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Abstract: Multichannel physiological datasets are usually nonlinear and separable in the field
of emotion recognition. Many researchers have applied linear or partial nonlinear processing in
feature reduction and classification, but these applications did not work well. Therefore, this paper
proposed a comprehensive nonlinear method to solve this problem. On the one hand, as traditional
feature reduction may cause the loss of significant amounts of feature information, Kernel Principal
Component Analysis (KPCA) based on radial basis function (RBF) was introduced to map the data
into a high-dimensional space, extract the nonlinear information of the features, and then reduce
the dimension. This method can provide many features carrying information about the structure in
the physiological dataset. On the other hand, considering its advantages of predictive power and
feature selection from a large number of features, Gradient Boosting Decision Tree (GBDT) was used
as a nonlinear ensemble classifier to improve the recognition accuracy. The comprehensive nonlinear
processing method had a great performance on our physiological dataset. Classification accuracy of
four emotions in 29 participants achieved 93.42%.

Keywords: emotion recognition; multichannel physiological signals; comprehensive nonlinear
processing; KPCA and GBDT

1. Introduction

The purpose of emotion recognition is to build a harmonious human-machine environment by
giving a computer the ability to recognize human emotion. It has been widely applied in many fields,
such as disease diagnosis [1,2], criminal investigation [3,4], and distance education [5,6]. At present,
there are two commonly used methods for emotion recognition. One is to detect physiological
signals [7–13]; the other is to detect emotion behaviors such as facial expression [14,15], speech [16] and
gesture [17]. By contrast, physiological signals are more reliable, they are not controlled by participants’
subjective consciousness. Therefore, emotion recognition based on physiological signals has become a
hot topic in the field of human-computer interaction.

Physiological signals are so easily influenced by many factors such as the human body and external
environment, that they bring great difficulties to data acquisition. Besides, the feature extraction is
blind due to the lack of prior knowledge about emotion recognition, which results in many features
including lots of related, redundant, and nonlinear features. These two reasons make it difficult to
distinguish the emotion categories from physiological signals, especially multichannel physiological
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signals, because there are interactions between the features from different signals. Many researchers
have done a lot of work from feature reduction and classification to overcome this difficulty.

Most of the traditional emotion recognition models have adopted linear or partial nonlinear
methods (such as Principal Component Analysis & Support Vector Machine (PCA & SVM) and PCA &
K-Nearest Neighbor (PCA & KNN)) to solve this problem. However, these methods did not work well
on the nonlinear physiological dataset and they did not consider the interactions between features.
Therefore, it is necessary for emotion recognition from the nonlinear multichannel physiological dataset
to undertake comprehensive nonlinear processing.

We consider that the comprehensive nonlinear processing includes both nonlinear feature
reduction and nonlinear classification. For nonlinear feature reduction, considering the loss of feature
information caused by traditional dimension reduction, we think it is an effective way to map the
features into a high-dimensional space by a kernel function and then reduce dimensions. With the
increase of dimensions, there may be more distinguishable physiological features [18]. Specifically,
Kernel Principal Component Analysis (KPCA) based on radial basis function (RBF) kernel was adopted
to handle this problem, with details in Section 3.1. The increase of dimension may also produce some
redundant features that will have an impact on classification. For this problem, we used Gradient
Boosting Decision Tree (GBDT) as a nonlinear classifier to improve the recognition accuracy, since
GBDT is an ensemble model constructed by multiple decision trees, which can select and combine
significant features for classification automatically [19].

Based on the above analysis, this paper proposed an emotion recognition framework
using comprehensive nonlinear processing, as shown in Figure 1. Firstly, four physiological
signals (electrocardiogram (ECG), galvanic skin response (GSR), electromyography (EMG) and
photoplethysmography (PPG)) were collected under four induced emotions (pleasure, fear, sadness,
and anger), then they were segmented to short-term signals to reduce the required length of signals.
Secondly, the short-term signal segments were preprocessed, and the characteristic waveforms were
detected from ECG and PPG signals. Thirdly, emotion-relevant features were extracted from the
processed signals and all features were fused to construct the physiological dataset. Fourthly, KPCA
was used to map the data into a high-dimensional space and then reduce feature dimension. Finally,
GBDT model was estimated to predict the emotion of test set. The result analysis of the comprehensive
nonlinear processing in Section 4.4 shows that the method could greatly assist the emotion recognition
system towards multichannel physiological signals, and other systems related to the multichannel
electrical signals.
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Figure 1. The process of emotion recognition framework.

Our contributions are:
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• A comprehensive nonlinear processing method was proposed to improve the accuracy of emotion
recognition from multichannel physiological signals.

• KPCA based on RBF kernel was adopted to solve the loss of feature information caused by
dimension reduction in the physiological datasets (especially nonlinear multichannel datasets).

• GBDT was used to resolve the poor performance of general classifier under a nonlinear
multichannel physiological dataset with many features from different signals.

• The classification accuracies of four physiological signals and four emotions were compared by
different models.

The paper is organized as follows: Section 2 gives a brief overview of related work in the field of
emotion recognition based on physiological signals. Section 3 presents the details of comprehensive
nonlinear processing method. Section 4 describes the acquisition experiment of physiological signals
and compares the classification results of different models. Section 5 concludes our work and outlines
further work.

2. Related Work

As signal processing and sensor technology are advancing, we can continuously record a
participant’s physiological signals if he wears bio-sensors. Increased attention has been paid to
emotion recognition based on physiological signals. Different emotion induction plans are designed
to collect various physiological signals, then many feature processing and classification methods are
used for emotion recognition from these physiological signals.

2.1. Multiple Physiological Signals

Acquisition of a high-quality database of physiological signals is the first step for emotion
recognition. In the field of emotion recognition towards physiological signals, the autonomic nervous
system (ANS) [20,21] signals have been increasingly emphasized, such as ECG, GSR, EMG, PPG,
respiration (RSP), blood volume pulse (BVP), skin temperature (SKT), skin conductance (SC) and so on.

Picard (2001) collected four physiological signals by measuring EMG, BVP, GSR and RSP [7]. L Li
(2006) proposed to recognize emotion using four physiological signals (ECG, SKT, SC and RSP) [8].
JS Tsai (2009) proposed an emotion recognition system with consideration of facial expression and
physiological signals including SC, finger temperature and heart rate [9]. Previous studies have shown
that emotion recognition through the ANS signals is feasible and effective.

In this paper, four physiological signals including ECG, GSR, facial EMG and PPG were collected.
Here we briefly explain the underlying correlation between emotion and these physiological signals.

ECG and PPG are two of the most important physiological signals which have been subject to
a high degree of attention in emotion recognition field. They are the digital representation of heart
activity. The heart rate can reflect a person’s emotion state to a certain degree, for example, both
surprise and stress induce physiological response: elevate heart rate substantially [22].

Facial EMG is a signal that can be easily measured from the face surface. It is caused by the
activity of facial muscle contraction and reflects the state of the nerves muscle. It can reflect the changes
of emotion from facial expressions.

GSR is another signal that can be measured from the body surface and reflects the electrical
conductivity of the skin. The skin conductance level is closely related to emotion and attention [23–25].
The principle is that emotion changes can lead to the relaxation and contraction of blood vessels in the
skin, as well as the secretion of sweat glands, thereby changing the conductivity of the skin.

2.2. Emotion Stimuli

The participants of our experiment are not professional actors, they are not good at expressing
particular emotions. To obtain effective physiological signals, it is necessary to induce the targeted
emotions of participants by emotion stimuli, as emotion stimuli has a great effect on the activity of
the ANS [26].
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At present, there are three widely used emotion induction techniques. One is to watch picture [27],
video [28] or listen to music [29]. Another is to imitate reality, including sensory stimulation (such
as darkness, noise stimulation), driving [30], human-machine interaction [31], playing computer
games [32] and doing long and cumbersome cognitive tasks [10]. The other is to self-imagine and recall.
It has been proved that these methods are effective to induce targeted emotions. Among them,
the method using picture, audio and video is more common and convenient according to the
investigation of related work. However, we conclude that visual stimulation using only picture
and auditory stimulation using only music are not enough for effective emotion induction. Therefore,
video clips were adopted as emotion stimuli in this paper, as video induction is a multimodal (audio,
visual and cognitive) approach to evoke targeted emotions.

2.3. Mainstream Method

Considering the complexity of emotion-relevant features extracted from different physiological
signals, many feature processing and classification methods were used to improve the performance
of emotion recognition. Without dimension reduction, KH Kim (2004) directly adopted SVM
as a pattern classifier to resolve emotion recognition of short-term physiological signals, correct
classification ratios for 50 subjects were 78.4% and 61.8%, for the recognition of three and four
categories, respectively [10]. J Cai (2009) used Tabu Search Algorithm (TS) for feature selection
and proposed fisher-KNN for classification, the classification accuracy of affective (joy and sadness)
ECG signal obtained from 391 subjects reached 90% [11]. B Cheng (2012) adopted SVM to serve as
classifier, original physiological signals feature matrixes with the PCA dimension reduction approach
were classified by the SVM, correct classification ratio of four emotion classes labeled by valence was
88.33%, the physiological dataset came from University of Augsburg, Germany [33] and included four
physiological signals (EMG, SC and RSP) [12]. Yoon (2013) proposed the improved Bayes classifier
using the weighted-log-posterior function to resolve the problem of the emotion recognition from
electroencephalogram (EEG) signals, for the two-level class case, the average accuracies of the valence
and arousal estimation were 70.9% and 70.1%, respectively [13].

These studies have made some achievements with the physiological dataset by using linear or
partial nonlinear method. However, there are still some issues need to be resolved, such as the loss
of feature information caused by feature reduction and low classification accuracy on multichannel
physiological signals. To address these issues, a comprehensive nonlinear processing method was
proposed in this paper.

3. Algorithm

To improve the classification accuracy of the emotion recognition system, a comprehensive
nonlinear processing method was proposed, which combined KPCA and GBDT for nonlinear
feature processing and nonlinear classification, respectively. Figure 2 shows the procedure of the
comprehensive nonlinear processing method. The input of the algorithm is the physiological dataset
that containing 623 samples, each sample has 136 features. Firstly, KPCA is used for feature reduction.
More concretely, the features of samples are mapped into a high-dimensional space called kernel space
through the RBF kernel function. In the kernel space, it is easier to extract the nonlinear information of
features and there may be some distinguishable features to be generated. After the kernel mapping,
the standard PCA is performed, projecting the data from kernel space to a lower dimension space.
At this point, we can get the sample vectors with independent attribute as input to GBDT model.
Then, the sample vectors are divided into training set and test set according to 10-fold cross validation.
The training set is used as input to update GBDT model, which is used as a nonlinear tree-based
ensemble classifier to improve classification accuracy, since it can accomplish feature selection by
choosing and combining significant features to generate a base learner (decision tree). At last, use the
well trained GBDT model to predict the test set.
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Figure 2. Block diagram of the comprehensive nonlinear processing method.

3.1. Kernel Principal Component Analysis

In the field of multivariate statistics, KPCA is a nonlinear extension of PCA using kernel methods.
It is known for its good performance on a nonlinear dataset.

To understand the utility of KPCA [34–36], we suppose a dataset containing N data points,
where xi ∈ Rd. Unlike PCA, these data points are firstly mapped into a high-dimensional feature space
F using a kernel function k (x, y):

xi
k(x,y)→ Φ (xi) . (1)

The high-dimensional feature space is called kernel space. In the kernel space, to eliminate the
influence of different feature scales, the data points are centered around the origin with

Φ̃ (xi) = Φ (xi)−
1
N

∑N
j=1 Φ

(
xj
)

. (2)

Then standard PCA [37] is performed to project data into a lower dimension space through the
projection vector α. In KPCA, any one eigenvector V of the covariance matrix is a linear combination
of points Φ̃ (xi),

V = ∑N
k=1 αiΦ̃ (xi) (3)

where αi is the component of the projection vector α.
The commonly used kernel functions include linear kernel, polynomial kernel, and RBF (Gaussian)

kernel. In this paper, the RBF kernel

k (x, y) = e
−‖x−y‖2

2σ2 (4)

is adopted for its good performance on a nonlinear dataset.
Equation (1) shows that the number of nonlinear principal components extracted by KPCA can

be substantially higher (up to the number of data points). This can be nearly always advantageous,
especially in the situation where the dimension of the input data points is significantly smaller than
the number of data points and a data structure is spread over all eigendirections [38].

Our physiological dataset contains 623 samples and 136 dimensions described thoroughly in
Section 4.3, just coincides this situation. Figure 3 shows the data structure that the importance of
most features is similar, where the feature importance is evaluated by a tree-based ensemble method
(ExtraTreesClassifier) [39]. The importance of each feature represents its contribution to the decision
tree. The result on feature importance as depicted in Figure 3 shows that the contribution of each
feature to the decision tree is not significantly different in classification. Under these circumstances
traditional dimension reduction may lead to the loss of significant amounts of information [38]. That is
one of the reasons for adopting KPCA. Another reason is that the emotion-relevant features are highly
relevant with each other, the Pearson and Spearman correlations of features are shown in Figure 4.
Pearson correlation coefficient (PCC) is a measure of the linear correlation between two variables X
and Y. The formula is:

ρ (X, Y) =
cov (X, Y)

σXσY
, (5)

where ρ (X, Y) is the PCC between X and Y, σX is the standard deviation of X and σY is the standard
deviation of Y. Spearman correlation coefficient is a nonparametric measure of rank correlation
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(statistical dependence between the rankings of two variables). The Spearman correlation is defined
as the Pearson correlation between the rank variables [40]. These two correlation coefficients have a
value between +1 and −1, where +1 is total positive linear correlation, 0 is no linear correlation, and
−1 is total negative linear correlation.
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Figure 4. Pearson and Spearman correlations of features.

Specifically, 136 features are mapped into infinite dimension space by RBF kernel mapping,
to make the dataset easier to separate. Then standard PCA is performed to reduce feature
dimension to 623 (the number of samples), as excessive dimension reduction may cause the loss
of feature information.

3.2. Gradient Boosting Decision Tree

GBDT is an ensemble classifier constructed by multiple decision trees using boosting framework.
It is a linear combination of the basic models (decision tree). The basic models are established by
significant features and updated in the gradient descent direction of the pseudo-residuals. It has shown
very good performance on the classification and regression tasks in many data mining competitions
organized by KDD Cup and Kaggle. Considering its advantages of feature selection and predictive
power [41–43], we can infer that GBDT will greatly improve the accuracy of emotion recognition on
the nonlinear physiological dataset with large number of features.
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To understand GBDT [41,44,45], we assume a training set S = {(xi, yi)}n
i=1, a predict model F (x),

a differentiable loss function L (y, F (x)). Firstly, the predict model is initialized with a constant value:

F0 (x) = arg min
γ

∑n
i=1 L (yi, γ). (6)

Then compute pseudo-residuals:

rim = −
[

∂ (yi, F (xi))

∂F (xi)

]
F(x)=Fm−1(x)

i = 1, · · ·n (7)

where m represents the number of iteration. Fit a base learner (decision tree) hm (x) in the gradient
descent direction of the pseudo-residuals. Next the minimum value of the loss function is searched
linearly with:

γm = arg min
γ

∑n
i=1 L (yi, Fm−1 (xi) + γhm (xi)). (8)

At last, update the model with hm (x):

Fm (x) = Fm−1 (x) + νγmhm (x) , 0 < ν < 1 (9)

where v is the learning rate.

4. Experiment

4.1. Collection of Multiple Physiological Signals

To acquire a high-quality database of physiological signals, a scientific and reasonable
arrangement was made for the experiment from the selection of participants, the settings of experiment
instruments, the selection of emotion induced videos and the construction of experiment scene.

4.1.1. Participants and Emotion Stimuli

The participants include 29 students, 15 males and 14 females, which come from software college,
Tianjin University, China. They are aged from 18 to 30 years (mean = 22.97, standard deviation = 2.83).
Health survey questionnaire shows that they have no history of medical, neurological, or psychiatric
illness. They are so healthy both physically and psychologically that they can express emotions
normally. The experiment was carried out on the premise that the participants were informed of the
purpose and details of the experiments. In addition, consent forms signed by all participants have
been obtained before the experiment.

For the stimuli, we choose a movie clip of Diors Man for pleasure, a movie clip of Grudge for fear,
a movie clip of the Aftershock for sadness and a movie clip of Silenced for anger. These representative
movie clips are selected from 20 movie clips by online voting of 50 non-subjects. Scientific research
indicates that a person’s concentration of energy lasts about 20 min [46]. Considering the participants’
patience, each movie clip plays about 4 min in pleasure, fear, sadness, and anger order. In addition,
the internal of each two clips plays a one-minute landscape pictures to make the participants calm
down, the time and pictures are voted by participants. The whole process of stimuli lasts about 20 min.

4.1.2. Experiment Instruments and Scene

The experiment was arranged in a closed and quiet room. The physiological signals including
ECG, GSR, EMG and PPG were acquired using BIOPAC MP150 system.

MP150 multichannel physiological recorder of American BIOPAC company is the most widely
used physiological record analysis system in the world. A MP150 system consists of a host computer,
acquisition and analysis software, and various amplifiers, sensors, leads and electrodes. The hardware
of MP150 system is modular, which can measure different physiological signals at random. The system
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can also capture video synchronously and synchronize with the third-party equipment such as the eye
tracker. The supporting software AcqKnowledge can view, measure, analyze and transform data in real
time. It can also set different sampling rates and output multiple file formats, including AcqKnowledge
graph, Excel, MATLAB, Text, etc.

The sampling rate was fixed at 200 Hz for all channels of all signals. Each signal has the
corresponding sensor and amplifier. Amplifier settings include high-pass filter, low-pass filter,
and gain.

ECG collection used 2 screened leads (LEAD110S), 1 unscreened lead (LEAD100), 3 disposable
electrodes and ECG100C amplifier. The shields of the 2 screened leads were connected to the shield of
the amplifier. Positive electrode (VIN+) was connected to the left lower extremity, negative electrode
(VIN-) was connected to the right upper extremity and the ground electrode (GND) was connected the
right lower extremity. Amplifier gain was set at 500, high-pass filter was set at 0.5 Hz and low-pass
filter was set at 35Hz ON.

GSR collection used Skin Resistance Sensor (TSD203) and GSR100C amplifier. TSD203 consisted
of two non-polarized electrodes, which were attached to the fingertips through the bandage. Amplifier
gain was set at 1000, high-pass filter was set at DC (Direct Current) and low-pass filter was set at 1Hz.

EMG collection used 2 LEAD110S, 1 LEAD100, 3 disposable electrodes and EMG100C amplifier.
VIN+ and VIN- were connected to the forehead, GND was connected to the back of the ear. Amplifier
gain was set at 2000, high-pass filter was set at 1Hz and low-pass filter was set at 100Hz HPN OFF.

PPG collection used PPG Pulse Sensor (TSD200) and PPG100C amplifier. The TSD200 was also
connected to the fingertip. Amplifier gain was set at 500, high-pass filter was set at 0.05 Hz and
low-pass filter was set at 10 Hz.

Besides, we used two computers. One computer was used to record signals from BIOPAC MP150
system, another computer with a camera was used to play emotion stimuli and record the facial
expressions of the participants synchronously. Figure 5 shows the experiment platform.

Data collection

Sensor

Computer two

Collect signals 

Computer one with camera

Play stimulation BIOPAC MP150Subject

Induce emotion

Watch video

Record signal

Figure 5. The diagram of experiment platform.

At the beginning of experiment, we explained the experiment process for participants and helped
them wear physiological signal sensors. Subsequently, about 20 min video was played. As the
experiment began, the screen of computer used for recording physiological signals was blocked to
avoid interference to the subjects. The participants were requested to be as relaxed as possible during
this period. Figure 6 shows a participant in the emotion induction experiment. After the experiment,
participants were asked to fill out the feedback form about emotion experience. In the subsequent
steps, the emotion reports and the facial expressions of the participants will be used for the emotion
label of physiological signals.
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Figure 6. A participant in emotion induction experiment.

4.2. Preprocessing

Physiological signals are easily interfered by noise, the electromagnetic phenomenon of
the experiment instrument, the power frequency, and the action of participants. Therefore,
the preprocessing to physiological signals is an indispensable step in emotion recognition.

Firstly, the N-tap FIR (finite impulse response) adaptive filter with coefficients updated using least
means squares feedback was used to eliminate interference between different channels, the order and
step size of the filter were 5 and 1 × 10−6, respectively. Then to reduce the required length of signals,
we intercepted about 20s signal segments of each sample according to the participants’ emotion report
and facial expression. The subsequent processing was all based on these signal segments.

For ECG and PPG signals, baseline drift is a serious interference, which is often caused
by limb movement, respiratory movement, poor electrode contact and so on. Considering this
problem, the moving average method was used for smoothing, wavelet transform was used to
remove baseline drift and detect characteristic waves (R wave in ECG and PPG characteristic wave).
Specially, the original ECG signal was firstly decomposed into 7 layers using db5 wavelet basis, and
the approximate signal was obtained as close as possible to the ECG baseline drift noise. Then,
the approximate signal was averaged and reconstructed from the detail signal to eliminate the
interference caused by the baseline drift. After that, the wavelet transform of ECG signal on scale 8
produced a pair of modulus maxima. The peak time of R wave corresponds to the zero-intersection
point of the modulus maxima pair, since the energy of R wave is mainly concentrated on scale 8. At this
point, we got the characteristic wave of ECG after eliminating baseline drift. The processing of PPG
is the same as ECG signal, except that use sym8 wavelet basis to eliminate baseline drift by 5 layers
decomposition and detect the PPG characteristic wave on scale 4. According to the above method,
we processed a subject’s ECG and PPG signals, which were interfered by baseline drift due to the body
movement of the subject. Figure 7 shows the result of the process to ECG and PPG signal. For EMG
signal, a Butterworth low-pass filter with 0.4 Hz was used to denoise. For GSR signal, a Butterworth
low-pass filter with 0.3 Hz was used for smoothing.
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Preprocessing of PPG Preprocessing of ECG

 raw signal

 removing baseline drift and smoothing

R wave detection

 raw signal

 removing baseline drift and smoothing

PPG characteristic wave detection

Figure 7. The preprocessing of ECG and PPG signals.

4.3. Feature Extraction

Augsburg Biosignal Toolbox (AuBT) [33] is a toolbox for analyzing physiological signals in the
face of emotion recognition. After preprocessing, emotion-relevant features were extracted from
physiological signal segments using AuBT.

A typical ECG signal is composed of P wave, Q wave, R wave, S wave and T wave. The features
of ECG include the time interval and amplitude characteristic of each wave, heart rate and heart
rate variability (HRV). HRV is the variation in the time interval between heartbeats. Usually, the RR
interval time series is used as the equivalent of the HRV time series [47]. Amplitude characteristics
refer to the statistical features of P, R and S amplitude. Heart rate is generally used to distinguish
positive and negative emotions. HRV refers to the concussion of the time interval of a continuous
heartbeat, which reflects the psychological stress of adults. The initial features include 13 underlying
characteristics (intervals of each characteristic wave between the adjacent heartbeat, amplitude, HRV)
and the high-level features extracted from the 13 underlying features. Table 1 presents the details of
ECG features. pNN50 is a common indicator of HRV, which represents number of pairs of adjacent RR
intervals differing by more than 50 ms divided by the total number of RR intervals. Triind is the total
number of all RR intervals divided by the height of the histogram of all RR intervals measured on a
discrete scale with bins of 7.8125 ms.

Table 1. Features extracted from ECG signal.

Underlying Features Statistical Features

RR interval Mean, Median, Std, Min, Max, Range
PP interval Mean, Median, Std, Min, Max, Range
QQ interval Mean, Median, Std, Min, Max, Range
SS interval Mean, Median, Std, Min, Max, Range
TT interval Mean, Median, Std, Min, Max, Range
PQ interval Mean, Median, Std, Min, Max, Range
QS interval Mean, Median, Std, Min, Max, Range
ST interval Mean, Median, Std, Min, Max, Range

P amplitude Mean, Median, Std, Min, Max, Range
R amplitude Mean, Median, Std, Min, Max, Range
S amplitude Mean, Median, Std, Min, Max, Range

HRV Mean, Median, Std, Min, Max, Range, pNN50, the mean of frequency spectrum
HRV distribution Mean, Median, Std, Min, Max, Range, Triind

21 time domain and frequency domain features are extracted from GSR signal, including three
underlying features: the raw signal GSR, the first order differential and the second order differential of
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GSR. Each underlying feature consists of 7 statistical features, namely, mean, median, std, min, max,
minRatio and maxRatio. Table 2 presents the details of GSR features.

Table 2. Features extracted from GSR signal.

Underlying Features Statistical Features

Raw GSR Mean, Median, Std, Min, Max, MinRatio, MaxRatio
GSR-1Diff Mean, Median, Std, Min, Max, MinRatio, MaxRatio
GSR-2Diff Mean, Median, Std, Min, Max, MinRatio, MaxRatio

The feature extraction of EMG signal is the same as GSR signal. Table 3 presents the details of
EMG features.

Table 3. Features extracted from EMG signal.

Underlying Features Statistical Features

Raw EMG Mean, Median, Std, Min, Max, MinRatio, MaxRatio
EMG-1Diff Mean, Median, Std, Min, Max, MinRatio, MaxRatio
EMG-2Diff Mean, Median, Std, Min, Max, MinRatio, MaxRatio

PPG features include the statistical features of its characteristic wave amplitude and the pulse
rate variability (PRV) features. PRV is the variation in the time interval between pulse beats. Table 4
presents the details of PPG features.

Table 4. Features extracted from PPG signal.

Underlying Features Statistical Features

P-PPG Mean, Median, Std, Min, Max, Range
PRV-PPG Mean, Median, Std, Min, Max, Range, Frequency spectrum

After the feature extraction, some features have almost the same values in all samples, such as the
mean value of GSR-1Diff and GSR-2Diff. These features are unhelpful to emotion recognition from
signals. Removing these features with variance less than 0.8 × (1 − 0.8), there are total 136 features,
including 80 ECG features, 20 EMG features, 17 GSR features and 19 PPG features. As can be seen
from the feature extraction described above, some features from the same signal are strongly related.
Some researchers have applied feature selection algorithms to filter out these redundant and strongly
related features [11,48], but this paper did not do this, as KPCA can remove the correlation between
features automatically, which was one of the reasons why we adopted KPCA for feature reduction.
These features from multichannel physiological signals are complex and interrelated, making the
physiological dataset difficult to separate. The emotion reports and facial expressions of participants
were used for emotion annotation. Then, the physiological dataset was constructed by these features
and emotion labels. As the participants have different sensitivity and response to each emotion,
our physiological dataset is a little unbalanced. The number of samples on pleasure, fear, sadness,
and anger are 105, 185, 168, and 165, respectively.

4.4. Results Analysis

In this section, a lot of contrast experiments were conducted to verify the effectiveness of
the comprehensive nonlinear method by 10-fold cross validation. Effectiveness was measured by
classification accuracy, that was the ratio of samples correctly classified in the test set. For contrast, we
employed two traditional feature reduction methods (PCA and Locally Linear Embedding (LLE)) and
three frequently used classifiers (SVM, KNN and Gaussian Naive Bayes (GaussianNB)).
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Table 5 shows the classification accuracy of different models on the features of each signal.
From the last line of the table, we can easily find that all the classifiers based on traditional dimension
reduction methods have a poor performance on our physiological dataset. However, the use of KPCA
greatly improves their classification performance. Therefore, we infer that KPCA has great advantages
in handling nonlinear multichannel physiological features. Since our physiological dataset is composed
of features from different signals, the interaction and nonlinear relation between different features in
classification must be considered. GBDT can interact with multiple sets of features automatically and
has good nonlinear classification ability, so it should have a good performance on the multichannel
physiological dataset. Classification results show GBDT outperforms other classifiers (SVM, KNN and
GaussianNB) in all situations, demonstrating its predictive power on the multichannel physiological
dataset and proving our analysis.

Besides, comparing the classification accuracy of different signals in Table 5, it can be found that
ECG has the highest classification accuracy in most models. Therefore, we consider that ECG has rich
emotion-relevant features, which can clearly reflect changes in human emotions. Many researchers
have used ECG for emotion recognition [11,49,50]. We can also see that the classification performance
of the comprehensive nonlinear processing model (KPCA & GBDT) on multichannel physiological
signals is better than that on single signal. Therefore, we think the comprehensive nonlinear processing
model can improve the accuracy of emotion recognition towards complex physiological datasets
(nonlinear and multichannel).

Table 6 shows the classification accuracy of different models on each emotion. The classification
accuracy of each emotion represents the ratio at which the samples belonging to this emotion are
correctly classified. Obviously, in most models, fear has the highest classification accuracy in four
emotions. Therefore, it can be considered that the physiological responses of the participants are
more intense when they are scared, or the fear emotion is more easily evoked than pleasure, sadness,
and anger.

To get the final hyper parameters of GBDT, we tuned the boosting and tree-specific parameters of
GBDT. learning_rate and n_estimators are boosting parameters. learning_rate is the weight reduction
coefficient of each decision tree, which controls the amplitude of variation of the decision tree
estimation, the lower the value is, the better the generalization is. n_estimators is the number of
decision tree and the number of boosting stages to perform. Generally, increasing n_estimators
can improve the performance and robustness of the model without overfitting. It is often tuned
together with learning_rate, lower learning_rate usually requires more n_estimators. max_depth and
max_ f eatures are tree-specific parameters, correspond to the maximum depth and the largest number
of features of each decision tree. Increasing max_depth and max_ f eatures appropriately can also
improve the performance of the model, because there are more features to be considered at each
node of the decision tree. However, this is not entirely correct, because it reduces the diversity of
individual decision trees. Therefore, the values of max_depth and max_ f eatures should be adjusted
according to the distribution of the dataset. The best GBDT model achieves 93.42% accuracy with
learning_rate = 0.1, n_estimators = 200, max_depth = 4 and max_ f eatures = 30. Table 7 gives a
summary to the performance of different hyper parameters with KPCA & GBDT. As is evident from
the table, learning_rate, n_estimators, max_depth and max_ f eatures all influence the classification
accuracy. Since the physiological dataset has many features (623) after KPCA processing, it is necessary
to enlarge the size of decision tree to improve the recognition accuracy. From the table, it can be seen
that increasing the values of max_depth and max_ f eatures can improve the recognition accuracy, that
is consistent with the characteristics of the physiological dataset and above analysis. Besides, under the
condition that the parameters of decision tree are fixed, the recognition accuracy can also be improved
by increasing the step size of decision tree fitting and the number of iterations appropriately without
overfitting, as shown in the result of learning_rate and n_estimators in Table 7.

At last, GaussianNB and GBDT were adopted to verify the influence of the number of nonlinear
principal components (n_components) on classification. The results are shown in Table 8. As the
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original dimension of our physiological dataset is 136, GaussianNB reaches the highest classification
accuracy on 300 principal components and GBDT reaches the highest classification accuracy on 600
principal components. We consider that the large number of nonlinear principal components generate
more distinguishable features and reduce the loss of feature information, and it is not achievable by
traditional dimension reduction method. Besides, the table also shows that in the higher dimension
space (n_components > 300), the accuracy of GaussianNB model will degrade, but the accuracy of
GBDT still improves gradually, it is a good illustration for the superiority of GBDT in processing
high-dimensional data. For the degradation of GaussianNB performance, it can be inferred that there
may be some interference features in classification with the increase of principal components. For the
improvement of GBDT performance, considering the construction of GBDT model, we think this is
because there are more features to be considered at each node of the decision tree with the increase of
principal components, which is similar to the principle of parameters max_depth and max_ f eatures.
This also proves the power of feature selection of GBDT.

To validate the performance of the comprehensive nonlinear processing method on classification
of the physiological dataset, different experiments based on KPCA and GBDT were conducted. Results
in Tables 5, 6 and 8 illustrate the superiority of the comprehensive nonlinear method on emotion
recognition towards the nonlinear multichannel physiological dataset.

Table 5. Classification results of different models on the features of each signal.

Accuracy (%)
SVM KNN GaussianNB GBDT

LLE PCA KPCA LLE PCA KPCA LLE PCA KPCA LLE PCA KPCA

ECG(80) 43.49 35.23 67.43 40.94 42.70 41.56 35.15 34.64 73.03 42.05 47.66 83.14
EMG(20) 29.86 31.16 33.72 26.49 33.87 33.23 34.19 32.43 36.78 30.48 38.21 33.70
GSR(17) 38.05 38.69 35.48 35.95 33.55 45.60 33.87 40.27 32.73 35.30 43.67 35.46
PPG(19) 34.21 31.30 32.75 33.39 34.34 34.37 31.62 37.88 26.00 35.50 40.44 36.44

Total(136) 43.02 39.22 61.49 43.80 43.01 63.70 38.53 39.01 88.13 44.46 54.73 93.42

Table 6. Classification results of different emotions.

Accuracy (%)
SVM KNN GaussianNB GBDT

LLE PCA KPCA LLE PCA KPCA LLE PCA KPCA LLE PCA KPCA

Pleasure 33.01 30.04 63.02 21.63 26.38 66.07 28.76 34.92 92.44 31.43 46.31 89.91
Fear 54.64 80.27 67.68 62.38 62.73 83.91 45.71 22.94 92.73 93.80 65.78 96.71

Sadness 44.71 22.33 53.16 38.76 42.57 51.40 55.87 78.07 77.24 45.38 51.54 92.41
Anger 36.14 21.64 69.77 44.12 33.98 46.68 21.90 15.70 92.34 39.42 49.28 98.29

Table 7. The detailed classification results of KPCA & GBDT.

learning_rate n_estimators max_depth max_ f eatures Accuracy (%)

0.1 50 2 10 86.05
0.1 50 3 10 88.75
0.1 50 4 10 89.25
0.1 50 4 20 90.69
0.1 50 4 30 91.50
0.1 100 4 30 92.46
0.1 200 4 30 93.42

0.01 200 4 30 92.46
0.001 200 4 30 89.57
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Table 8. The classification results based on the different number of principal components.

n_components GaussianNB Accuracy (%) GBDT Accuracy (%)

10 51.34 49.75
30 64.23 77.52
50 78.81 88.75

100 78.81 86.99
200 82.34 84.43
300 88.13 86.51
400 86.67 86.34
500 87.96 92.14
600 88.12 93.10

5. Conclusions

This paper proposed a comprehensive nonlinear processing method to overcome the difficulty
of emotion recognition towards a nonlinear multichannel physiological dataset. Firstly, KPCA was
adopted to map the data into a high-dimensional space and then reduce dimension. Next, GBDT was
used to recognize emotions from a nonlinear multichannel physiological dataset with many features.
To investigate the performance of the method, experiments were carried out on four physiological
signals, which were collected from 29 participants under four induced emotions. The comprehensive
nonlinear processing method outperformed general models on a nonlinear multichannel physiological
dataset. The classification accuracy was 93.42% on the four categories. As physiological signals are
complex, more effective emotion-relevant features should be extracted from multiple physiological
signals in the future emotion recognition system.
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