. g(pi, pj) denotes the gradient of the feature
point pair (pi, pj). gx and gy are gradients sum of the long-distance point pair set on x axis and y
axis direction.

In order to build a descriptor with rotation invariance and scale invariance, sampling pattern
rotates θ angle around the feature point k. θ is computed by:

θ = actan2(gy, gx) (6)

Then, gray intensity of short-distance pairs set S is compared and cascaded, feature descriptor is
generated according to the formula (7):

b =

{
1 I(pθ

j , σj) > I(pθ
i , σi)

0 otherwise

(
Pθ

i , Pθ
j

)
∈ S (7)

where pθ
i is the point that pi revolves around the feature point k by rotating θ angle. I(pθ

i , σi) is gray
intensity of I(pθ

i , σi) after rotating θ angle around the feature point k.

3.3. BRISK Descriptor Matching

The matching of the descriptors is achieved by comparing the similarities between the descriptors
of the two feature points. Because the BRISK algorithm uses the binary bit string composed of 1 and 0
to describe the extracted feature points, the similarity of the descriptors is described by calculating
the Hamming distance of the descriptor. The Hamming distance calculation is implemented using a
bitwise XOR operation, that is, two values participating in the operation. If their corresponding bits
are the same, the result is “0”, otherwise it is “1”. Then, the statistics of “1” are counted and the more
the number of “1”, the more dissimilarity of the two descriptors, otherwise the opposite. Assuming X
and Y are two BRISK descriptors, then:

X = χ1χ2 · · · χi · · · χN (8)

Y = γ1γ2 · · · γi · · · γN (9)

where the value of xi and yi is “1” or “0”.
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The Hamming distance equation is given by Equation (10).

HD(X, Y) =
N

∑
i=1

χi ⊕ γi =
n

∑
i=1

b(χi, γi) (10)

where b(χi, γi) denotes bit inequality, in Equation (10), χi and γi are the i− th bits of the descriptors X
and Y respectively.

b(x, y) =

{
1 x 6= y
0 x = y

(11)

The symbol ⊕ is the XOR symbol. The value of Hamming distance is computed to estimate the
degree of two BRISK descriptors matching. The greater the value of Hamming distance, the lower the
degree of descriptors matching.

4. Improvement of BRISK Algorithm (BRISK_D Algorithm)

4.1. Improvement Ideas

From the brief analysis above, it can be seen that the BRISK algorithm realizes the scale invariance
of descriptors by detecting feature points in multi-scale layer and realizes the rotational invariance
of descriptors by determining direction of master mode using long-distance pixel pairs. But after
comparing the BRISK algorithm with the SIFT algorithm and the SURF algorithm, robustness of the
BRISK algorithm is feeble in aspects of scale invariance and rotational invariance. For that reason,
this paper combines the depth information of pixels in RGB-D images to compute the scale factors of
descriptors and adopts Intensity Centroid [35] to determine the main directions of descriptors in order
to enhance the robustness of descriptor’s scale invariance and rotational invariance.

The BRISK_D algorithm is also divided into three modules: feature point detection, descriptor
construction and feature matching. Feature matching is same as it is in the BRISK algorithm.

For the feature point detection: first of all, the threshold value is adjusted to produce appropriate
interest points. Then, the location of interest points in scale and space is refined. Assuming the initial
position of the interest point in the scale pyramid is (x, y, σ), by finding the refinement term ∆x, ∆y
and ∆σ, position of interest point is (x, y, σ) = (x + ∆x, y + ∆y, σ∆σ).

Descriptor construction: first of all, with the detected feature points as the center, the pixel pair is
selected by the fixed field mode. Then, scale factor is calculated according to the depth information of
pixels, and next the main direction of pixels is determined. Finally, the feature points are described
according to the gray values of pixels.

The algorithm flow is shown in Figure 3.
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4.2. Precise Location of Interest Points

In order to better determine the location of interest point, we use three 3 × 3 score patches
which include the FAST scores of the interest point and 26 pixels surrounding it in the scale pyramid.
The three 3× 3 score patches are described by three levels, the first patch at the octave level below the
interest point, the second patch at the level of the interest point, and the third patch at the level above
the interest point. In the patch, the value at each pixel is equal to that pixel’s FAST score, which is
denoted by sc(i,j), where i and j signify the position of the scored pixel relative to the interest point
in space. For example, if the interest point is located at (1, 1, 0), the score sc(−1,0) will be located at
(0, 1, 0). Figure 4 shows an instance of score patch. The FAST score maxima of three octave levels are
denote by sc′(−1), sc′(0), and sc′(1), where a subscript of −1 and a subscript of 1 represent respectively
the level below and above the interest point. The positions of these three maximum score are denoted
by ∆x′(−1), ∆x′(0) and ∆x′(1), where ∆x′(0) = (∆x′(0), ∆y′(0)).
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For solving the maximum sc′ and its position x′ of three score patches, we fit the parameters of
the 2-D quadratic function given in Equation (12) to obtain the location and score of the quadratic’s
local maximum.

sc = ai2 + bij + cj2 + di + ej + f (12)

The parameter ϕ of the 2-D quadratic function is solved by using the least square fit. The 2-D
quadratic function is represented by the matrix form as:

sc = ϕTw(i, j) (13)

where ϕ = [a, b, c, d, e, f ]T , w(i, j) = [i2, ij, j2, i, j, 1]T .
The least square fit can be signified as the minimization of the energy function E(ϕ) shown in

Equation (14):

E(ϕ) =
1

∑
i=−1

1

∑
j=−1

(ϕTw(i, j)− sci,j)
2

(14)

Setting the derivative for ϕ with Equation (14) equal to zero and solving for ϕ yields Equation
(15):

ϕ = P−1Wsc (15)

where P =
1
∑

i=−1

1
∑

j=−1
w(i, j)w(i, j)T , W = [w(−1,−1)w(0,−1) · · ·w(1, 1)], sc =

[sc(−1,−1), sc(0,−1), sc(1,−1), · · · sc(1,1)]
T .

Assuming the determinant of Hessian H(sc) passes the second derivative test stated in
Equation (16):

H(sc) =

 ∂2sc
∂i2

∂2sc
∂i∂j

∂2sc
∂i∂j

∂2sc
∂j2


det(H(sc)) = ∂2sc

∂i2
∂2sc
∂j2 −

∂2sc
∂i∂j

∂2sc
∂j∂i < 0

(16)
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The local maximum for Equation (12) is found at the location ∆x′ where the partial derivatives
with respect to i and j are 0. The partial derivatives are stated in Equation (17):

∂sc
∂i = 2ai + bj + d
∂sc
∂j = 2cj + bi + e (17)

Setting the partial derivatives to 0 and solving for the location (∆x′, ∆y′) represented by (i, j) in
Equation (17), which is given in Equation (18).

∆x′ = (∆x′, ∆y′)T

∆x′ = be−2cd
4ac−b2

∆y′ = bd−2ae
4ac−b2

(18)

The maximum score is then obtained by Equation (19):

sc′ = ϕTw(∆x′, ∆y′)
= a(∆x′)2 + b(∆x′)(∆y′) + c(∆y′)2 + d(∆x′) + e(∆y′) + f

(19)

4.3. Compute Scale Factor Using Depth Information

The BRISK algorithm detects feature points in the multi-scale pyramid model in order to ensure
descriptors with scale invariance. This method is slow, and has a large memory requirement.
By comparing the BRISK algorithm and other algorithms [36], we know that BRISK algorithm’s
robustness of scale invariance is weak.

The FAST algorithm used to detect the feature points in this paper does not have a main direction.
In order to make the descriptor have strong scale invariance robust, we will use the depth information
of RGB-D image to compute scale factor [35]. Scale factor s of formula:

s = max(0.2,
3.8− 0.4max(2, d)

3
) (20)

where d is the depth of pixel point, max(2, d) denotes the filtering pixels with depth smaller than 2
meter.

4.4. Orientation by Intensity Centroid

The local orientation of interest in the BRISK algorithm is oriented by long-distance point pair.
According to [36], it shows that the robust of rotation invariance is weak.

Feature points detected by the FAST algorithm do not have a main local direction, in order to
make the descriptor with strong robust rotational invariance, we will use the Intensity Centroid [34] to
orient the main direction of the feature point. The intensity centroid assumes that a corner’s intensity is
offset from its center, and this vector may be used to impute an orientation. Rosin defines the moments
of a patch as:

mpq = ∑
x,y

xpyq I(x, y) (21)

where x and y are relative to the position of the feature point, x, y ∈ [−r, r], r is the radius of
neighborhood of FAST interest point, the values of q, p are “1” or “0”, I(x, y) is the gray intensity of
point (x, y).

So, the centroid can be defined by m00, m01 and m10:

C = (
m10

m00
,

m01

m00
) (22)
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Corner center O to the centroid vector C is
→

OC, the orientation of local neighborhood of interest
point is:

θ = arctan(
m01

m10
) = arctan(

∑
x,y

yI(x, y)

∑
x,y

xI(x, y)
) (23)

5. Experimental Results and Analysis

All the experiments are done using the same notebook computer, which has an Intel Core
i7-4700HQ CPU and 8.0 GB RAM with the Ubuntu 14.04 64bit operation system. The images used in
the experiment are taken by Kinect Xbox 360 in the lab, and the size of depth image and RGB image is
640 × 480 pixels. In the experiment, the SURF algorithm, BRISK algorithm and the BRISK_D algorithm
are used to extract feature points and image registration. We have made comparative experiments on
indoor images in our lab and Freiburg dataset (https://vision.in.tum.de/data/datasets/rgbd-dataset).

5.1. Indoor Images in Our Lab

We have made comparative experiments on the lab objects, such as desk, chair, cup, corner debris.
We select Figure 5a,c to make a detailed comparative analysis. Figure 5a,b are the RGB image of the
reference Image A and the corresponding depth image. Figure 5c,d are the RGB image of the reference
Image B and the corresponding depth image. The reference images A and B are in good light.

In the experiment, the SURF algorithm, the BRISK algorithm and the BRISK_D algorithm are
used to extract and register the feature points for the collected reference images and the processed
reference images respectively. The experimental results are shown in Tables 1–6, Figures 6–11.
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Figure 5. Reference images: (a) The RGB-D image of A; (b) The depth image of A; (c) The RGB-D image
of B; (d) The depth image of B.

Table 1 and Figure 6 show the performance test results of the algorithms for feature extraction.
Column 1~3 in Figure 6 are experimental results of feature point extraction for images by the SURF
algorithm, the BRISK algorithm and the BRISK_D algorithm. The image C in Table 1 is the image that
Image A reduces brightness, Image D is the result of Image A adding the Gaussian Blur. The depth

https://vision.in.tum.de/data/datasets/rgbd-dataset
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images of C and D are the same as those of A. Table 1 shows the number of feature points and the
time required to extract the feature from Image A to D using above three algorithms. From Figure 6
and Table 1, the feature points extracted by the SURF algorithm are the most among the 3 different
images. They are stable. The influence of uneven illumination and brightness change is small, but the
time consumption is much longer than the other two algorithms, about 10 times that of the BRISK
algorithm, and 9 times that of the BRISK_D algorithm. The BRISK algorithm has the least number
of feature points, and is greatly affected by uneven illumination and brightness changes, but it has
short time consumption. The number of feature point extracted by the BRISK_D algorithm is less than
SURF algorithm and one time more than the BRISK algorithm. The influence of uneven illumination
and brightness change is small, the time consumed is equivalent to the BRISK algorithm, but the
distribution of feature points in this algorithm is more balanced than that of the other two algorithms.
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Figure 6. Feature points extracted by each algorithm. (a–d) Feature point detection using the
Speeded Up Robust Feature (SURF) algorithm; (e–h) Feature point detection using the BRISK
algorithm; (i–l) Feature point detection using BRISK_D algorithm. The first row (a,e,i) represents
the comparison of the three algorithms with Image A; The second row (b,f,j) represents the comparison
of the three algorithms with Image B; The third row (c,g,k) represents the comparison of the three
algorithms with Image C.; The fourth row (d,h,l) represents the comparison of the three algorithms
with Image D.
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Table 1. The comparison about feature points extracted by each algorithm and their time consumption.

Reference Image SURF Algorithm BRISK Algorithm BRISK_D Algorithm
Quantity Time (/ms) Quantity Time (/ms) Quantity Time (/ms)

Image A 2065 466 469 47 1099 51
Image B 1467 301 323 31 726 32
Image C 1945 374 384 38 821 39
Image D 1863 324 210 32 678 35

Figure 7 and Table 2 are the experimental results about the efficiency of feature matching in the
algorithm. Figure 7 is the experimental results that Image A registers with its own using the algorithm
in this paper. Table 2 represents the correct matching number of feature points for Image A and Image
B registering with its own and the time required for feature matching using the SURF algorithm, the
BRISK algorithm and the BRISK_D algorithm respectively. It can be seen from Table 2 that the correct
matching number of feature points of the SURF algorithm is the most, almost five times more than
the BRISK algorithm and two times more than the BRISK_D algorithm, and the time consumption
of the SURF algorithm is almost ten times more than the BRISK algorithm and five times more than
the BRISK_D algorithm. Considering that correct matching number of feature points of the BRISK_D
algorithm is approximately two times that of the BRISK algorithm, the matching speed of BRISK
algorithm is similar to that of this algorithm, but much faster than that of SURF algorithm.
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Figure 7. Experimental results of Image A registering with its own.

Table 2. The comparison about correct matching number of feature points and time consumption (/ms)
by each algorithm.

Reference
Image

SURF Algorithm BRISK Algorithm BRISK_D Algorithm

Quantity Time (/ms) Quantity Time (/ms) Quantity Time (/ms)

Image A 1941 186 443 17 1045 41
Image B 1356 113 318 12 719 28

Figure 8 and Table 3 are the testing experimental results of scale invariance of algorithms. Figure 8
is the experimental result that Image A registers with the image reducing A to 1/2 (Image A × 0.5)
using the BRISK_D algorithm. Table 3 represents the correct matching number of feature points that
Image A and Image B register with their own after scaling respectively using the SURF algorithm,
the BRISK algorithm and the BRISK_D algorithm. It can be shown from Table 3: the correct feature
points of the SURF algorithm are the most, and they are less affected by scale changes of the image.
The correct matching number of feature points of the BRISK algorithm are the least, and they are easily
affected by scale changes of image. Compared with the BRISK algorithm, the BRISK_D algorithm is
less affected by scale changes and the correct matching number increases 87% at least. However, when
the image magnification is 4 times, the correct number of matching drops obviously.
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Figure 8. The experimental result about registering Image A with its own reducing to 1/2.

Table 3. The correct matching number of reference image after scaling.

Reference Image Scaling Bits SURF Algorithm BRISK Algorithm BRISK_D Algorithm

Image A

0.25 1052 67 213
0.5 1299 105 258
2 1145 91 289
4 985 84 157

Image B

0.25 689 39 105
0.5 744 59 142
2 763 61 127
4 587 32 118

The Figure 9 and the Table 4 are experimental results which test rotation invariance of the
algorithm. Figure 8a–c are the experimental results of registration between Image A and Image A
after rotating 90◦, 270◦ and 180◦ using BRISK_D algorithm. Table 4 represents the correct matching
number of feature points using the SURF algorithm, the BRISK algorithm and the BRISK_D algorithm
respectively to register reference image and it after rotating with their own. It can be seen in Table 4
that after rotating, the SURF algorithm has more correct matching number of feature points; the correct
matching number of the BRISK algorithm is the least; the correct matching number of the BRISK_D
algorithm is less than SURF algorithm but is 71% more than the BRISK algorithm, and its stability is
better than BRISK algorithm.
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Table 4. The correct matching number of reference image after rotating.

Reference Image Rotation Angle SURF Algorithm BRISK Algorithm BRISK_D Algorithm

Image A

0 1941 443 1045
90 774 124 316
180 1052 162 388
270 875 107 294

Image B

0 1398 284 689
90 561 97 197
180 812 124 215
270 498 84 156

The Figure 10, Figure 11 and the Table 5 are experimental results that algorithms test blur
invariance of the image. In Table 5, the images A1 to A5 are respectively blurred for Image A with
Gaussian kernel as 0.6, 1.1, 1.6, 2.1 and 2.6. The Image A6 and Image A7 are respectively blurred for
left half and right half of Image A with Gaussian kernel as 0.6. Table 5 represents the correct matching
number of feature points that the Image A registers with its own after blurring respectively using
the SURF algorithm, the BRISK algorithm and the BRISK_D algorithm. Figure 10 is the experimental
result that the Image A registers with Image A1 using the algorithm in this paper, and Figure 11 is the
experimental result that the Image A registers with Image A6 using the algorithm in this paper. It can
be shown from the experimental results of images A1 to A5 in Table 5 that the correct matching number
of feature points of SURF algorithm under different Gaussian Blur is the most. With the increase of
the Gaussian kernel, the number of correctly matched feature points decreases, but the number of
correctly matched feature points is still large. The correct matching number of BRISK algorithm and
the BRISK_D algorithm decreases significantly when the degree of blur is little (Gaussian kernel is
0.6 or 1.1), but with the degree of blur increases, the correct matching number is stable after Gaussian
kernel coming to 1.6. It can be seen from the experimental results of Image A6 and A7: when the
image is locally blurred, the correct matching number of feature points of the SURF algorithm is the
most, and its performance is most stable; the correct matching number of feature points of the BRISK
algorithm is the least and it is greatly influenced by blur. The correct matching number of feature
points of the BRISK_D algorithm is less than SURF algorithm, but is at least 35% more than BRISK
algorithm, and its stability is higher than BRISK algorithm.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 

 

number of feature points of SURF algorithm under different Gaussian Blur is the most. With the 
increase of the Gaussian kernel, the number of correctly matched feature points decreases, but the 
number of correctly matched feature points is still large. The correct matching number of BRISK 
algorithm and the BRISK_D algorithm decreases significantly when the degree of blur is little 
(Gaussian kernel is 0.6 or 1.1), but with the degree of blur increases, the correct matching number is 
stable after Gaussian kernel coming to 1.6. It can be seen from the experimental results of Image A6 
and A7: when the image is locally blurred, the correct matching number of feature points of the SURF 
algorithm is the most, and its performance is most stable; the correct matching number of feature 
points of the BRISK algorithm is the least and it is greatly influenced by blur. The correct matching 
number of feature points of the BRISK_D algorithm is less than SURF algorithm, but is at least 35% 
more than BRISK algorithm, and its stability is higher than BRISK algorithm.  

 
Figure 10. Image A registered with its own after blurring. 

 
Figure 11. Image A registered with its own after local blur processing. 

Table 5. The correct matching number of 3 algorithms after image blurring. 

Reference Image SURF Algorithm BRISK Algorithm BRISK_D Algorithm 
Image A1 1698 257 645 
Image A2 1427 127 317 
Image A3 1124 71 164 
Image A4 964 65 147 
Image A5 681 57 138 
Image A6 1823 327 467 
Image A7 1532 294 398 

Table 6 is the experimental result that tests the invariance of illumination variations of the 
algorithms. Image B1 to B5 respectively represent the images that their brightness reduces 10%, 20%, 
30%, 40% and 50%. Image B6 and B7 respectively represent the images that the upper half and lower 
half of Image A reduce its brightness to 50%. It can be shown from the experimental result of Image 
B1 to B5 in Table 6 that when the intensity of the illumination is changed, the correct matching 
number of feature points of the SURF algorithm is the most and its range of change is the least; the 
correct matching number of feature points of BRISK algorithm is the least and its range of change is 
the largest; the correct matching number of feature points of the algorithm in this paper is less than 

Figure 10. Image A registered with its own after blurring.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 

 

number of feature points of SURF algorithm under different Gaussian Blur is the most. With the 
increase of the Gaussian kernel, the number of correctly matched feature points decreases, but the 
number of correctly matched feature points is still large. The correct matching number of BRISK 
algorithm and the BRISK_D algorithm decreases significantly when the degree of blur is little 
(Gaussian kernel is 0.6 or 1.1), but with the degree of blur increases, the correct matching number is 
stable after Gaussian kernel coming to 1.6. It can be seen from the experimental results of Image A6 
and A7: when the image is locally blurred, the correct matching number of feature points of the SURF 
algorithm is the most, and its performance is most stable; the correct matching number of feature 
points of the BRISK algorithm is the least and it is greatly influenced by blur. The correct matching 
number of feature points of the BRISK_D algorithm is less than SURF algorithm, but is at least 35% 
more than BRISK algorithm, and its stability is higher than BRISK algorithm.  

 
Figure 10. Image A registered with its own after blurring. 

 
Figure 11. Image A registered with its own after local blur processing. 

Table 5. The correct matching number of 3 algorithms after image blurring. 

Reference Image SURF Algorithm BRISK Algorithm BRISK_D Algorithm 
Image A1 1698 257 645 
Image A2 1427 127 317 
Image A3 1124 71 164 
Image A4 964 65 147 
Image A5 681 57 138 
Image A6 1823 327 467 
Image A7 1532 294 398 

Table 6 is the experimental result that tests the invariance of illumination variations of the 
algorithms. Image B1 to B5 respectively represent the images that their brightness reduces 10%, 20%, 
30%, 40% and 50%. Image B6 and B7 respectively represent the images that the upper half and lower 
half of Image A reduce its brightness to 50%. It can be shown from the experimental result of Image 
B1 to B5 in Table 6 that when the intensity of the illumination is changed, the correct matching 
number of feature points of the SURF algorithm is the most and its range of change is the least; the 
correct matching number of feature points of BRISK algorithm is the least and its range of change is 
the largest; the correct matching number of feature points of the algorithm in this paper is less than 

Figure 11. Image A registered with its own after local blur processing.



Sensors 2018, 18, 3908 15 of 19

Table 5. The correct matching number of 3 algorithms after image blurring.

Reference Image SURF Algorithm BRISK Algorithm BRISK_D Algorithm

Image A1 1698 257 645
Image A2 1427 127 317
Image A3 1124 71 164
Image A4 964 65 147
Image A5 681 57 138
Image A6 1823 327 467
Image A7 1532 294 398

Table 6 is the experimental result that tests the invariance of illumination variations of the
algorithms. Image B1 to B5 respectively represent the images that their brightness reduces 10%, 20%,
30%, 40% and 50%. Image B6 and B7 respectively represent the images that the upper half and lower
half of Image A reduce its brightness to 50%. It can be shown from the experimental result of Image B1
to B5 in Table 6 that when the intensity of the illumination is changed, the correct matching number
of feature points of the SURF algorithm is the most and its range of change is the least; the correct
matching number of feature points of BRISK algorithm is the least and its range of change is the
largest; the correct matching number of feature points of the algorithm in this paper is less than SURF
algorithm but 27% more than BRISK algorithm at least, and its range of quantity change is also less
than BRISK algorithm. It can be shown from the experimental result of Image B6 and B7 in Table 6
that when the distribution of illumination is uneven, the correct matching number of feature points
of SURF algorithm is the most, and it has the least influence; the correct matching number of feature
points of BRISK algorithm is the least, and it has the most influence; the correct matching number
of feature points of the BRISK_D algorithm is less than SURF algorithm but 13% more than BRISK
algorithm at least.

Table 6. The correct matching number of 3 algorithms after reducing the image brightness.

Reference Image SURF Algorithm BRISK Algorithm BRISK_D Algorithm

Image B1 1857 375 517
Image B2 1654 294 452
Image B3 1566 212 374
Image B4 1521 175 315
Image B5 1320 154 286
Image B6 1473 261 321
Image B7 1527 314 356

5.2. Freiburg Dataset

Freiburg dataset consists of several indoor RGBD image sequences of 640 × 480 pixels acquired
with Microsoft Kinect and ASUS Xtion sensors. This dataset is suitable for SLAM and visual odometry
experiments. We use three sequenced of RGBD images Freiburg dataset, containing more complex
camera position changes: sequences desk (42 frames with 10 frames skipping), structure texture far
(61 frames with 5 frames skipping) and floor (21 frames with 5 frames skipping). Several images from
three sequences are shown in Figure 12. The depth maps are of a standard Kinect quality.

In each sequence, its first image is taken as the reference, the k-th image (k = 2, 3, · · · · · · ) of the
sequence is then matched against this reference. The matching process is as follows. A set of local
features extracted from the first image is matched against the feature set from the k-th image. Let Fk
denote the set of features found in the k-th image. We compare the three algorithms by calculating the
Matching scores (shown in Figure 13). Matching score computation: the ratio between the number
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of correct matches and the maximum possible number of matches is reported as matching score per
image pair. For k-th image, the formula [37] of the Matching score is as follow:

Mε0(k) =
Nε0(F1, Fk)

min(|F1|, |Fk|)
(24)
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Figure 12. Images from three sequences of Freiburg dataset. (a) RGB image and depth image of
Desk sequence (b) RGB image and depth image of Floor sequence (c) RGB image and depth image of
structure texture far sequence.

The Matching score shows how many features in percentage are actually repeatable in each test
image with respect to the reference image. This measures the performance of the detector.

From the comparison results of Figure 13, we can see that the overall performance of the Matching
score is on a downward trend. Freiburg dataset is recorded data by holding the Kinect camera and
moving slowly during recording. When recording data, the camera is constantly panned and rotated,
and the camera pose changes constantly. So, it’s normal for Matching score to show a downward trend.
From the comparison results, the BRISK_D algorithm has the best Matching score, SURF algorithm is
the second, and BRISK is the worst. The BRISK_D algorithm combines depth information and has
certain advantages for matching video images in the room.
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6. Conclusions

This paper improves the BRISK algorithm using the depth information of the RGB-D image,
and computes scale factors in order to increase the scale invariance of descriptor, then uses Intensity
Centroid to determine the main direction of feature points in order to increase the scale invariance.
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Experimental results show that the algorithm in this paper is fast and its scale invariance and rotational
invariance are stronger than the original BRISK algorithm; the algorithm can also achieve better
matching results when the illumination is changed and image is blurred. But when the image has a
large-scale change, the accuracy of the algorithm in this paper decreases significantly, and when the
image is blurred, the stability of this algorithm is not stronger. The next step in this work is to focus on
enhancing the stability of this algorithm under the condition that image has a large-scale change and
image is blurred.
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