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Abstract: This study designs and characterizes a novel precise measurement system for
simultaneously measuring six-degree-of-freedom geometric motion errors of a long linear stage
of a machine tool. The proposed measurement system is based on a method combined with the
geometrical optics method and laser interferometer method. In contrast to conventional laser
interferometers using only the interferometer method, the proposed measurement system can
simultaneously measure six-degree-of-freedom geometric motion errors of a long linear stage
with lower cost and faster operational time. The proposed measurement system is characterized
numerically using commercial software ZEMAX and mathematical modeling established by using
a skew-ray tracing method, a homogeneous transformation matrix, and a first-order Taylor
series expansion. The proposed measurement system is then verified experimentally using a
laboratory-built prototype. The experimental results show that, compared to conventional laser
interferometers, the proposed measurement system better achieves the ability to simultaneously
measure six-degree-of-freedom geometric errors of a long linear stage (a traveling range of 250 mm).

Keywords: geometric errors; linear stage; error measurement; error analysis; machine tool;
multiple-degree-of-freedom error

1. Introduction

Recently, in accordance with the increasing market demand for ultraprecise machine tools to
machine complicated workpiece surfaces, multi-axis machine tools have become more and more
important and play a crucial role in the manufacturing and machining field [1,2]. In order to produce
multi-axis machine tools with high accuracy and repeatability, inspection and compensation techniques
for static and dynamic errors of machine tools are necessary [3–5]. At present, for multi-axis machine
tools, linear precision stages are the key components, and have been widely used as the basis for
linear motion, and constrain its motion to a desired direction or posture [6,7]. However, due to the
deviations caused by manufacturing imperfections, assembly, misalignments, structural deflections
and so on, a linear precision stage will inherently have six-degree-of-freedom (6DOF) geometric
motion errors, including three linear errors (positioning error δx, horizontal straightness error δy,
and vertical straightness error δz) and three angular errors (pitch error εy, yaw error εz, and roll error
εx) [8,9]. As a result, in order to improve the accuracy and repeatability of the multi-axis machine
tools, 6DOF geometric motion errors of the linear precision stage should be accurately identified and
effectively compensated [10,11].
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Traditionally, the laser interferometer, the well-known non-contact measuring instrument with
high resolution and long range, has been widely implemented to measure geometric motion errors of
the linear precision stage for multi-axis machine tools. However, it can only measure a single geometric
motion error of the linear precision stage in each experimental setup. Therefore, it is a time-consuming
work to completely measure all geometric motion errors of the linear precision stage using the laser
interferometer [7,11,12]. In recent years, some measurement systems for simultaneously measuring
multi-DOF geometric motion errors of a long linear stage of a machine tool have been developed in
the literature [13–31]. For example, for contact measurement, Mura proposed a novel measurement
device, consisting of six displacement sensors mounted as a parallel mechanism based on the Stewart
theory. By applying the direct kinematic equations to convert the six displacements read from the six
displacement sensors into the three translations and rotations, it can measure the global deformation
of a component [14–16]. However, it is difficult to measure the positioning error δx for a long traveling
range (>200 mm) with high accuracy and repeatability due to its inherent limits.

Among those measurement systems, non-interferometric optical sensing technologies have been
verified to be superior to others in many aspects, including compactness, immunity to electromagnetic
interference, and noncontact measurement [7,10]. For example, Lee et al. presented a 6DOF geometric
error measurement system that can be applied to the simultaneous measurement of six geometric error
components of the moving axes of a meso-scale machine tool. The measured traveling range is 4 mm.
The presented measurement system consists of a laser module constructed by a laser diode, a cube
beam splitter (BS) and three two-dimensional position sensitive detectors (PSDs), and an additional
cube beam splitter (BS) [10]. Kuang et al. proposed a novel and single four-degree-of-freedom (4DOF)
laser measuring system in which only a cube corner retro-reflector and a BS were adopted to sense the
straightness errors and angular errors, respectively [20]. However, it is also difficult to measure the
positioning error δx for a long traveling range (> 200 mm) with high accuracy and repeatability due to
its inherent limits. Therefore, Fang et al. proposed a measurement system to simultaneously measure
6DOF geometric errors. The measurement method is based on a combination of laser interferometry
and laser fiber collimation. Positioning error measurement was achieved by laser interferometry,
and other five-degree-of-freedom (5DOF) geometric motion errors were obtained by fiber collimation
measurement [28–31]. However, to the best of the current authors’ knowledge, these techniques are
very few.

As a result, in this study, a novel precise and simple measurement system for simultaneously
measuring 6DOF geometric motion errors of a long linear stage has been proposed to provide
another solution. The proposed measurement system is based on a method combined with the
geometrical optics method (non-interferometric optical sensing technologies) and laser interferometer
method. In the proposed approach, a commercial laser interferometer was combined into the proposed
measurement system. The structure and the principles of the proposed measurement system are
described in detail as follows. The proposed measurement system is characterized numerically,
and then verified experimentally using a laboratory-built prototype. Finally, some brief concluding
remarks are presented.

2. Structure Layout and Measuring Principle

The structure layout of the proposed measurement system for simultaneously measuring 6DOF
geometric motion errors of a long linear stage is shown in Figure 1. The proposed measurement system
consists of two parts, namely a moving part attached on the measured long linear stage and a fixed
part. The proposed measurement system is constituted of a laser interferometer, five two-dimensional
PSDs, five BSs, two roof prisms, and one corner cube. Among them, the PSD utilizes a silicon
photodiode-based pincushion tetra lateral sensor (Newport, CA, USA, CONEX-PSD9, position
sensitivity of 0.5 µm) to accurately measure the displacement of an incident beam relative to the
calibrated center. Unlike quadrant detectors, the improved tetra-lateral effect diode is highly linear
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over the full sensor size. In the proposed approach, the commercial laser interferometer is combined
into the proposed measurement system to measure the positioning error of the linear stage.

When the linear stage with 6DOF geometric errors moves to different positions, the optical paths
of the laser beams are changed in the proposed measurement system and then the positions of the
light spots on the PSDs are also changed. Figure 2 illustrates the motion error-induced changes in the
positions of the light spots on the PSDs for the horizontal straightness error δy, vertical straightness
error δz, pitch error εy, yaw error εz, and roll error εx, respectively.
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However, the timing fluctuations of the laser source introduce noise, thereby degrading the
measurement accuracy [32–35]. As a result, this study proposes a method to measure and compensate
for fluctuations in the laser beam geometry. As shown in Figure 3, two PSDs (PSD4 and PSD5) are used
to measure linear fluctuations (δly and δlz) and angular fluctuations (εly and εlz) of the laser source in
this study. As stated in Section 3, a forward light ray tracing method is used to follow the laser beam.
From these data, the effects of 6DOF geometric errors of the linear stage on the light spot positions
on the PSDs are determined, and a reverse derivation is applied to find the 6DOF geometric errors of
the linear stage from the light spot position information [7]. Subsequently the measurement accuracy
of the proposed measurement system can be improved by compensating the measured linear and
angular fluctuations of the laser source. As a result, the 6DOF geometric errors of the linear stage can
be obtained by analyzing the position information of the light spots on the PSDs and the optical paths
in the proposed measurement system.
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3. Numerical Simulation and Mathematical Model

In this study, the ray trace function of ZEMAX software was used to verify the measuring
performance of the proposed measurement system and simulate the positions of the light spots on
the PSDs with qualitative analysis. Figure 4 shows the ZEMAX optical models of the proposed
measurement system. Figure 5 illustrates the optical simulation results obtained for the changes in
the laser spots on the PSDs with different horizontal straightness errors, vertical straightness errors,
pitch errors, yaw errors, and roll errors, respectively. It is noted that the numerical simulation of the
positioning error is omitted, because the measurement of the positioning error is carried out using the
commercial laser interferometer. These optical simulation results imply the feasibility of the proposed
measurement system.
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Since a detailed mathematical derivation of the proposed measurement system could be found
in our previous publication [7], this subsection only briefly reviews it and presents the difference.
To calculate the relation between the individual 6DOF geometric errors and fluctuations of the laser
source and the position information of the light spots with quantitative analysis, a skew-ray tracing
method and a homogeneous transformation matrix (HTM) are adopted here. By using the HTM,
we can define the coordinate frame of each optical boundary relative to a reference coordinate system,
as shown in Figure 6, and establish the light beam tracing equations.
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Following the algorithm of the flat-boundary skew-ray tracing method which was shown in our
previous publication [35–39], R Ai denotes the transfer matrix from each optical device (i) coordinate
system to the reference coordinate system (R), and is shown as follows:

R Ai =


Iix Jix Kix tix
Iiy Jiy Kiy tiy
Iiz Jiz Kiz tiz
0 0 0 1

 (1)

As shown in Figure 7, a laser beam originates from Pi−1 =
[

Pi−1x Pi−1y Pi−1z 1
]T

and

is incident on a flat surface along the unit directional vector Ii−1 =
[
Ii−1x Ii−1y Ii−1z 0

]T
.

When the ray impacts the flat surface, if λi is the vector from the source Pi − 1 to the destination point
Pi, then λi is as follows:

Pi =
[

Pix Piy Piz 1
]T

=
[

Pi−1x + Ii−1xλi Pi−1y + Ii−1yλi Pi−1z + Ii−1zλi 1
]T

(2)

λi =
−(IizPi−1x + JizPi−1y + KizPi−1z + tiz)

IizIi−1x + JizIi−1y + KizIi−1z
=
−Bi
Gi

(3)

According to Snell’s Law, the unit directional vector Ii of the reflected ray is as follows:

Ii =
[
Iix Iiy Iiz 0

]T
=

[
Ii−1x − 2IizGi Ii−1y − 2JizGi Ii−1z − 2KizGi 0

]T
(4)

When the laser beam is incident upon the next flat surface, the previous point of incidence is the
origin of the light source and the unit directional vector of the reflected ray is that of the incident ray.
Tracing the laser ray path in the optical system chronologically, then the derivation of the forward ray
tracing is used to locate the image centroid coordinates of the light spots on the five PSDs as follows:

XPSD1 = FX1(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (5)

YPSD1 = FY1(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (6)

XPSD2 = FX2(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (7)

YPSD2 = FY2(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (8)

XPSD3 = FX3(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (9)

YPSD3 = FY3(δx, δy, δz, εy, εz, εx, δly, δlz, εly, εlz), (10)

XPSD4 = FX4(δly, δlz, εly, εlz), (11)

YPSD4 = FY4(δly, δlz, εly, εlz), (12)

XPSD5 = FX5(δly, δlz, εly, εlz), (13)

YPSD5 = FY5(δly, δlz, εly, εlz), (14)

where XPSDi (i = 1, 2, 3, 4, and 5) and YPSDi (i = 1, 2, 3, 4, and 5) are the image centroid coordinates of
the light spot on PSDi in the X-direction and Y-direction, respectively.
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Finally, by using a reverse mathematical derivation and a Taylor series expansion, we can
simultaneously obtain the 6DOF geometric errors of the linear stage as follows:

δy = Gδy (XPSD1, YPSD1, XPSD2, YPSD2, XPSD3, YPSD3, XPSD4, YPSD4, XPSD5, YPSD5), (15)

δz = Gδz (XPSD1, YPSD1, XPSD2, YPSD2, XPSD3, YPSD3, XPSD4, YPSD4, XPSD5, YPSD5), (16)

εy = Gεy (XPSD1, YPSD1, XPSD2, YPSD2, XPSD3, YPSD3, XPSD4, YPSD4, XPSD5, YPSD5), (17)

εz = Gεz (XPSD1, YPSD1, XPSD2, YPSD2, XPSD3, YPSD3, XPSD4, YPSD4, XPSD5, YPSD5), (18)

εx = Gεx (XPSD1, YPSD1, XPSD2, YPSD2, XPSD3, YPSD3, XPSD4, YPSD4, XPSD5, YPSD5), (19)
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In this study, we only introduce the basic background of the HTM and the skew-ray tracing method to
avoid repeat. For more comprehensive coverage, the reader is referred to [35–39] to avoid too much
word repetition.
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4. Experimental characterization

As shown in Figure 8, the validity of the proposed measurement system was verified by means of a
laboratory-built prototype with a linear stage (a traveling range of 250 mm, Newport M-ILS250CCHA).
A series of position-measurement experiments were performed with the position δ. It is noted that the
linear stage can be moved directly via a linear motor featuring a closed-loop control scheme based
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upon a feedback signal generated with an optical encoder (resolution of 0.5 µm). Therefore, the final
position was measured by using a position feedback signal from the optical encoder and its typical
accuracy is ±1.7 µm. The experiments were conducted in a temperature-controlled laboratory. Here,
the laser interferometer is replaced with a He-Ne laser (Newport R-30989) in the experimental setup
for the measurement of the horizontal straightness errors, vertical straightness errors, pitch errors,
yaw errors, and roll errors.

Figure 9 presents the experimental results obtained for 6DOF geometric motion errors of the
linear stage with the imposed position, respectively. It can be seen in the resuslts that the horizontal
straightness, vertical straightness, pitch, yaw, roll, and positioning errors of the linear stage are
19 µm, 16µm, 24 arcsec, 10 arcsec, 35 arcsec, and 45 µm respectively. It is noted that the measured
positioning error increases when the imposed position increases and it dominates the geometric
motion errors of the linear stage. Figure 10 shows the measurements of yaw errors on the linear stage
using the proposed measurement system compared with measurements using the laser interferometer
(Renishaw, Gloucestershire, United Kingdom, XL-80). It shows that measured accuracy of the proposed
measurement system is about 4 µm when comparing to that of the laser interferometer. Consequently,
it confirms that the proposed measurement system is suitable and has potential for simultaneous
measurement of 6DOF geometric motion errors of a long linear stage. However, the measured accuracy
of the proposed measurement system is not only influenced by the laser beam fluctuations but also
by Abbe errors, misalignments, PSD sensitivity, aberrations, and so on [7,40]. Therefore, in order to
improve measured accuracy, these issues must be considered and optimized in the future.
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linear stage with the imposed position, respectively. It can be seen in the resuslts that the horizontal 
straightness, vertical straightness, pitch, yaw, roll, and positioning errors of the linear stage are 19 
μm, 16μm, 24 arcsec, 10 arcsec, 35 arcsec, and 45 μm respectively. It is noted that the measured 
positioning error increases when the imposed position increases and it dominates the geometric 
motion errors of the linear stage. Figure 10 shows the measurements of yaw errors on the linear 
stage using the proposed measurement system compared with measurements using the laser 
interferometer (Renishaw, Gloucestershire, United Kingdom, XL-80). It shows that measured 
accuracy of the proposed measurement system is about 4 μm when comparing to that of the laser 
interferometer. Consequently, it confirms that the proposed measurement system is suitable and 
has potential for simultaneous measurement of 6DOF geometric motion errors of a long linear stage. 
However, the measured accuracy of the proposed measurement system is not only influenced by 
the laser beam fluctuations but also by Abbe errors, misalignments, PSD sensitivity, aberrations, 
and so on [7,40]. Therefore, in order to improve measured accuracy, these issues must be 
considered and optimized in the future.  

Figure 9. Experimental results for variation of geometric motion error with position: (a) horizontal
straightness, (b) vertical straightness, (c) pitch, (d) yaw, (e) roll, and (f) positioning errors, respectively.
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been evaluated using a laboratory-built prototype. The experimental results have shown that the
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